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Local assortativity affects the synchronizability of

scale-free network
Mengbang Zou, Weisi Guo∗, Senior Member, IEEE,

Abstract—Synchronization is critical for system-level be-
haviour in physical, chemical, biological, and social systems.
Empirical evidence has shown that the network topology strongly
impacts the synchronizability of the system, and the analysis of
their relationship remains an open challenge. We know that the
eigenvalue distribution determines a network’s synchronizability,
but analytical expressions that connect network topology and all
relevant eigenvalues (e.g., the extreme values) remain elusive.

Here, we accurately determine its synchronizability by propos-
ing an analytical method to estimate the extreme eigenvalues
using perturbation theory. Our analytical method exposes the role
that global and local topology combine to influence synchroniz-

ability. We show that the smallest non-zero eigenvalue λ
(2) which

determines synchronizability is estimated by the smallest degree
augmented by the inverse degree difference in the least connected
nodes. From this, we can conclude that there exists a clear
negative relationship between λ

(2) and the local assortativity of
nodes with the smallest degree value. We validate the accuracy of
our framework within the setting of a Scale-free (SF) network and
can be driven by commonly used ordinary differential equations
(ODEs) (e.g., 3-dimensional Rosler dynamics or Hindmarsh-Rose
(HR) neuronal circuit). From the results, we demonstrate that
the synchronizability of the network can be tuned by rewiring
the connections of these particular nodes while maintaining the
general degree profile of the network.

Index Terms—complex network; synchronizability; network
topology; local assortativity; perturbation theory

I. INTRODUCTION

S
YNCHRONIZATION, as a collective phenomenon of

dynamically coupling units, generally exists in different

fields such as power grids [1], wireless communication net-

works [2], neural networks [3], etc. Realizing that the network

topology of the system plays an important role in system’s

behaviors, the relationship between the network topology and

synchronizability has attracted a lot of attention in recent

years [4]–[8]. According to intuitive experience, some network

topology characteristics are proposed as indicators of synchro-

nizability, such as betweenness centrality [5], the correlation

of degrees [9], etc. One problem needs to be pointed out is

that when analysing the relationship between synchronizability

and topology characteristics, some parameters like number of

nodes N of the network, rewiring probability p of SW (small-

world) networks need to be adjusted, which would cause other

network topology characteristics changing, such as average
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distance, clustering coefficients, etc. The direct relationship

between synchronizability and a given topology characteris-

tic is not clear when other network topology characteristics

keep varying. Besides, some topology characteristics provide

indicators of synchronization in a network class but fail in

other network classes [8]. The previous simulation experiments

could reveal the relationship between synchronizability and

network topology characteristics in some situation, but are

far from clearly explaining it or mathematically abstracting

it. It is important for researchers to uncover the behavior of

empirical phenomena through experiments and data analysis.

More importantly, we need to develop theories that abstract

such behavior mathematically and explain the mechanism

behind these phenomena [10]. The master stability function

relates the global synchronizability to the spectral properties of

the Laplacian matrix of the network, which provides the objec-

tive criterion for synchronizability [11]. For determined self-

dynamics function and coupling dynamics function, the global

synchronizability of the network is determined by the spectral

properties of the network. Based on this analysis framework,

the analysis of synchronizability of complex network could be

converted to analyze the bounds of the extreme eigenvalues

[12] [13]. There are some main results in previous work for

different network models. Here, we mainly discuss the SF

network.

In a scale-free (SF) network with large minimum degree

or random enough network, the extreme eigenvalues can be

bounded by the mean degree, minimum degree, and maximum

degree [14]. Perturbation analysis of spectra of SF networks

shows that the maximum eigenvalue is approximately equal

to the maximum degree [15], but the smallest nonzero eigen-

value λ(2) is ensemble averageable by itself. The difficulty in

approximating λ(2) by perturbation theory is the degeneration

of eigenvectors which is caused by the existence of a large

number of nodes with the smallest degree. To solve this

problem, degenerate perturbation theory is used to estimate the

eigenvalues and location of eigenvectors of a random network

[16]. Although degenerate perturbation theory can accurately

estimate eigenvalues, it requires the global information of the

network and the introduction of new eigenvectors several times

to solve the degeneration at the first-order perturbation [16].

This will increase the computation complexity in estimation.

Besides, it is difficult for us to get any knowledge about

the relationship between extreme eigenvalues and network

topology characteristics through the complicated process of

calculation. Degenerate perturbation theory is an effective

method to estimate eigenvalues, but it is difficult to get an

analytic equation to help us understand the synchronizability
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TABLE I
METHODS TO ANALYZE THE SYNCHRONIZABILITY AND NETWORK TOPOLOGY

Method Advantage Limitation Ref.

Discover structure
characteristic
as an indicator of
synchronizability

Mainly use numerical
experiments to discover
the relationship between
synchronizability and
network structure
characteristic.

Numerical experiment is easy
to use and reveal the
effect of network structure
on synchronizability in
some extent.

