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Abstract—Generally, the normal displacement-based formation
control has a sensing mode that requires the agent not only to
have certain knowledge of its direction, but also to gather its local
information characterized by nonnegative coupling coefficients.
However, the direction may be unknown in the sensing processes,
and the coupling coefficients may also involve negative ones due
to some circumstances. This paper introduces these phenomena
into a class of displacement-based formation control problem.
Then, a geometric approach have been employed to overcome
the difficulty of analysis on the introduced phenomena. The
purpose of this approach is to construct some convex polytopes
for containing the effects caused by the unknown direction,

and to analyze the non-convexity by admitting the negative
coupling coefficients in a certain range. Under the actions of
these phenomena, the constructed polytopes are shown to be
invariant in view of the contractive set method. It means that the
convergence of formation shape can be guaranteed. Subsequently,
an example is given to examine the applicability of derived result.

Index Terms—Unknown direction, general coupling coeffi-

cients, formation control, polytope

I. INTRODUCTION

Recently, formation control problem has been getting more

and more research attentions in many branches of engineering,

which has also offered theoretical support for practical appli-

cations, e.g., flying formation of unmanned aerial vehicles [1],

target enclosing [2], and source seeking [3]. The main purpose

of the considered problem is to construct a mechanism, such

that the agents could automatically tend to a specific geometric

shape. For the sake of realizing this purpose, each agent needs

to regulate the current state according to the non-centralized

information from its neighbors. This process can be described

by different control mechanisms that are usually classified

into three categories: position-based, displacement-based, and

distance-based methods [4]. Among these control mechanisms,
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the displacement-based method has been intensively consid-

ered into multi-agent system due to high efficiency and simple

structure [5]–[14].

For the displacement-based method, one of the problems to

be considered is the sensing ability of the agent [4], [15]. This

ability is often expressed by the sensing mode dependent on

the actual sensor, and further determines the type of controlled

variables. Specifically, in order to realize the desired formation

shape, the agent senses and drives the relative displacements

based on its neighbors as an active way. There is a precondition

that, for each agent, the relative displacements are assumed to

be measured according to its local coordinate frame, whereas

the global coordinate frame is not necessary to be completely

known for all the agents. However, the direction between the

local and the global coordinate frames has to be aligned,

otherwise the actual formation shape may be distorted by

the misalignment as time evolves [16]–[18]. For the latter,

there have been some results that consider the compensation

control by utilizing the position filtering for reconstructing the

formation control strategy [16]. Meanwhile, some other works

have studied similar problems in view of the relative direction

measurement [17], [19]–[21].

Actually, for each agent, the misalignment between the local

and the global coordinate frames results in a rotation angle.

Although some existing works have shown that this angle may

be irrelevant to the system performance, it is mainly related to

the distance-based method [22], [23]. For the distance-based

method, the convergence of the desired formation shape has

been replaced by the potential of system structures and config-

uration, such that the rotation may not affect the convergence

under the graph rigidity theory [24], [25]. By contrast, it

usually requires to design an additional control strategy for

aligning the direction under the displacement-based method

[26]. This further means that the agent has to collect the

enough direction information for the alignment. However, the

measurement of direction is not always reliable. There are

some examples in the actual actuators and sensors, e.g., errors

accumulation of the inertial navigation, and local anomalies

of the geomagnetic fields [16], [27]. Therefore, when the

rotation angle is unreliable or even unknown, it is significant

to consider a control strategy in order to achieve the desired

formation shape.

Another problem in the displacement-based method involves

the interaction topology [4]. The interaction topology is at-

tributed to the sensing ability of the agents, whose edges are

often assumed to be characterized by nonnegative coupling

coefficients [10], [11]. These nonnegative coupling coefficients

usually express the cooperative interactions among the agents.

http://arxiv.org/abs/2306.02132v1
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However, general coupling coefficients may emerge from

some cases, e.g., some auxiliary systems [28], and the social

networks [29]. When the relationship between the interacting

agents is characterized by the general coupling coefficients,

both the cooperative and competitive interactions may arise,

where the negative coupling coefficients represent the compet-

itive interactions. The competitive interactions in some related

works have been utilized to describe a disagreement tendency

that is known as the formation and separation problems [30].

It needs to be emphasized that, in these works [30], the

desired formation shape evolves into two parts separated from

each other, which is eventually corrupted by the competitive

interactions. Therefore, how to promote and keep the desired

formation shape under the coexistence of the cooperative and

competitive interactions is still an open problem.

On the other hand, the usual method for investigating

formation control problems is to transform the system into a

convergence problem. Generally, the Lyapunov function plays

an important factor for analyzing this convergence problem,

where the convergence rate can be solved by some inequalities

satisfying the existence of the Lyapunov function [9]–[11],

[31]. However, as mentioned in [32]–[34], the existence of the

common Lyapunov function may not be guaranteed for some

time-varying cases, not to mention solving the convergence

rate. Recently, by utilizing the convex polytope, an alternative

method has been proposed for dealing with the cooperative

problems [35]. The main line of this method is to treat the

formation control protocol as a convex combination, whose

convergence can be solved by the principle of contractive set.

It should be noted that the misalignment coordinate frames and

the general coupling coefficients may cause the non-convexity,

since the special orthogonal group SO(n) and the Euclidean

space are non-homeomorphic spaces [36], and the general

coupling coefficients have negative terms. These imply that the

convex polytope may hard to be directly applied. In this case,

it is necessary to extend an alternative way for investigating the

formation control problem under the misalignment coordinate

frames and the general coupling coefficients.

Motivated by the aforementioned observation, a kind of the

displacement-based formation control problem has been con-

sidered in this paper, and the corresponding analysis method

are further developed. When designing the control protocol,

neither each agent is required to have the ability for sensing

the direction, nor the coupling coefficients between any pair of

the agents are nonnegative. For the sake of understanding the

non-convexity caused by these cases, several convex polytopes

are introduced, and their properties are then discussed. The

obtained results show that, although the convexity of these

polytopes can be ensured under the actions of the unknown

directions and the general coupling coefficients, the contrac-

tility may be collapsed. Then, the polar of the polytopes is

considered for describing a larger convex region, such that

the polytopes are compatible with the behaviors caused by

the unknown directions and the general coupling coefficients.

