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Abstract—Our planet is more and more transforming into an 
urban world, in which the dynamics of urbanization have 
overcome the ability to govern cities. In a situation of 
uncoordinated urban growth, regional and urban planning lack 
technologies and methodologies to measure, monitor and analyze 
the spatio-temporal pattern of dynamic urban sprawl. This paper 
focuses on methods using remote sensing data to analyze, 
quantify and compare spatial urbanization processes. Urban 
sprawl is detected at the level of urban footprints using a post-
classification change detection approach based on multi-sensoral 
Landsat and TerraSAR-X data. Spatio-temporal analysis 
combines absolute parameters (e.g. areal growth), location-based 
zonal statistics and gradient analysis (e. g. urban core versus the 
urban fringes) as well as spatial metrics (e.g. Largest Patch 
Index) to quantitatively characterise the spatial pattern of city 
developments. The study aims to detect spatial analogies as well 
as differences for the four largest Mexican urban agglomerations.  

I.  INTRODUCTION 
Since 2008 and for the first time in history, the world’s 

urban population has outnumbered the rural population. 
According to the United Nations’ World Urbanization 
Prospects [1] this trend will continue to rise decisively over 
the next decades. In addition, the number of megacities – 
urban agglomerations with more than 10 million inhabitants – 
is estimated to increase from 21 to 27 by 2025 [2].  

Although urbanization is a worldwide phenomenon, it is 
especially dynamic in developing and threshold countries such 
as India, Egypt, Brasil or Mexico, where cities have 
experienced an enormous growth over the last 40 years. Latin 
America and the Caribbean are the most urbanized cultural 
region in the developing world, with 77% of its population 
living in cities [2]. Thus, Mexico provides a good example for 
this investigation as it continues to undergo urbanization since 
the beginning of the 20th century [3]. 

Remote sensing techniques have already proven useful for 
mapping urban areas at various scales and obtaining data for 
the analysis of urban land cover change [4]. Recent research 
has used remotely sensed images to quantitatively describe the 
spatial structure or pattern of urban environments and 
characterise urban morphology. Spatial metrics prove efficient 
in the description, analysis, and modelling of urban form and 
its changes [5]. Zonal statistics as well as gradient analysis 
extend the capabilities to measure spatial configurations [6].  

In this study we specifically address the following research 
questions:  
(1) How can spatiotemporal urban growth be quantified using 

remote sensing? 
(2) Does spatial urbanization correspond to the demographic 

development of a city? 
(3) How can spatial urban patterns and their development be 

quantified over time? 
(4) Is there a spatiotemporal analogy for cities within the 

same cultural region? 

II. STUDY AREA AND DATA SETS  
Measured by population, the four largest cities of Mexico, 

namely Mexico City, Guadalajara, Monterrey and Puebla de 
Zaragoza are used as study sites. Due to it’s hegemony as the 
economic, political and social center of the country, Mexico 
City plays an outstanding role in the national urban system. 
With over 21.1 million inhabitants, Mexico City (Ciudad de 
Mexico) was ranked the third most populous city of the world 
in 2009 and belongs to the most densely populated regions in 
Mexico. The recent development of Mexico City has been 
characterised by slower demographic growth than projected. 
In the year 2000, the registered 18 million inhabitants fell 
short of the projected 25-27 million [1]. 

Just as in Mexico City, immense population growth took 
place in Guadalajara, Monterrey and Puebla, starting from 
relatively equal numbers ranging from 200.000 to 400.000 
inhabitants in 1950. The metropolitan area of Guadalajara (4.4 
million inhabitants) developed the fastest until today, followed 
by Monterrey (3.9 million) and Puebla (2.3 million). The 
demographic developments of the metropolitan areas of 
Guadalajara, Monterrey and Puebla are relatively similar, 
rising constantly over the last 60 years with population 
numbers increasing roughly tenfold until 2005 [1]. 

In this study, spatio-temporal urbanization was monitored 
using imagery from the optical Landsat series of sensors (the 
Multispectral Scanner (MSS), the Thematic Mapper (TM) and 
the Enhanced Thematic Mapper (ETM+)) as well as the 
stripmap acquisition mode data of the German radar sensor 
TerraSAR-X. The geometric capabilities of Landsat and 
TerraSAR-X data are not cluttered with microscopic detail, 
but let us differentiate urbanised and non-urbanised areas with 
high accuracy. With it monitoring of spatial urban 
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development since the 1970s until today with time intervals of 
circa 10 years is possible.      