Numerical method is far from
explaining the relationship
between network topology
and synchronizability; it is not
clear when the indicator
valid or invalid.

[4]–[9]

Analyze
synchronizability
by estimating the
bounds of extreme
eigenvalues

Use graph theory to
estimate the bounds
of extreme eigenvalues
to analyze the
synchronizability.

It is a solid mathematic method
which can explain why and how
network topology affects
synchronizability.

In some situation, the difference
between upper bound and lower
bound estimation is very large.
So, it is difficult to determine
whether the extreme eigenvalues
belong to the stable region.

[12]–[14]

Perturbation
theory to estimate
extreme eigenvalues.

It can accurately estimate
the largest eigenvalues
in some specific network.

It is difficult to estimate the
smallest none-zero eigenvalue
due to the degeneration of
eigenvector caused by the large
number of nodes with the same
degree.

[15]–[17]

Specific perturbation
theory with link
removal method
used in this paper.

It can estimate the smallest
none-zero eigenvalue by avoiding
the degeneration of eigenvector
and reveal how local assortativity
affects the synchronizability.
Also, it provides a strategy to control
the synchronizability of the network
without changing the degree of nodes.

This method will lose some
accuracy in networks with
homogeneous degree
distribution.

Method in
this paper

of the network by this method. Therefore, how to avoid the

degeneration of eigenvectors and get a clear analytic equation

when estimating the smallest non-zero eigenvalue is necessary.

To solve this problem, a link removal method is used to

avoid the degeneration of eigenvectors. We prove that the link

removal of the node with smallest degree has little effect on the

smallest non-zero eigenvalue of the network. The new network

after link removal only has one node with smallest degree,

which means that the non-degenerate perturbation theory can

be used to estimate the smallest non-zero eigenvalue of the

new network. The non-degenerate perturbation theory only

requires the local information of smallest nodes (node of the

minimum degree) and the calculation complexity is much

lower compared with the degenerate perturbation theory.

The contribution of this paper is that we propose an analytic

framework to get a clear analytic equation when estimating

the smallest nonzero eigenvalue of the network (the analytic

framework is shown in Fig. 1, and our method is compared

with previous methods in Table (I)). There are some advan-

tages compared with previous methods. 1) Our estimation

method is more accurate than the graph theory methods,

which only provide the bound of extreme eigenvalues. 2)

Traditional non-degenerate perturbation theory cannot directly

be used to estimate the smallest nonzero eigenvalue due

to the degeneration of eigenvectors. We solve this problem

by the link removal method and get an analytic estimation

expression, which points out how the network topology affects

the synchronizability of the network. The analytic expression

shows that the smallest non-zero eigenvalue λ(2) is mainly

determined by the minimum degree of the network and the

connection of the smallest nodes in a SF network. According

to the analytic expression, there exists a relationship between

λ(2) and the local assortativity of these nodes. Besides, the

analytic expression instructs us how to strengthen or weaken

the synchronizability of the network by reconnecting links

among nodes with prescribed degree profile. The assumption

of this paper is that the network used in this paper is SF

network with large minimum degree, and the coupling nodes

in the network have identical dynamics.

This paper is organized as follows. In Sec. II, we introduce

the general dynamics model for a networked system and the

criteria to characterize synchronizability provided by the mas-

ter stability function method (MSF). In Sec. III, we propose

an analytical method to estimate extreme eigenvalues in SF

network by perturbation theory and analyze the relationship

between λ(2) and local assortativity. In Sec. IV, Rossler system

in a SF network and the Hindmarsh-Rose (HR) neuronal in

a brain neuron network generated by real data are used to

verify our theory. At last, we make a conclusion and discuss

the future direction.

II. NETWORK SYNCHRONIZATION

Many infrastructures, social science, or ecology examples

amongst same equipment, social atoms or species to have

the same dynamic model. For example, in the study of

synchronization problem of opinion formation in social net-

works, the participants (agents) are assumed to have identical

dynamics with different initial states [18]. Some types of

synchronization of bursting neurons are thought to play a key

role in Parkinson’s disease, essential tremor, and epilepsies

[19]. [20] studies the synchronization of bursting neurons with

identical dynamics in a Scale-free neural network. Consider an

undirected (or bi-directed) network with N coupled identical

nodes (symbols used in this paper are shown in Table (II)).
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(b) Master Stability Function bridges the gap between network topology and global synchronizability of the network
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(c) Accurate estimation of extreme eigenvalues  is critical to understand the relationship between network topology and synchronizability
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Fig. 1. This figure shows our proposed analysis framework for global synchronizability. (a) describes the dynamics of a node and the dynamics of coupled
nodes. (b) shows that Master Stability Function provides us a criterion of global synchronizability, the ratio of extreme eigenvalues. (c) uses non-degenerate
perturbation theory to estimate extreme eigenvalues. (d) proposes a strategy to control global synchronizability by rewiring the connections of critical nodes.