The contracting mapping principle is applied to designing

some parameters in the case that this convex region can be

contractive. Based on the obtained results, the convergence

rate is solved, which means that the desired formation shape

can be finally realized.

The contributions of obtained results are characterized

by the following points: 1) Compared with the normal

displacement-based formation control problems [10], [11], the

alignment between the local and the global coordinate frames

is not require for each agent. Different from the formation con-

trol problems [16], [17], [19], [20], the direction of the agent

in this paper does not need to be estimated or measured during

the control process, which can even be completely unknown.

2) When designing the control protocol, the general coupling

coefficients are introduced. In this case, the coupling coeffi-

cients are not only nonnegative, but also allowed to be negative

within a certain range. Different from the negative coupling

coefficients in the formation and separation problems [30],

[37], the desired formation shape can still be guaranteed under

the action of the general coupling coefficients. 3) Inspired

by [35], the convex polytope method is developed to study

the displacement-based formation control for considering the

unknown directions and the general coupling coefficients. In

this case, some additional restrictions of the Lyapunov function

are removed, e.g., the static interactions or the existence of

system eigenvalues [11], [12]. Meanwhile, the method in this

paper also extends some linear relevant results [28], [33], [35]

onto SO(2).
A outline of the remainder of this paper is as follows. In

Section II the signed graph, the convex polytope and some pre-

liminaries are expressed, then the concerned formation control

problem is introduced. In Section III, main results are provided

by utilizing some properties of the convex polytope. Section

IV gives a simulation example, and then the conclusions are

shown in Section V. Section VI includes the technical proofs

of some results in Section III.

Notation: RN×M and Rn are utilized to express the set of

N × M real matrices and n-dimensional real vector space,

respectively. 0N and 1N stand for a unit vector and a null

vector in RN , respectively. eiN is the basis vector in RN ,

whose i-th entry is 1 and all rests are 0. ON and IN are a null

matrix and an identity matrix in RN×N , respectively. N and

N+ stand for the set of natural and positive natural numbers,

respectively. 〈x, y〉 is the inner product for any x, y ∈ RN .

‖x‖p represents the p-matrix norm for a matrix x, or the

ℓp vector norm for a vector x. ⊗ is the Kronecker product.

SO(2) = {R ∈ R2×2|RTR = RRT = I2, det(R) = 1} is the

special orthogonal group defined on R2×2, where det(R) is

the determinant of R.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Some preliminaries

Denote a pair (VG , E) as a directed graph G, which consists

of the vertex set VG = {1, . . . , N} and the edge set E ⊆
VG ×VG . For a signed graph G, the edge set E = E+ ∪ E− is

generated by the positive edge set E+ and the negative edge set

E−. The signed directed graph G is described by a weighted

adjacency matrix A = [aij ] ∈ RN×N whose entries satisfy:

aij 6= 0 if (j, i) ∈ E holds for i 6= j, otherwise, aij = 0, and

particularly, aii = 0. In view of the signed graph theory, for

any distinct i, j ∈ VG , the interaction between the vertexes i
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and j is cooperative if aij > 0 holds for (j, i) ∈ E+, and the

interaction between the vertexes i and j is competitive if aij <
0 holds for (j, i) ∈ E−. For the graph G, its Laplacian matrix

L = [ℓij ] ∈ RN×N corresponding to the weighted adjacency

matrix A satisfies: ℓij = −aij for any i 6= j, otherwise, ℓii =
−∑

j∈N i aij , where the neighbor set of vertex i is N i = {j ∈
VG |(i, j) ∈ E}. A directed graph G is called neighbor shared

[35], if for any distinct p, q ∈ VG , there exists i ∈ VG such

that (i, p) ∈ E+ and (i, q) ∈ E+ hold for p 6= i and q 6= i.
Apparently, a graph must be connected, if it is neighbor shared.

A matrix S = [sij ] ∈ RN×N is called nonnegative, if

sij ≥ 0 holds for all i, j. The nonnegative matrix S is called

stochastic, if
∑N

j=1 s
ij = 1 holds for each i. The matrix S

is called general stochastic, if
∑N

j=1 s
ij = 1 holds for each

i, whose entries sij are not necessarily nonnegative. For the

general stochastic matrix S, its ergodic coefficient η(S) is

defined by η(S) = maxp,q
∑N

i=1 |spi−sqi|/2. Denote a matrix

set Sβ [28], [33] as:

1)
∑N

j=1 s
ij = 1

2)
∑N

j=1 min{sij , 0} ≥ −β for each i,

where sij is the ij-entry of the matrix S ∈ Sβ , and β ≥ 0. Sβ
is obviously the set of general stochastic matrices if β 6= 0,

and specifically, S0 is the set of stochastic matrices.

For a subset V of RN , its convex hull is the smallest convex

set containing V , i.e.,

convV =
{ #V∑

i=1

λixi
∣∣∣
#V∑

i=1

λi = 1, λi ∈ [0, 1], xi ∈ V
}
,

where #V is the associated cardinality. Specially, if #V < ∞,

convV expresses a V-polytope [38], denoted by PV . The face

of dimension 0 is a vertex of PV . A point is called an extreme

point of PV , if it can not express this point as a convex

combination of at least two distinct points in PV . From [39], a

vertex of any compact convex set is automatically an extreme

point, which means that the sets of all vertices and extreme

points of PV are equivalent, defined as extPV . Moreover,

according to the Minkowski-Weyl theorem [40], PV has a

nonempty intersection form of a sequence of closed halfspaces,

denoted by an H-polytope PN = {x ∈ RN |Ax ≤ z} for some

A ∈ RM×N and z ∈ RM [38]. For a matrix M ∈ RM×N ,

MP = {Mx|x ∈ P ,P ⊆ R
N} means a linear mapping of

the polytope P . For a polytope P ⊆ RN , its polar is denoted

by

P◦ ={x ∈ R
N |〈x, y〉 ≤ 1, for all y ∈ P}.