III. METHODOLOGY 
The methodology is subdivided in two steps: 1) 

Classification of the multi-temporal remote sensing data and 
change detection 2) Spatial pattern analysis.  

1) An object-oriented, hierarchical classification approach 
extracting the classes ‘built-up areas’, ‘non built-up areas’ and 
‘water’ was performed separately on the Landsat images [6]. 
The approach utilises spectral, shape, texture and context 
features. The specific classification of optical Landsat TM and 
ETM+ data was executed using an eCognition Architect 
solution. This graphical user interface (GUI) replaces fixed 
with variable decision tree rules and has proved to be 
applicable on different test sites like Mexico City, Istanbul and 
Cairo [7]. To enrich the information value for classification of 
Landsat MSS data, principal component analysis and Tasseled 
Cap Transformation were calculated to improve classification 
accuracy.  

A fully-automated pixel-based classification algorithm was 
applied to the Terra-SAR-X data to delineate urbanised from 
non-urbanised areas [8]. The urban footprint is extracted by 
analysing the speckle characteristics of a TerraSAR-X scene, 
based on an estimation of the local coefficient of variation and 
the fading texture of the whole scene. The basic concept is to 
extract reliable urban features for the urban footprint 
classification such as seed points, which are represented by 
bright point scatterers (corner reflectors). The ‘urban seeds’ 
particularly depict the reflection information of vertical 
structures. Urban seeds are extracted from intensity and 
texture, derived from a two-tiered speckle divergence 
calculation with a 9x9 and a 35x35 window [8]. To derive the 
urban footprint, intensity, context and texture information are 
combined to densify and generalize the detected urban seeds. 

For urban change detection, post classification comparison 
was found to be the most accurate procedure as it has the 
advantage of indicating the nature of changes [9]. Post 
classification comparison of urban footprints involves the 
detection of differences between two independent 
classification results. Subsequent to multitemporal 
classifications, a comparison of the categorizations was 
performed [10]. The change detection (i. e. Fig. 1) serves as 
basic geo-information layer for a spatio-temporal and cross-
city analysis of the urban footprints.   

2) For the spatial pattern analysis we developed a four-step 
analysis based on absolute growth analysis, zonal statistics, 
gradient analysis and landscape metrics.  

First, absolute spatial urban growth is derived from the 
change detection and related to population statistics over time. 
Thus, relationships between both parameters aim at the 
detection of similar or differing trends. Within available time 
steps from remote sensing results linear interpolation is 
applied. 

Second, zonal statistics provide a possibility to derive 
spatial parameters and measures with respect to location. The 
built-up density is a measure to characterise spatial urban 

pattern and structure. Densities vary substantially from city to 
city and from urban centers to peripheral areas [11]. A ring-
buffer analysis employs six artificial concentric rings with 
5km-intervals around the center creating comparable zones 
from the urban core to the fringes. The center of each 
particular city is defined as the respective Zocalo, which is the 
central plaza of a typical Mexican city [12]. Built-up density is 
calculated as ratio between the areas of the particular ring with 
water areas omitted and the urbanized areas.  

 Third, gradient analysis aims to identify mono- or 
polycentric spatial growth types. Therefore, from the 
classification results, a scan algorithm counts the number of 
urbanized pixels per row and per column in comparison to 
non-urbanized areas. The result of the scan, calculated in 
percent, is displayed as a continuous graph over the particular 
spatial location in x and y direction [13]. With respect to 
location – the urban center (Zocalo) exactly determines the 
corresponding positions in x and y direction – the two plots in 
x and y directions are added to integrate the spatial 
information of urbanized gradients into one diagram. Peaks 
indicate a spatial urban center or sub-center.  

Fourth, landscape metrics (or spatial metrics) measure and 
describe the spatial structure of patches, classes of patches or 
entire patch mosaics [14]. Although these indices of landscape 
pattern have been used for decades in ecology, only recently 
they have been applied specifically for the study of urban 
morphology [15]. Landscape metrics aim at learning the 
spatial mechanisms and complex processes of urban growth 
by finding analogies and differences in the historical 
development of cities under consideration [11].  