The dynamics of each node is described by

ẋi = f(xi)− c
N
∑

j=1

LijH(xj), i = 1, 2, 3, ...N, (1)

where xi = (x
(1)
i , x

(2)
i , ..., x

(n)
i ) ∈ R

n is the state vector of

node i, f(·) : Rn −→ R
n controls self dynamics of node i,

c > 0 is the coupling strength, H(·) : R
n −→ R

n is the

inner coupling function. L is the Laplacian matrix of the

network. L = D − A, where A is the adjacent matrix and D

is the diagonal matrix of degrees. Dij =
∑N

j=1 Aij if i = j.

Otherwise, Dij = 0. If an edge exists between node i and

node j, Aij = Aji = 1. Otherwise, Aij = 0. The matrix L

satisfies Lii = −∑N
j=1,j ̸=i Lij , i = 1, 2, ..., N. If the graph

is connected, then L is irreducible. Zero is an eigenvalue of

L with multiplicity 1 and all other eigenvalues are strictly

positive, denoted by

0 = λ(1) < λ(2) ≤ λ(3) ≤ ... ≤ λ(N). (2)

The nodes are labeled in increasing order of their degrees

ki, such that kmin = k1 ≤ k2 ≤ · · · ≤ kN = kmax. The

average degree of the network is < k >=
∑N

i=1 ki/N .

The system reaches the state of synchronization if x1(t) =
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x2(t) = ... = xN (t) = s(t) when t → ∞, where s(t) can

be an equilibrium point, a periodic orbit, or a chaotic attractor

[21]. When the system reaches the synchronized state, a crucial

question is whether the synchronization manifold is stable in

the presence of small perturbation δxi [12]. If the system

can maintain the synchronized state with the presence of

perturbation, then the synchronized state is stable. Otherwise,

the state is unstable.

The stability of the synchronized manifold x1 = x2 = ... =
xN can be determined by the master stability equation [11]

ζ̇ = [Df(s) + γDH(s)]ζ, (3)

where ζ is the collection of variations and ζ = (ζ1, ζ2, ..., ζN ).
ζi is the variation on the i-th node. Df(s) and DH(s) are the

Jacobian matrix of functions f and H at s. Then we need

to calculate the largest Lyapunov exponent Ωmax. Ωmax is a

function of γ, where γ = −cλ(i). The evolution of small ζ
is described on average as ∥ζ(t)∥ ∼ eΩmax(γ)t, and the state

is stable with ∥ζ(t)∥ → 0, if Ωmax(γ) < 0. Ωmax(γ) can be

calculated by Ωmax = limt→∞
1
t
ln ∥ζt∥

∥ζ0∥
[12].

The region S of γ which makes Ωmax negative is called

the synchronized region. If the eigenvalue λ(i) of matrix L

satisfies

−cλ(i) ∈ S, i = 2, 3, · · ·N, (4)

then (1) is asymptotically stable. The stable synchronized

region S could be an unbounded region (−∞, γ1), a bounded

region (γ1, γ2), an empty set or a union of several subregions.

When the synchronized region S = (γ1, γ2), where γ1, γ2
are both negative real numbers, the eigenvalues of matrix L

need to satisfy

−cλ(N) > γ1,−cλ(2) < γ2 (5)

TABLE II
LIST OF SYMBOLS USED IN THIS PAPER

Symbol Describtion

xi state of node i
f(·) self-dynamics function
H(·) inner coupling function
c coupling strength
L Laplacian matrix of the network
D diagonal matrix of degrees
A adjacent matrix

< k > the average degree of the network
ζi the variation on node i

γ γ = c ∗ λ(i)

S the synchronized region
Ωmax the largest Lyapunov exponent
Lij element of matrix L

Aij element of matrix A

λ(i) eigenvalue of matrix L

ki degree of node i
Df(s) the Jacobian matrix of function f at s
DH(s) the Jacobian matrix of function H at s

ϵ the expansion parameter which tends to be small

ξ⃗(i) eigenvector corresponding to λ(i)

ξ
(i)
α the α-th element of eigenvector ξ⃗(i)

ξ⃗(i)tr the transpose of ξ⃗(i)

δij Kronecker delta function
ρi local assortativity of node i
r assortativity of the network
θi degree difference between node i and its neighbours

to make the synchronized region asymptotically stable. (5) can

be written as
λ(N)

λ(2)
<

γ1
γ2

. (6)

The ratio of λ(N)

λ(2) characterizes the synchronizability in this

case. When the synchronized region S = (−∞, γ1), the

eigenvalues must satisfy −cλ(2) < γ1.

III. ANALYSE SYNCHRONIZABILITY BY PERTURBATION

THEORY

Since the synchronizability of networks depends on the

extreme eigenvalues λ(2) and λ(N), we use the non-degenerate

perturbation theory to estimate λ(N). Similar perturbation

methods are used in [15] [16] to estimate eigenvalues and

eigenvectors1.

First, we introduce the expansion parameter ϵ =< k >−1.

The Laplacian matrix L could be rewritten as L = L0 +
ϵL1, where L0 = D and L1 = − < k > A. ξ⃗(i) =
{ξ(i)1 , ξ

(i)
2 · · · ξ(i)N }T represents the Laplacian eigenvector of

the i-th mode and λ(j) is the corresponding eigenvalue.