B. Problem formulation

For any i ∈ VG , denote Fw and Fi as the subspaces of

R
2, where, for all agents, Fw means the global coordinate

frame (fixed), and for i-th agent, Fi is the local coordinate

frame. Consider a group of N agents composed of first-order

dynamics in discrete-time domain with respect to Fw, where

the i-th agent is modeled as follows

∆hk
pik = ui

k, (1)

where ∆hk
is the forward-difference operator, hk = tk+1− tk

(k ∈ N) is a sampling interval, tk is the time instant,

pik = [pi1k , pi2k ]T ∈ Fw expresses the position vector at tk,

the position vector pik is initialized at t0, and ui
k stands for

the control protocol at tk.

Generally, each agent drives the current relative positions

(displacements) measured from the neighbors to approach the

desired positions, namely, the desired formation shape. In

order to realize this aim, all the agents should have some

external measuring abilities with respect to Fw. However,

due to the limitations on the types and capacities of sensors,

the agent i can only measure the relative positions with

respect to Fi. Moreover, the desired positions mainly have

two views. The first one is to regard the desired positions

as some reference inputs with respect to Fw [4]. The second

one treats the desired positions as analogous concepts of fixed

landmarks in the navigation problems [12], which requires

to sense the differences between the interacting agents and

corresponding desired positions. In this paper, the desired

positions are assumed to follow the second view, and are fixed

with respect to Fw. When the agent i senses the information

with respect to Fi, the desired positions become time-varing

due to the motion of the agent i. In this case, for the agent i
and its neighbor j, the sensed information is expressed by

ξjik = pj,ik − pi,ik − (dj,ik − di,ik ). (2)

where pj,ik ∈ Fi is the position vector of the agent j, pi,ik is

the origin of Fi, dj,ik and di,ik ∈ Fi are the desired position

vectors of the agents j and i at tk, respectively.

However, the direction sensors may have an inaccurate

result, such that the dynamics of each agent may not match

Fw. It further implies that Fw and Fi may be misaligned.

Therefore, this paper is assumed that each agent has a mis-

aligned direction between Fw and Fi, where the rotation angle

induced by this misalignment is unknown. In order to describe

this misalignment, a rotation matrix Ri
k ∈ SO(2) is presented

by

Ri
k = cos θikI2 + sin θikJ, (3)

where the matrix J =
[
0 −1
1 0

]
, and θik ∈ (−π/2, π/2] is a

unknown rotation angle indicated by the misaligned direction

between Fw and Fi at tk.

Note that ξjik can be considered as a special kind of output

measurement with respect to Fi rather than Fw. Before de-

signing the control protocol ui
k in (1), one needs to transform

ξjik into a measurement with respect to Fw for the sake of

facilitating the analysis. From (2) and (3), this measurement

is expressed by

ξjik = (Ri
k)

T
(
pjk − pik − (dj − di)

)
, (4)

where pjk − pik = Ri
k(p

j,i
k − pi,ik ), dj − di = Ri

k(d
j,i
k − di,ik ),

and di ∈ Fw means the fixed desired position vector of the

agent i at tk.

Similar with the sensing mode of the agents i and j from

(4), gathering all the measurements in N i
k, the control protocol

ui
k in (1) is given as follows

ui
k =

∑

j∈N i
k

aijk (R
i
k)

T
(
pjk − pik − (dj − di)

)
, (5)
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where aijk is the coupling coefficient at tk. It should be pointed

out that the entry aij of the weighted adjacency matrix Ak

allows the existence of negative edge weights. When aijk < 0,

the dynamics between the agents i and j is competitive. When

aijk > 0, the dynamics between the agents i and j is cooper-

ative. Moreover, in what follows, the coupling coefficient aijk
is assumed to satisfy: aijk ∈ [α, 1) and

∑
j∈N i

k
aijk ∈ [α, 1−α]

for all aijk > 0, and
∑

j∈N i
k
aijk ∈ [−β, 0) for all aijk < 0,

where α ∈ (0, 1/2] and β ∈ [0, α/2).
Let the position error vector εik = [εi1k , εi2k ]T at tk be

εik = pik − di. Combining the dynamics in (1) and the control

protocol in (5), the position error system is derived by

εik+1 = εik − hk(R
i
k)

T

N∑

j=1

ℓijk ε
j
k, (6)

where ℓijk is the ij-entry of the Laplacian matrix Lk.

Due to Lk1N = 0N , one has (IN −Lk)(IN − 1N1T
N/N) =

IN −Lk − 1N1T
N/N . The position error system in (6) can be

rewritten by the vector form

εk+1 = (I2N − hkRT
k Λ)εk + hkRT

k SkΛεk, (7)

where εk = [(ε1k)
T , . . . , (εNk )T ]T , Λ = (IN − 1N1T

N/N) ⊗
I2, Rk = blkdiag{R1

k, . . . , R
N
k }, Sk = Sk ⊗ I2, and Sk =

[sijk ]N×N = IN −Lk ∈ Sβ . The reason introduced the matrix

Λ into the system in (7) will be shown in the next section.

Remark 1. As mentioned in [4], the normal displacement-

based formation control usually has an assumption that each

agent can measure the relative positions from neighbors with

respect to Fi due to the limited sensing ability. These relative

positions are equivalent to their counterparts with respect to

Fw, if Fw and Fi are aligned. It further means that the

agents require to know the directions of Fw and Fi. When

the direction between Fw and Fi is misaligned, a common

way is to design a control protocol for estimating and aligning

the direction. Although some existing results [16], [17] show

that the alignment may be not necessary, there are still some

certain restrictions on the rotation angle. Different from the

works in [16], [17], [19], [20], this paper considers a class of

displacement-based formation control problems, where neither

the direction alignments [19], [20] nor the restrictions [16],

[17] are required.

Remark 2. The coupling coefficients express the interactions

among the agents in the formation control problems. To realize

the desired formation shape, the cooperative interactions are

usually necessary to be characterized by the nonnegative

coupling coefficients. However, the interactions have not only

cooperative properties, but also competitive properties that are

represented by the negative coupling coefficients. Actually, the

negative coupling coefficients may occur, e.g., some special

auxiliary or virtual systems in the theoretical analysis [28],

[29]. In this paper, the general coupling coefficients are

introduced, which include both nonnegative and negative edge

weights. Compared with the works only considered nonneg-

ative coupling coefficients [10], [11], the general coupling

coefficients can be endowed with more potential applications.

Remark 3. Recently, the cooperative and competitive inter-

actions have been considered into the separation problems

of formation control [30], [37]. In these works [30], [37],

the agents with cooperative interactions can approach to the

desired formation shape, while the agents with competitive

interactions can only guarantee the desired relative positions.

This further means that the formation shape has two groups

separated away from each other under the time-invariant

interactions [29]. In contrast to these works [30], [37], this

paper considers the case that the existence of cooperative and

competitive interactions does not affect the desired formation

shape, where a time-varying signed graph is used to charac-

terize the interactions.

III. FORMATION CONTROL WITH UNKNOWN DIRECTION

INFORMATION AND GENERAL TOPOLOGY

The formation control problem with unknown directions and

general coupling coefficients in (7) is studied in this section.

First, the properties of several polytopes are considered, which

contribute to derive the main result.

A. Technical analysis of several polytopes

In this subsection, some polytopes are constructed, and their

properties are discussed on a certain hyperplane. According to

the contracting mapping principle, these polytopes are then

indicated to converge under the mappings of the matrices

hkRT
k Λ and hkRT

k SkΛ, respectively.

Now, construct an H-polytope

PN =

2N⋂

i=1

{x ∈ R
N |〈ai, x〉 ∈ [−1, 1]}, (8)

where ai ∈ RN is a vector whose entry aip satisfies aip ∈
{±1} for p = {1, . . . , N}, and ai 6= aj for i 6= j. Apparently,

the polytope PN is equivalent to the form

PN = {x ∈ R
N |‖x‖1 ≤ 1}, (9)

which is called crosspolytope. Then, the following property is

well known [38], and its proof is omitted.

Proposition 1. extPN = {±eiN}Ni=1.

H = {x ∈ RN |〈1N , x〉 = 0} is utilized to denote as a

hyperplane, and an intersection associate with PN and H is

defined by P ′
N = PN∩H. The following lemma solves extP ′

N .

Lemma 1. extP ′
N = V , where V = {ẽiN}Ñi=1, Ñ is an even

number, ẽiN = (epN − eqN )/2 (p 6= q and p, q ∈ {1, . . . , N}),

ẽiN 6= ẽjN for i 6= j, and ẽiN = −ẽÑ+1−i
N by arranging the

order of ẽiN .

Proof: See the Appendix A.

Lemma 1 describes the equivalence of P ′
N and PV , whose

extreme point sets are same, i.e., V . However, Lemma 1 cannot

be applied to analyzing PV under the mappings of the matrices

hkRT
k Λ and hkRT

k SkΛ, respectively. Similarly, construct a

polytope P2N = P2N ∩ H, where H = {x ∈ R
2N |〈1N ⊗

ei2, x〉 = 0}2i=1. Now, the result in Lemma 1 is extended into

a higher dimension space as follows.
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Lemma 2. extP2N = V , where V = {eiN,j|eiN,j = ẽiN⊗ej2}Ñi=1

for j = 1, 2, and ẽiN is defined in Lemma 1.

Proof: See the Appendix B.

Then, consider ST
k to map PV and P2N on H, respectively.

The following results are derived.

Lemma 3. For any k ∈ N, ST
k PV ⊂ PV , if Gk is neighbor

shared.

Proof: See the Appendix C.

Lemma 4. For any k ∈ N, ST
k PV = ST

k P2N ∩ H, if Gk is

neighbor shared.

Proof: See the Appendix D.

Lemma 3 derives a result that the mapping ST
k PV is a

contractive set related to PV . Lemma 4 further implies that

this contractility can be valid for the mapping ST
k P2N on H.

However, when Rk 6= I2N , the similar results are impossible

for the mapping RkPV due to 〈1N ⊗ ep2,Rke
i
N,j〉 6= 0. To

approximate the action region of RkPV , denote the polar of

P2N as P◦
2N . The following propositions reveal the relation-

ship among PV , P2N and P◦
2N .

Proposition 2. For any k ∈ N, RkPV ⊆ RkP2N ⊆ P◦
2N .

Proof: See the Appendix E.

Proposition 3. For any k ∈ N, hkP◦
2N ⊆ P2N , if hk ∈

(0, 1/2N ].

Proof: See the Appendix F.

Propositions 2 and 3 express a way that should be able to

construct a polytope based on P◦
2N , such that the mapping

RkPV could be treated as the similar results of Lemmas 3

and 4. In order to do this, the matrix Λ in (7) is considered

as follows.

Proposition 4. For any k ∈ N, ΛRkPV ⊆ P◦
2N ∩H.

Proof: See the Appendix G.

In Proposition 4, Λ is actually an orthogonal projection ma-

trix. Therefore, Proposition 4 indicates a geometrical intuition

that Λ projects the mapping RkPV on H. This is why the

matrix Λ is introduced into the system in (7).

Now, from the above results, the mappings hkΛRkPV and

hkΛST
k RkPV are considered by the following lemma.

Lemma 5. For any k ∈ N, hkΛRkPV ⊆ PV and hkΛST
k Rk

PV ⊆ PV , if all the conditions in Lemma 3 and Proposition

3 hold.

Proof: Obviously, hkΛST
k RkPV ⊆ hkΛST

k RkPV ∩ H,

and ΛPV ⊆ PV . Then, the proof directly follows from

Lemmas 3-4 and Propositions 2-4, which is omitted.

Remark 4. The aim of this subsection is to construct some

polytopes, such that the difference of any pair of rows of Rk

and ST
k can be analyzed. This difference plays an important

factor for dealing with the cooperative control problems.

Lemma 1 can be utilized to describe this difference, whose

counterpart in the higher dimension space is extended by

Lemma 2. According to the contractive set method, Lemmas

3 and 4 indicate that the mapping ST
k PV is contractive, and

is further equivalent to the inclined projection of ST
k P2N on

H. However, the mapping RkPV is intuitively impossible to

maintain the similar contractive property. In this case, several

properties of P◦
2N are considered by Propositions 2-4. As

a result, Lemma 5 solves the contractive property of the

mappings hkΛRkPV and hkΛST
k RkPV . It should be pointed

out that hkP◦
2N can be regraded as a contraction mapping, and

Λ is applied to projecting ST
k RkPV on H.