Since L is a real symmetric matrix, the eigenvectors can be

orthonormalized to
∑N

α=1 ξ
(i)
α ξ

(j)
α = δi,j , where δi,j is the

Kronecker delta function. L0 is considered as an unperturbed

matrix, and L1 is considered as a perturbation. We can get

N
∑

β=1

Lαβξ
(i)
β = λ(i)ξ(i)α . (7)

We expand the eigenvector and eigenvalues with ϵ as

ξ⃗(i) = ξ⃗
(i)
0 + ϵξ⃗

(i)
1 + ϵ2ξ⃗

(i)
2 + · · · ,

λ(i) = λ
(i)
0 + ϵλ

(i)
1 + ϵ2λ

(i)
2 + · · · .

(8)

We assume that the unperturbed eigenvectors are orthonormal-

ized and the higher-order perturbation vectors are orthogonal

to the unperturbed eigenvectors. According to (7) and (8), we

can obtain the following equations up to O(ϵ2)2:

(L0 − λ
(i)
0 )ξ⃗

(i)
0 = 0,

(L0 − λ
(i)
0 )ξ⃗

(i)
1 = (λ

(i)
1 − L1)ξ⃗

(i)
0 ,

(L0 − λ
(i)
0 )ξ⃗

(i)
2 = (λ

(i)
1 − L1)ξ⃗

(i)
1 + λ

(i)
2 ξ⃗

(i)
0 ,

(L0 − λ
(i)
0 )ξ⃗

(i)
3 = (λ

(i)
1 − L1)ξ⃗

(i)
2 + λ

(i)
2 ξ⃗

(i)
1 + λ

(i)
3 ξ⃗

(i)
0 .

(9)

It is easy to obtain

λ
(i)
0 = ki,

λ
(i)
1 = − < k > Aii = 0.

(10)

Furthermore, it can be deduced

λ
(i)
2 = ξ⃗

(i)tr
0 L1ξ⃗

(i)
1 ,

λ
(i)
3 = ξ⃗

(i)tr
0 L1ξ⃗

(i)
2 ,

(11)

1except the eigenvalue λ(1) = 0 and its corresponding eigenvector, which
have exceptional characteristics and is excluded from the analysis [16]

2the value of ϵ tends to be small and second order approximation is
sufficient
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where ξ⃗
(i)tr
0 is the transpose matrix of ξ⃗

(i)
0 . The first-order

and second-order corrections ξ⃗
(i)
1 , ξ⃗

(i)
2 of the i-th vector can

be obtained by

ξ⃗
(i)
1 =

∑

j ̸=i

ξ⃗
(j)tr
0 L1ξ⃗

(i)
0

λ
(i)
0 − λ

(j)
0

ξ⃗
(j)
0 ,

ξ⃗
(i)
2 =

∑

h ̸=i

ξ⃗
(h)tr
0 L1ξ⃗

(i)
1

λ
(i)
0 − λ

(h)
0

ξ⃗
(h)
0 .

(12)

(12) reveals that ξ⃗
(i)
1 is determined by the nodes connected

to node i which are called the first-order neighbour nodes of

node i. ξ⃗
(i)
2 is determined by the nodes connected to neighbour

nodes of node i. These nodes are called the second-order

neighbour nodes of node i. Furthermore, we can get

λ
(i)
2 =

∑

i̸=j

A2
ij

ki − kj
. (13)

λ
(i)
2 is determined by the first-order neighbour nodes of node i.

Also, (11) reveals that λ
(i)
3 is determined by the second-order

neighbour nodes of node i. λ
(i)
3 = 0, since the second-order

neighbour nodes of node i are not directly connected with

node i. In a similar way, we can deduce that λ
(i)
3 , λ

(i)
4 ... =

0. Therefore, according to our perturbation analysis, λ(i) is

mainly determined by its first-order neighbour nodes and is

almost not affected by other nodes.

So λ(N) could be estimated by perturbation expansion to

the second order as

λ(N) ≃ kN +
∑

j ̸=N

A2
Nj

kN − kj
. (14)

The second-order term can be expanded as
∑

j(ANj)
2( 1

kN
+

kj

k2
N

+ · · · ) = 1+kaveN /kN + · · · , where kaveN

is the average degree of the nearest neighbours of node N .

For large N , kaveN /kN ≪ 1 [15]. Therefore, λ(N) ≃ kN + 1,

which means that λ(N) is mainly decided by kmax. On the

other hand, λ(2) should be estimated by degenerate theory

[22], since several nodes may have the same node degree with

λ(2) in the SF network. However, the difficulty is that some

eigenvectors remain degenerate after several estimation steps.