B. The convergence of formation control

According to the discussions in the above subsection, the

convergence problem of the system in (7) will be considered.

Before presenting the main result, let EN = EN ⊗ I2, where

EN = [ẽ1N , . . . , ẽ#V
N ]. Then, one obtains the following result.

Lemma 6. Assume that all the conditions in Lemma 5 hold.

If there exists a nonnegative matrix Mk, then the following

condition holds
(
I2N − hk(LT

k ⊗ I2)Rk

)
EN = ENMk,

where ‖Mk‖1 ≤ 1− (1− η)hk , and η = 1− α+ 2β < 1.

Proof: Due to Sk = IN − Lk and Lk1N = 0N , one has

I2N − hk(LT
k ⊗ I2)Rk =I2N − hkΛ(LT

k ⊗ I2)Rk

=I2N − hkΛRk + hkΛST
k Rk.

Then, one can use x ∈ PV in place of y ∈ P2N in (22). Thus,

the proof follows from the discussions of Lemmas 3-5 and

Propositions 2-4.

Based on Lemma 6, for any pair of distinct agents i, j, the

relative position vector pjk−pik is proven to tend to the desired

relative position vector dj − di.

Theorem 1. Assume that all the conditions in Lemma 6 hold. If

there exists a positive scalar δ ∈ (0, 1), such that the sampling

interval hk ∈ [hm, hM ] is solvable, then the formation control

problem in (7) is achieved under the convergence rate − ln(1−
δ)/hM , where hM ≤ 1/2N , hm ≥ δ/(1 − η), hm and hM

stand for the upper and lower bounds of hk, respectively.

Proof: From the position error system in (7), one has

εk+1 =(I2N − hkRT
k Λ + hkRT

k SkΛ)εk

=

k∏

j=0

(
I2N − hjRT

j (Lj ⊗ I2)Λ
)
ε0. (10)

where
∏

means the left matrix products.

According to Lemma 6, one gets

‖ET
Nεk+1‖∞

≤
∥∥∥ET

N

k∏

j=0

(
I2N − hjRT

j (Lj ⊗ I2)Λ
)∥∥∥

∞
‖ε0‖∞

=
∥∥∥

k∏

j=0

(
I2N − hjΛ(LT

j ⊗ I2)Rj

)
EN

∥∥∥
1
‖ε0‖∞

≤
k∏

j=0

(
1− (1− η)hj

)
‖EN‖1‖ε0‖∞, (11)

where η is given in Lemma 6.
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Due to hm ≥ δ/(1− η) and hM ≤ 1/2N , one has 1− (1−
η)hk ≤ 1− δ, if δ ∈ (0, 1−η

2N ]. In case tk+1 − tk ≤ hM , then

tk+1 ≤ t0 + (k + 1)hM . From (11), it yields

‖ET
Nεk+1‖∞ ≤(1 − δ)k+1‖EN‖1‖ε0‖∞

≤ exp
{ ln(1 − δ)

hM
(tk+1 − t0)

}
‖EN‖1‖ε0‖∞.

Therefore, one gets

lim
k→∞

‖ET
Nεk‖∞ = 0.

Recalling the structure of EN = EN ⊗ I2, the i-column of

EN is ẽiN , which further means that

lim
k→∞

‖ppk − pqk − dp + dq‖∞ = 0.

It completes the proof.

Remark 5. In many displacement-based formation control

problems [9]–[11], the Lyapunov function usually plays an

important part. However, in some cases [32], [34], e.g., the

dynamic interactions or the nonexistence of eigenvalues of sys-

tem matrices, it may be hard to construct a common Lyapunov

function whose convergence may not also be guaranteed. This

paper introduces the unknown matrix RT
k and the general

stochastic matrix Sk in (7), such that the construction and

analysis of the Lyapunov function are inevitably more compli-

cated. In this case, several polytopes are applied to considering

the convergence of Sk . Then, a larger convex region induced

by the polar is to enclose the action of Rk. According to the

contracting mapping principle and the obtained results, the

convergence problem of the system in (7) is finally solved.

Different from the Lyapunov function method [9]–[11], the

approach in this paper relies on geometrical intuition, which

means that some restrictions of the Lyapunov function are

removed.

IV. EXAMPLE

An simulation of the formation control with the unknown

direction information and the general topology is provided in

this section. The system has 4 agents moving in R2 (R2 is

assume to be Fw).

0 5 10 15 20 25 30 35

1

2

tk

σ
k

Fig. 1. The switching signal σk = {1, 2}.

For the formation control protocol in (5), the parameters are

designed in the following. The absolute desired position vector

d with respect to Fw is given as d1 = [0, 0]T , d2 = [5, 0]T ,

d3 = [5, 5]T , and d4 = [0, 5]T , i.e., the desired formation

shape is a square with length 5. The position vector pk with

respect to Fw is initialized by p10 = [−6, 2]T , p20 = [9,−10]T ,

p30 = [3, 0]T and p40 = [0, 16]T . Fig. 1 shows that a switching

signal σk = {1, 2} determines the time-varying directed graph

1

2

3

4

(a) The graph Gk for σk = 1.

1

2

3

4

(b) The graph Gk for σk = 2.

Fig. 2. The signed directed graph Gk , where the blue arcs are the positive
edges with weights 0.2, and the red dashed arcs are the negative edges with
weights −0.08.

Gk. Fig. 2 draws the signed graph Gk, where the weights of

the positive edges (the blue arcs) and the negative edges (the

red dashed arcs) are all equal to 0.2 and −0.08, respectively.

Although, for each agent i and k ∈ N, the rotation angle

θik can be unknown, θik is assumed to be the following

function in order to facilitate the simulation with respect to

Fw: θik = πtk
2i(1+|tk|)

for i = 1, 2, and θik = − iπtk
8(1+|tk|)

for

i = 3, 4. From Theorem 1, one has hk ∈ [100δ, 0.125] and

η = 1−α+2β = 0.96, which further results in δ ∈ (0, 0.12].
In this case, the desired formation shape is realized, since

δ is solvable. One calculates the convergence rate to satisfy:

− ln(1− δ)/hM ∈ (0, 0.128]. For all i = 1, . . . , 4 and k ∈ N,

the position errors εik = pik − di are expressed by selecting

hk = hM = 0.125 in Fig. 3. Based on the same selection of

hk, the desired formation shape and the position trajectories

of agents are drawn in Fig. 4.

0 5 10 15 20 25 30 35
−15

−10

−5

0

5

tk

ε
i1 k

 

 
Agent 1

Agent 2

Agent 3

Agent 4

0 5 10 15 20 25 30 35
−10

0

10

20

tk

ε
i2 k

 

 
Agent 1

Agent 2

Agent 3

Agent 4

Fig. 3. The position error trajectories εi
k
= pi

k
− di, where hk = 0.125 for

all k ∈ N.

V. CONCLUSION

This paper investigates a kind of displacement-based for-

mation control problem. Each agent i is assumed to gather

the measurements from the neighbors with respect to Fi, but

cannot directly know the direction of Fi. Meanwhile, each

agent i is also assumed to communicate with the neighbors

by utilizing the general coupling coefficients that describe the



7

−15 −10 −5 0 5 10
−10

−5

0

5

10

15

pi1k

p
i2 k

 

 

Agent 1

Agent 2

Agent 3

Agent 4

Fig. 4. The desired formation shape and position trajectories of multi-agent
system, where the initial value of pk are p1

0
= [−6, 2]T , p2

0
= [9,−10]T ,

p3
0

= [3, 0]T , p4
0

= [0, 16]T , and the black dashed lines are the desired
formation shape,.

cooperative and competitive interactions for the whole system.

For the sake of dealing with the above assumptions, several

convex polytopes have been introduced. The properties of the

polytopes are then analyzed in view of some mathematical

techniques, which further reveals that the mappings of the

unknown matrix RT
k and the general stochastic matrix Sk

on these polytopes are contractive. By utilizing the derived

results, the desired formation shape is finally guaranteed, while

the cooperative and competitive interactions coexist under the

measurements from unknown direction of each agent. Subse-

quently, an example is simulated for demonstrating the final

results. Further research interests involve the displacement-

based formation control on SO(3).

VI. APPENDICES

Some technical results of Subsection III-A are proven in

these appendices.

APPENDIX A

PROOF OF LEMMA 1

Proof: Solving extP ′
N is equivalent to prove that P ′

N is

equivalent to PV , and any point in V cannot be expressed by

a convex combination of at least two distinct points in PV .

Then, the proof has two steps.

Step I: To prove PV = P ′
N .

For any x ∈ PV , x has a form of a convex combination of

the entries in V , i.e., x =
∑Ñ

i=1 λ
iẽiN ∈ PV , where

∑Ñ
i=1 λ

i =

1 and λi ∈ [0, 1]. Construct a matrix AN = [a1, . . . , a2
N

]T ∈
R2N×N , where ai is given in (8). The polytope PN can be

rewritten by the form PN = {x ∈ RN |ANx ≤ 12N}. Then,

one gets

ANx =

Ñ∑

i=1

λiAN ẽiN ≤
Ñ∑

i=1

λi12N = 12N ,

where AN ẽiN ≤ 12N holds due to 〈aj , ẽiN 〉 ∈ [−1, 1] for all aj

in (8), j = 1, . . . , 2N and i = 1, . . . , Ñ . In this case, x ∈ PN

holds. Moreover, note that 〈1N , ẽiN〉 = 0, it yields x ∈ H.

Therefore, PV ⊆ P ′
N holds.

For the converse, the proof relies on a geometrical intuition

that suggests to solve an inclined projection of PN on H.

Then, the mathematical induction is utilized.

When N = 2, there is no difference between the inclined

projection and the orthogonal projection of P2 onto H. Thus,

the Fourier-Motzkin elimination can be utilized by eliminating

the variable along the axis 12.

Note that all the solutions of A2x ≤ 14 are P2, where A2 =[
1 1 −1 −1
1 −1 −1 1

]T
. Let x = [x1, x2]T ∈ span{ei2}2i=1 and y =

[y1, y2]T ∈ span{12/
√
2, (e12−e22)/

√
2}, one can construct an

affine mapping from x to y, such that the following inequality

holds for any x ∈ P2
[

I2
−I2

] [
y1

y2

]
=

[
I2
−I2

] [
x1 + x2

x1 − x2

]
= A2x ≤ 14.

By eliminating the variable along the axis 12, i.e., y1, one has

y2 ∈ [−1, 1], which further implies bdx ∈ {±(e12 − e22)/2}
due to the definition of H, where bdx is the boundary of x.

When N = K , assume that the boundary of solutions is in

V . Then, when N = K + 1, PK+1 has the form AK+1x ≤
12K+1 , which is equivalent to
[

AK 1
AK −1

] [
x̃
x̂

]
≤ 12K+1 , (12)

where x̃ ∈ RK , x̂ ∈ R, and x = [x̃T , x̂]T .

If x̂ = 0, it is easy to the result due to the case of N = K .

If x̂ 6= 0, one obtains
∑K

i=1 x̃
i = −x̂, since the solutions

of x are on H. From (12), one has AK x̃ ≤ 12K/2. According

to Proposition 1, the boundary of solutions of x̃ is in ext{x ∈
RK |AKx ≤ 12K/2}, which means bdx̃ ∈ {±eiK/2}Ki=1 and

bdx̂ ∈ {±1/2}. In this case, it is not hard to obtain bd
[
x̃
x̂

]
∈

{±(eiK+1 − eK+1
K+1)/2}Ki=1. Therefore, P ′

N ⊆ PV holds.

Step II: To prove extPV = V .

If there exists an extreme point v /∈ V , then there does

not exist any λi ∈ [0, 1], such that v =
∑Ñ

i=1 λ
iẽiN , where∑Ñ

i=1 λ
i = 1. It is equivalent to that there does not exist a

vector λ = [λ1, . . . , λÑ ]T , such that the following equation

holds[
1T
Ñ∑Ñ

i=1 ẽ
i
N ⊗ (ei

Ñ
)T

]
λ =

[
1
v

]
.