So, the eigenvectors and eigenvalues cannot be determined

from (9). To solve this problem, we remove one link from

the node with the lowest degree to get a new network in

which kmin − 1 = k1 < k2 ≤ · · · ≤ kN = kmax. So the

non-degenerate perturbation theory could be used to estimate

λ(2) of the new network. If the effect of link removal on

eigenvalues is very small, then we think that λ(2) of the new

network extremely approaches to the original one. Therefore,

we can obtain λ(2) of the original network by estimating λ(2)

of the new network.

The link removal method is shown in Fig. 2. Perturbation

theory can consider how matrix functions, such as eigenvalues

or singular changes when the matrix is subject to perturbations

[23]. Link removal is a kind of perturbation on the graph,

which will slightly modify the elements of the Laplacian

matrix as well as the eigenvalues. Therefore, it is reasonable

for us to use perturbation theory to analyze the effect of link

removal on Laplacian eigenvalues. The change of eigenvalues

can be estimated by

(L+∆L)(ξ⃗(i)+∆ξ⃗(i)) = (λ(i)+∆λ(i))(ξ⃗(i)+∆ξ⃗(i)), (15)

where ∆L,∆ξ⃗(i),∆λ(i) represent the changes in L, ξ⃗(i), λ(i).

Multiplying (15) by the transpose of ξ⃗(i), ξ⃗(i)tr, we can get

∆λ(i) =
ξ⃗(i)tr∆Lξ⃗(i) + ξ⃗(i)tr∆L∆ξ⃗(i)

ξ⃗(i)tr ξ⃗(i) + ξ⃗(i)tr∆ξ⃗(i)
. (16)

Original Network

Link Removal

Fig. 2. The link removal method is removing the edge between the node
with the smallest degree and its neighbour. We can get a network by applying
the link removal method to the original network. The smallest non-zero
eigenvalues of the original network and the new network are almost the same.

For a large complex network, it is reasonable to assume that

the removal of only a link has small effects on the network as

well as the eigenvector ξ⃗(i)tr, which means that ∆ξ⃗(i)tr ≃ 0
[24] [25]. If the link between node k and node m is removed,

then

∆λ(i) ≃ 2ξ
(i)
k ξ

(i)
m − ξ

(i)
k ξ

(i)
k − ξ

(i)
m ξ

(i)
m

ξ⃗(i)tr ξ⃗(i)
. (17)

Since ξ⃗(i)tr ξ⃗(i) = 1, ∆λ(i) ≃ −(ξ
(i)
k − ξ

(i)
m )2. Therefore,

the perturbation of ∆λ(2) mainly depends on the Fielder

vector [26] (eigenvector corresponding to the smallest nonzero

eigenvalue λ(2)). The Fiedler vector could be obtained by

minimizing the degree-adjusted Rayleigh quotient [26] [27].

It is not difficult to find that (ξ
(i)
k − ξ

(i)
m )2 < 2. Actually,

(ξ
(i)
k − ξ

(i)
m )2 ≪ 1, which means that ∆λ(2) ≪ λ(2) (shown

in Fig. 3). Therefore, we can ignore ∆λ(2) and obtain λ(2) of

the original network by estimating λ(2) of the new network

according to

λ(2) ≃ min

(

(ki − 1) +
∑

j ̸=i

A2
ij

(ki − 1)− kj

∣

∣

∣

∣

ki=kmin

)

, (18)

where kmin is the minimum degree of the original network,

Aij represents the connections of node i.
In a given network, degree of nodes is determined, so λ(2) is

mainly affected by
∑

i̸=j

A2
ij

(ki−1)−kj
. We assume that there are

z nodes with minimum degree kmin in the original network.

Since these z nodes have their own different connections,
∑

i̸=j

A2
ij

(ki−1)−kj
varies according to different nodes. So λ(2)

is determined by the node with the smallest
∑

i̸=j

A2
ij

(ki−1)−kj

of these z nodes. (18) shows that connections of nodes with

smallest degree mainly affect λ(2), otherwise, nodes with large

degree do not have much effects on λ(2). That is, the node with
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Fig. 3. These four figures demonstrate the cumulative distribution of ∆λ(2)/λ(2) of different networks. The box-plots show the extreme values and median

of ∆λ(2)/λ(2) in different networks. From the distribution and extreme value of ∆λ(2)/λ(2), we can know that the link’s removal of nodes with smallest

degree almost does not affect λ(2) of the network, ∆λ(2) ≪ λ(2).

the smallest degree connecting to nodes with similar degree

will decrease λ(2). This implies that there exists a relationship

between local assortativity and λ(2). Local assortativity is a

property of a single node and indicates how similar a node

is to its neighbours [28]. A lot of methods are proposed to

calculate local assortativity. A simple method proposed in [29]

to calculate local assortativity ρi is used in this paper:

ρi =
r + 1

N
− θ̄i, (19)

where θ̄i = θi/
∑N

i θi, r is the assortativity of the network

and θi is calculated by

θi =
1

ki

N
∑

i=1

Aij |ki − kj | . (20)

node 1

node 2

node 3

node 4

node 1

node 2

node 3

node 4

Fig. 4. Rewire connections between nodes. This method includes two steps:
delete connections and add new connections. By this method, the neighbour
of these four nodes have been changed, but their degree remains the same.
So, we can use this method to adjust the network structure while maintaining
the degree of each node.

In (19), we can see that ρi is determined by r+1
N

and θ̄i.
Generally speaking, similar connection (connection between

similar degree nodes) will increase r. The effect of similar

connection on θ̄i needs to be analyzed. In a large-scale SF

network with N nodes, where N is a large number, we

maintain the degree sequence of the network and only rewire

the connections of nodes shown in Fig. 4. It is assumed

that node 1 and node 4 have small degree, while node 2
and node 3 have large degree. k1 ≃ k4 ≪ k2 ≃ k3.

Therefore, the connection between node 1 and node 4 as well

as connection between node 2 and node 3 could be seen as

a similar connection. Since we analyse the local assortativity

of the node with smallest degree, we assume k1 = kmin. Let

θsum =
∑N

i θi. The change of θsum from left connections to

right connections in Fig. 4 is ∆θsum and the change of θ1
is ∆θ1. In the left connections, θ̄1 = θ1/θsum; in the right

connections, θ̄′1 = (θ1 +∆θ1)/(θsum +∆θsum). Then

∆θ̄1 = −θ̄1 + θ̄′1 =
−θ1
θsum

+
θ1 +∆θ1

(θsum +∆θsum)

=
θsum∆θ1 − θ1∆θsum
(θsum +∆θsum)θsum

;

(21)

∆θ1 =

∣

∣

∣

∣

k4 − k1
k1

∣

∣

∣

∣

−
∣

∣

∣

∣

k2 − k1
k1

∣

∣

∣

∣

≃ −
∣

∣

∣

∣

k2 − k1
k1

∣

∣

∣

∣

< 0; (22)
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(c) estimation accuracy of λ(N)
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(d) estimation accuracy of λ(2)

Fig. 5. (a) shows that the estimation of λ(N), kN + 1, is very close to the real value of λ(N). Therefore, kN + 1 is a good estimation of λ(N) in SF
network. (b) shows the estimation of λ(2) in different SF netwoks by the method proposed in this paper. The red and blue scatter graphs represent the lower
bound and upper bound estimation of λ(2) and λ(N) by previous method kmax ≤ λN ≤ kmax(1+2/

√
< k >) and kmin(1− 2/

√
< k >) ≤ λ2 ≤ kmin.

The yellow line represents the real values of λ(2). We can see that the estimation of extreme eigenvalues by our method is very close to the real value. (c)
(d) is separately the probability density function plot of relative error of estimating λ(N) and λ(2). The subplots in (c) and (d) are the boxplots of relative
error. In most situations, the relative error of estimating λ(N) is less than 0.2% and the relative error of λ(2) is less than 5%.

∆θsum = (

∣

∣

∣

∣

k4 − k1
k1

∣

∣

∣

∣

+

∣

∣

∣

∣

k4 − k1
k4

∣

∣

∣

∣

+

∣

∣

∣

∣

k3 − k2
k3

∣

∣

∣

∣

+

∣

∣

∣

∣

k3 − k2
k2

∣

∣

∣

∣

)

− (

∣

∣

∣

∣

k2 − k1
k1

∣

∣

∣

∣

+

∣

∣

∣

∣

k2 − k1
k2

∣

∣

∣

∣

+

∣

∣

∣

∣

k3 − k4
k3

∣

∣

∣

∣

+

∣

∣

∣

∣

k3 − k4
k4

∣

∣

∣

∣

) ≃ 0.

(23)

Since ∆θsum > 0 and ∆θ1 < 0, we get ∆θ̄1 < 0. The

similar connection causes the increase of ρi and the decrease

of λ(2), which means a negative relationship exists between

local assortativity and λ(2).

Here, we add some discussion on how to extend our method

to other types of networks such as star-coupled networks and

small-world networks, and also discuss the limitation of our

method in different types of networks. In a network, if the

degree of the largest node is much larger than the average

degree of the neighbours of this node
∑

j(ANj)
2( 1

kN
+

kj

k2
N

+

· · · ) = 1+ kaveN /kN + · · · ≃ 1. So, in a Star-coupled network

or SF network, λ(N) ≃ kN + 1 is a good estimation. While,

in a small-world network, the degree of the largest node is

not always much larger than the average degree of this node,

λ(N) ≃ kN+1 is not accurate. But we can still use this method

to determine the bound of λ(N) in small-world networks.

Since 0 ≤ ∑

j ̸=N

A2
Nj

kN−kj
≤ kN , kN ≤ λ(N) ≤ 2kN . Small-

world networks can be obtained by randomly rewiring links

to a regular network where each node is connected to its

2M nearest neighbours. Here, we set the rewiring probability

as p. If 2Mp ≪ 1, the small-world network is similar to

the original regular network, which means that almost all

nodes have the same degree. In this situation, the second-

order estimation equation λ
(i)
2 =

∑

i̸=j(A
2
ij)/(ki − kj) is

not accurate enough. This is because when kj is close to ki,
the small perturbation on kj will greatly affect the value of

A2
ij/(ki−kj) and cause some inaccuracy.