From the Frakes Lemma II [38], there exists a column vector

φ with appropriate dimensions, such that
〈
φ,

[
1
v

]〉
< 0 and

φT
[

1T
Ñ∑

Ñ
i=1

ẽiN⊗(ei
Ñ
)T

]
≥ 0T

Ñ
hold. Let φ = [ϕ,−ϕ̃T ]T , ϕ ∈ R

and ϕ̃ ∈ RN . One gets 〈ϕ̃, v〉 > ϕ and 〈ϕ̃, ẽiN 〉 ≤ ϕ. Then,

the proof has two cases.

Case I: ϕ is the largest signed distance along the direction

ϕ̃ from the origin of PV to a hyperplane H′ containing ẽiN .

It is to say that H′ supports PV at ẽiN . From the supporting

hyperplane theorem [40], ϕ = 1 (or ϕ = −1) and ϕ̃ = aj

hold for some aj 6= ±1N , where aj is defined in (8). It yields

〈aj , v〉 ∈ (−∞, 1)∪(1,∞) and 〈aj , ẽiN〉 ∈ [−1, 1]. According

to the separating hyperplane theorem [40], one has v /∈ PV ,

which is contradiction.
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Case II: ϕ is not the largest signed distance along the direc-

tion ϕ̃ from the origin of PV to a hyperplane H′ containing ẽiN .

According to the separating hyperplane theorem [40], one can

design H′ under ϕ̃ and ϕ ∈ (−1, 1), such that H′ separates PV

into PV\{v} and {v}. For any x ∈ PV\{v}, x can be always

written by a form of a convex combination of the entries in

V . This is a contradiction, since the set of all extreme points

is the smallest subset of PV whose convex hull is equal to PV

[39]. Thus, v is not an extreme point.

Based on the above discussions, extPV = V . The proof is

completed.

APPENDIX B

PROOF OF LEMMA 2

Proof: The proof is equivalent to show P2N = PV and

extPV = V. For the case of extPV = V, it is similar with Step

II in the proof of Lemma 1, which is omitted. The following

proof only considers P2N = PV .

For any x ∈ P2N , 〈ai, x〉 ∈ [−1, 1] and 〈1N ⊗ ej2, x〉 = 0
hold for all i = 1, . . . , 2N and j = 1, 2, where ai ∈ R2N

has the same definition of its counterpart in (8). Let x =
x1⊗ e12+x2⊗ e22, and x1, x2 ∈ R

N , there must be ‖x1‖1 ≤ 1
and ‖x2‖1 ≤ 1 − ‖x1‖1 from the equivalent form of PN

in (9). From Lemma 1, one has x1 ∈ ‖x1‖1PV and x1 ∈
(1−‖x1‖1)PV , which means that there exist two nonnegative

sequences {λi

j}Ñi=1 (j = 1, 2) satisfying
∑Ñ

i=1 λ
i
1 = ‖x1‖1,

∑Ñ

i=1 λ
i
2 = ‖x2‖1 ≤ 1− ‖x1‖1, and λi

j ∈ [0, 1], such that

x =
Ñ∑

p=1

λp
2

(x1 ⊗ e12
‖x2‖1

+ ẽpN ⊗ e22

)

=

Ñ∑

p=1

λp
2

Ñ∑

q=1

λq
1

( ẽqN ⊗ e12
‖x2‖1

+
epN,2

‖x1‖1

)

=

Ñ∑

p,q

λp
2λ

q
1

‖x1‖1‖x2‖1
(‖x1‖1eqN,1 + ‖x2‖1epN,2)

≤
Ñ∑

p,q

λp
2λ

q
1

‖x1‖1‖x2‖1
(‖x1‖1eqN,1 + (1− ‖x1‖1)epN,2), (13)

holds for ‖x1‖1 6= 0 and ‖x2‖1 6= 0. It is easy to check that∑Ñ

p,q λ
p
2λ

q
1/(‖x1‖1‖x2‖1) = 1, which further implies that x

can be written by a convex combination of entries in V . For

‖x1‖1 = 0 or ‖x2‖1 = 0, obviously, x can be written by

a form of a convex combination of entries in V . Therefore,

P2N ⊆ PV holds.

For any x ∈ PV , let x =
∑2

j=1

∑Ñ

i=1 λ
i
je

i
N,j , where λi

j ∈
[0, 1] and

∑2
j=1

∑Ñ

i=1 λ
i
j = 1. Then, for p = 1, . . . , 2N+1,

one has

〈ap, x〉 =
2∑

j=1

Ñ∑

i=1

λi
j〈ap, eiN,j〉 ∈ [−1, 1], (14)

where ap ∈ R2N has the same definition of its counterpart in

(8). It means that x ∈ P2N holds. Moreover, for p = 1, 2 and

j = 1, 2, it is easy to get

〈1N ⊗ ep2, x〉 =
2∑

j=1

Ñ∑

i=1

λi
j〈1N ⊗ ep2, ẽ

i
N ⊗ ej2〉 = 0, (15)

which implies that x ∈ H holds. From (14) and (15), one has

x ∈ P2N . The proof is completed.

APPENDIX C

PROOF OF LEMMA 3

Proof: From Lemma 2, one knows P2N = PV . Then, for

all j = 1, 2 and k ∈ N, it only needs to show ST
k e

i
N,j ⊂ PV .