∑

i̸=j(A
2
ij)/(ki−kj)

will enlarge the inaccuracy if a node connects to many

similar nodes. However, we can still use our method to

determine the bounds 0 < λ(N) ≲ kmin. If 2Mp is large

enough, the small-world network has many shortcuts, which

means that the degree of nodes is not as homogeneous as
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the regular network. In this situation, λ(N) ≃ kN + 1 and

λ(2) ≃ min

(

(ki − 1) +
∑

j ̸=i

A2
ij

(ki−1)−kj

∣

∣

∣

∣

ki=kmin

)

are good

estimation of extreme eigenvalues.

Fig. 6. Relationship between local assortativity and λ(2) in BA networks with
different size. All of these figures show that λ(2) decreases as the increase
of the local assortativity.

IV. RESULTS AND ANALYSIS

Here, we consider the Rossler system [30] for our nodes.

The dynamic function of the i-th oscillator is

ẋi
(1) = −(xi

(2) + xi
(3))

ẋi
(2) = xi

(1) + axi
(2)

ẋi
(3) = b+ xi

(3)(xi
(1) − d).

(24)

We assume that a = 0.2, b = 0.2, d = 6.0, the coupling

strength c = 0.03. Also, nodes are coupled by x(1). The inner

coupling function H is






1 0 0

0 0 0

0 0 0






. (25)

According to the master stability function, the stability region

is: S = (−5.44,−0.199).
We consider different sizes of SF networks generated by

Barabási–Albert (BA) model [31]. The estimation method

proposed above will be used to estimate the extreme eigen-

values and the accuracy of the method will be verified by

simulations. In Fig. 5, it shows that kN + 1 is very close

to the real value λ(N) in different SF network. Therefore,

kN + 1 is a good estimation of λ(N). Estimation of λ(2) by

the proposed method is shown in Fig. 5. Compared with the

previous estimation kmin(1 − 2/
√
< k >) ≤ λ2 ≤ kmin or

λ(2) ≃ kmin our estimation is closer to the real value of λ(2).

To quantify the estimation accuracy, we calculate the relative

error of estimation in different networks. The relative error is
∣

∣

∣
λ(i) − λ(i)′

∣

∣

∣
/λ(i), where λ(i)′ is the estimation of the real

value λ(i). The results are shown in Fig. 5.

To verify the relationship between local assortativity, the

rewire connection method in Fig. 4 is applied in BA networks.

Fig. 6 shows the relationship between local assortativity and

λ(2) in different BA networks with N = 200, 300, 500, 1000.

λ(2) decreases with the increase of local assortativity. Since

the rewire connection method does not change the degree

sequence of the network, λ(N) ≃ kN + 1 will not change

according to the above analysis. Therefore, the ratio of λ(N)

λ(2)

will increase with the local assortativity, which indicates the

decrease of synchronizability of the network.

Therefore, (18) provides us with a good strategy to control

synchronizability while maintaining the degree sequence of the

network. If the node with smallest degree connects to nodes

with similar degree, λ(2) will decrease and this action will

weaken the synchronizability. On the other hand, if the node

with smallest degree connect to nodes with large degree, λ(2)

will increase and the synchronizability will be strengthened.

Here, a BA network with Rossler dynamics described in (24)

will be used to verify the effectiveness of the strategy. The

network of 100 nodes is grown by attaching new nodes with

10 edges that are preferent attached to existing nodes with

high degree. In this network G1, λ(N) = 45.6 and λ(2) = 7.6.

−cλ(2) = −0.228 ∈ S,−cλ(N) = −1.368 ∈ S. Then, for

every eigenvalue of this network, −cλ(i) ∈ S. According to the

above analysis before, every node of this network will achieve

synchronization (The three pictures at the bottom of Fig. 7

show the synchronization process of nodes). Then, according

to the above controlling strategy, we rewire connections of

the node with similar nodes and get a new network G2. The

extreme eigenvalues of G2, λ(2) = 2.6 and λ(N) = 45.6. Then,

−cλ(N) ∈ S but −cλ(2) /∈ S. Nodes in G2 cannot achieve

global synchronization (the top three pictures in Fig. 7 show

the synchronization process of some nodes in G2). Therefore,

rewiring connections of nodes with the smallest degree is a

valid strategy to enhance or weaken the synchronization of

the whole network.

In the second case, we extend our work to analyze a

real-world networked system which is not a classic SF net-

work. We investigate the synchronizability of coupled neuronal

circuits. The presence of synchronized rhythms has been

experimentally observed in electroencephalograph recordings

of electrical activity in the brain. Moreover, some types of

synchronization of bursting neurons are thought to be related

to some diseases like Parkinson’s disease, essential tremor, and

epilepsies [19]. The Hindmarsh-Rose (HR) neuronal circuit

is considered as the node dynamics, which is described by

equations

ẋi
(1) = x

(2)
i − ax

(1)3
i + bx

(1)2
i − x

(3)
i + Ie

ẋi
(2) = d− ex

(1)2
i − x

(2)
i

ẋi
(3) = r[s(x

(1)
i + 1.6)− x

(3)
i ].

(26)

This model is widely used in modeling the firing activities of

neurons [32] [33] [34]. a, b, d, e, r, s are the system parameters

which are set as a = 1, b = 3, d = 1, e = 5, r = 6 ∗ 10−2, s =
4. Ie = 320µA is the external forcing current. The inner

coupling function H is the same as (25) and the coupling

strength c is set as 0.1. The network of this system is from

a real dataset, the cat brain network data [35] [36] (the data
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Original Network

Rewire 
 Connections

Synchronization 

Process

Fig. 7. Control the synchronizability of SF network by rewiring connections of nodes with the smallest degree. From the top three subfigures, we can
see that the original network has good synchronizability, and the nodes’ trajectories eventually synchronize. In the three bottom subfigures, it shows that the
network structure has been adjusted by rewiring connections. The node with the smallest degree connects to similar nodes. The trajectories of these nodes do
not achieve synchronization finally.

Fig. 8. Cat brain neuron network generated from real network data. The
size of nodes is weighted by the degree of nodes. kmin = 3, kmax = 45 and
< k >= 22.46

is available in networkrepository). We convert the data into

an undirected network shown in Fig. 8. According to the

master stability function, the stability region is (−∞,−0.23).
Since there only exists one smallest node, the degeneration

of the eigenvector will not happen. So the smallest non-

zero eigenvalue can be directedly estimated by the equation

λ(2) ≃ ki +
∑

j ̸=i

A2
ij

ki−kj

∣

∣

∣

∣

ki=kmin

. The estimate of λ(2) by

our proposed method is 2.8726. The real value of λ(2) is

2.8842. The relative error of our estimation is 0.402%. Since

−cλ(2) ∈ S, the system synchronizes in a stable state,

and the process is shown in Fig. 9. After we rewire the

connections of the smallest degree nodes, λ(2) becomes 2.286
and −cλ(2) /∈ S, which indicates the desynchronization of the

system shown in the top three subfigures of Fig. 9. Therefore,

the rewiring method we propose is an effective way to adjust

the synchronizability. Also, we calculate the local assortativ-

ity of the original network ρi = −0.018 and the network

after reconnection ρi = −0.00327. This proves the negative

relationship between local assortativity and synchronizability

as we analyzed before.

V. CONCLUSIONS

In this paper, we have proposed an analytical method to

estimate the extreme eigenvalues of scale-free (SF) networks

and add some discussion on how to extend the framework

to other types of networks. To avoid the degeneration of

eigenvectors when estimating the smallest nonzero eigenvalue

of the SF network, a link removal method has been used. Then

the non-degenerate perturbation theory can be used to do the

estimation and only requires the local information of smallest

nodes in the network. The non-degenerate perturbation theory

can give us an analytic equation of estimation, which indicates

that there exists a negative relationship between the smallest

nonzero eigenvalue λ(2) and the local assortativity of the

smallest node. Furthermore, the equation informs us how to

control the synchronizability of the network by rewiring the

connections of the smallest nodes. By simulation of Rossler

system and Hindmarsh-Rose (HR) neuronal circuit in different

networks, the method has been verified. Therefore, this paper

helps us understand the relationship between the connections

of smallest nodes and the global synchronizability of the

network. And also it can inform us how to control the
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Fig. 9. It shows the synchronization and desynchronization process of Hindmarsh-Rose (HR) neuronal circuit. When the dynamics system embedded in
the original network with λ(2) = 2.8842, the system reaches synchronization. The synchronization process is shown in the three bottom pictures. When we
rewire connections of critical nodes, the system loses synchronization as shown in the top three figures.

synchronizability of the network by rewiring connections of

nodes while maintaining the degree sequence of the network.

In the future, we expect to explore what causes the difference

between the estimation value and the true value of the extreme

eigenvalues. The difference may reveal potential network

topology that affects global synchronizability.
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[30] O. E. Rössler, “An equation for continuous chaos,” Physics Letters A,
vol. 57, no. 5, pp. 397–398, 1976.

[31] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[32] W. Lin, H. Fan, Y. Wang, H. Ying, and X. Wang, “Controlling syn-
chronous patterns in complex networks,” Physical Review E, vol. 93,
no. 4, p. 042209, 2016.

[33] J. L. Hindmarsh and R. Rose, “A model of neuronal bursting using
three coupled first order differential equations,” Proceedings of the Royal

society of London. Series B. Biological sciences, vol. 221, no. 1222, pp.
87–102, 1984.

[34] L. Huang, Q. Chen, Y.-C. Lai, and L. M. Pecora, “Generic behavior
of master-stability functions in coupled nonlinear dynamical systems,”
Physical Review E, vol. 80, no. 3, p. 036204, 2009.

[35] K. Amunts, C. Lepage, L. Borgeat, H. Mohlberg, T. Dickscheid, M.-É.
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