For the case of j = 1, one has

‖ST
k e

i
N,1‖1 ≤max

p,q

N∑

ı=1,p6=q

|spık − sqık |
2

=1−min
p,q

N∑

ı=1

min{spık , sqık }. (16)

The following proof is inspired by [28]. For the matrix Sk ∈
Sβ , let S1

pq = {ı|spık ≤ sqık }, S1+
pq = {ı|spık ≥ 0}, S1−

pq =
S1
pq\S1+

pq , S2
pq = {ı|spık > sqık }, S2+

pq = {ı|sqık ≥ 0}, S2−
pq =

S2
pq\S2+

pq , and ımn = argmaxı{min{spık , sqık }} (m 6= n), then

min{spımn

k , sqımn

k } ≥ α. Since the graph is neighbor shared,

it follows from (16) that

N∑

ı=1

min{spık , sqık } =
∑

ı∈S1
pq

spık +
∑

ı∈S2
pq

sqık

=min{spımn

k , sqımn

k }+
∑

ı∈S
1+
pq \{ımn}

spık

+
∑

ı∈S
1−
pq

spık +
∑

i∈S
2+
pq \{ımn}

sqık

+
∑

ı∈S
2−
pq

sqık

≥α+
∑

ı∈S
1−
pq

spık +
∑

i∈S
2−
pq

sqık

≥α− 2β. (17)

From (16) and (17), one gets

‖ST
k e

i
N,1‖1 ≤η(Sk) ≤ 1− α+ 2β < 1. (18)

Moreover, for all i = 1, . . . , Ñ and p = 1, 2, one has 〈1N ⊗
ep2,ST

k e
i
N,1〉 = 0. Therefore, ST

k e
i
N,1 ⊂ PV holds.

For the case of j = 2, one can obtain the similar result from

(16)-(18). It completes the proof.

APPENDIX D

PROOF OF LEMMA 4

Proof: For any x ∈ PV , one has x =
∑2

j=1

∑Ñ

i=1 λ
i
je

i
N,j ,

where λi
j ∈ [0, 1] and

∑2
j=1

∑Ñ
i=1 λ

i
j = 1. From (16)-(18),

one has

‖ST
k x‖1 ≤η(Sk)

2∑

j=1

Ñ∑

i=1

λi
j ≤ 1− α+ 2β < 1. (19)
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From Lemma 3, one knows x ∈ P2N , which implies that x
has a form of convex combination of {±ei2N}2Ni=1. Without loss

of generality, let x =
∑2N

i=1(λ
iei2N − µiei2N ), where λi, µi ∈

[0, 1], and
∑2N

i=1(λ
i + µi) = 1. Thus, one has

‖ST
k x‖1 =

∥∥∥(ST
k ⊗ I2)

2N∑

i=1

(λiei2N − µiei2N )
∥∥∥
1

=
∥∥∥

N∑

j=1

N∑

i=1

sijk (λ
2i−1e2i−1

2N − µ2i−1e2i−1
2N + λ2ie2i2N

− µ2ie2i2N )
∥∥∥
1

≤max
i

{ N∑

j=1

s
ji

k
≥0

sijk +

N∑

j=1

s
ji

k
<0

|sijk |
} 2N∑

i=1

(λi + µi)

≤1 + 2β. (20)

Then, ST
k PV ⊆ ST

k P2N holds. Moreover, it is not hard to

check ST
k PV ⊆ H. Therefore, ST

k PV ⊆ ST
k P2N ∩H.

For the converse, it can be regarded as an inclined projection

ST
k P2N onto H, which is similar with the proofs in Lemmas 1

and 3. The details are omitted. Hence, the proof is completed.

APPENDIX E

PROOF OF PROPOSITION 2

Proof: Obviously, RkPV ⊆ RkP2N due to PV ⊆ P2N .

The rest proof only considers RkP2N ⊆ P◦
2N . From (8), for

any x, y ∈ P2N , ‖x‖1 ≤ 1 and ‖y‖1 ≤ 1, one has

〈Rkx, y〉 =
N∑

i=1

[
(x2i−1 cos θik − x2i sin θik)y

2i−1

+ (x2i−1 sin θik + x2i cos θik)y
2i
]

≤1

2

N∑

i=1

[
(x2i−1 cos θik − x2i sin θik)

2 + (y2i−1)2

+ (x2i−1 sin θik + x2i cos θik)
2 + (y2i)2

]

≤1

2

2N∑

i=1

[
(xi)2 + (yi)2

]

≤1

2

[( 2N∑

i=1

|xi|
)2

+
( 2N∑

i=1

|yi|
)2]

≤ 1, (21)

where x = [x1, . . . , x2N ]T and y = [y1, . . . , y2N ]T . There-

fore, RkP2N ⊆ P◦
2N holds. The proof is completed.

APPENDIX F

PROOF OF PROPOSITION 3

Proof: Let P∗
2N = {χ ∈ R

2N ||χi| ≤ 1/2N}, where χi is

the i-th entry of χ. One needs to prove hkP◦
2N ⊆ P∗

2N ⊆ P2N .

For any x = [x1, . . . , x2N ]T ∈ P◦
2N and y ∈ {±ei2N} ⊂

extP2N ⊆ P2N , one knows 〈x, y〉 ≤ 1, which implies that

hk|xi| ≤ 1/2N holds for all i = 1, . . . , 2N . One further

derives hkP◦
2N ⊆ P∗

2N . Moreover, for any χ ∈ P∗
2N , one

has
∑2N

i=1 |χi| ≤ 1. Thus, P∗
2N ⊆ P2N holds, and therefore,

hkP◦
2N ⊆ P2N . It completes the proof.

APPENDIX G

PROOF OF PROPOSITION 4

Proof: For any y ∈ P2N and x ∈ PV , ‖y‖1 ≤ 1, ‖x‖1 ≤
1, and 〈1N ⊗ ei2, x〉 = 0 hold, where x = [x1, . . . , x2N ]T ,

y = [y1, . . . , y2N ]T , and i = 1, 2. Similar with (21), one has

〈ΛRkx, y〉

≤1

2

[ N∑

i=1

(
(x2i−1 cos θik − x2i sin θik)

2 + (x2i−1 sin θik

+ x2i cos θik)
2
)
+

1

N2

N∑

i=1,i6=j

N∑

j=1

(
(y2j−1 − y2i−1)2

+ (y2j − y2i)2
)]

≤1

2

[( 2N∑

i=1

|xi|
)2

+
( 2N∑

i=1

|yi|
)2]

≤ 1, (22)

which means ΛRkx ∈ P◦
2N . Then, for i = 1, 2, one has 〈1N⊗

ei2,ΛRkx〉 = 〈Λ1N ⊗ei2,Rkx〉 = 〈02N ,Rkx〉 = 0. Thus, one

gets ΛRkPV ⊆ P◦
2N ∩H, which completes the proof.
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