Figure 1. Change detection displaying spatial urbanization in 
Monterrey  
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In this study, we apply the Largest Patch Index (LPI) and 
the Landscape Shape Index (LSI). The LPI belongs to the 
group of “area metrics”, which quantify landscape 
composition [15, 16]. The LPI equals the percentage of the 
landscape comprised by the largest patch [17]. The LPI was 
selected to measure the dominance of the largest patch. It 
reaches 100%, if the entire landscape consists of a single patch 
and approaches zero, as the largest patch becomes smaller. In 
addition to the LPI, the LSI was chosen which belongs to the 
group of “shape metrics” and is a measure of landscape 
configuration by complexity of patch shape. This index 
measures the perimeter-to-area ratio for the landscape as a 
whole. The LSI equals the total length of edge (or perimeter) 
of a class, given in number of cell surfaces, divided by the 
minimum length of class edge possible for a maximally 
aggregated class, which is achieved when a class is maximally 
clumped into a single, compact square patch. The LSI reaches 
1 if the urbanised area comprises one single compact square 
area. If the landscape consists of disperse patches of complex 
shape the LSI will be large. Thus, the LSI is a measure of 
clumpiness or complexity of urban growth [17].  

IV. RESULTS, VALIDATION AND DISCUSSION   
The presented methods are applied to the four major urban 

agglomerations in Mexico. A sample result of the multi-
temporal change detection is displayed by figure 1 showing 
urban sprawl as well as re-densification processes in the urban 
core of Monterrey from 1976 until 2010. The city is 
extensively sprawling, displaying finger-like growth axis and 
a small satellite town to the east. But, in general Monterrey 
has a rather compact urban footprint.  

The small-scale spatial variety of land surfaces, coarse 
geometric resolution and mixed spectral information in certain 
pixels of the Landsat imageries is limiting the accuracy of the 
classification result. The various effects in SAR imagery 
introduce further uncertainties for classification. As ground 
truth data was not available for this study, the accuracies of 
the classification results were assessed by a randomization of 
300 checkpoints per class per city and a subsequent visual 
verification process. Table 1 shows the results of the overall 
accuracy assessment for the various classification results.  

Overall 
Accuracy 

Landsat 
MSS 

Landsat 
TM 

Landsat 
ETM+ TerraSAR-X

Mexico City 88.0 % 96.0 % 94.0 % 97.5 % 
Guadalajara 95.0 % 96.0 % 93.7 % 97.0 % 
Monterrey 95.0 % 97.7 % 85.7 % 96.0 % 
Puebla  97.0 % 95.0 % 95.7 % 94.0 % 
Table 1. Accuracy assessment of the urban footprint classifications 

The kappa coefficient also shows strong agreement between 
classification results and the reference information with 
varying values from 0.64 to 0.92. The urban footprint 
classifications have to be understood as a coarse 
approximation of urbanized areas and not as an exact 
classification of a building mask. Still, the requirements of 
mapping the large city footprint, its spatial dimension and the 
spatial developments over the years are fulfilled. The multi-
sensoral earth observation data provide sufficient information 

for a correct detection of urban change and its spatial 
configuration.  

The first and most obvious analysis is derived from the 
change detection, comparing the spatial growth of the four 
Mexican cities over the past 35 years. The plot against 
population development over time reveals an increase of 
spatial urbanization compared to population growth, indicating 
an increasing need of space per person (Fig. 2).   

 
Figure 2. Plot of areal vs. population growth 

For location-based analysis, zonal statistics are calculated 
and compared (Fig. 3). In general, a decreasing built-up 
density with increasing distance to the urban center is detected 
for all four cities. Monterrey, Guadalajara and Puebla show a 
similar abrupt decrease in density around the central zone and 
low built-up densities in the outer rings. In comparison, 
megacity Mexico City clearly reveals its large urban core by a 
slow decrease of density with rising distance to the center and 
built-up densities higher than 55% even in the 6th ring. It also 
becomes obvious that spatial growth rates are highest in 
distant rings of the mega city, while for the three smaller 
cities, absolute spatial growth is still highest in or close to the 
urban core.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Zonal statistics using ring buffers  
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Location-based gradient analysis aims at spatially detecting 
urban centers or sub-centers and their development over time 
(peaks in the histogram). Results of the histogram analysis 
clearly reveal a polycentric structure for Monterrey and 
Mexico City with a dominant urban core for both cities. Their 
polycentric structure only developed recently, while all cities 
showed to a large extent a monocentric urban pattern in the 
1970s. However, also Guadalajara and Puebla display trends 
to a polycentric urban configuration in the latest time step.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Gradient analysis  

Finally, landscape metrics are displayed to quantify spatial 
urban configuration. The LPI reveals a rising dominance of 
the main urban patch for all cities. It is especially high in 
Mexico City, where the limited space within the cordillera 
enforces redensification processes and thus a coalescence of 
the urban core. The sprawling three smaller cities also display 
a rising complexity in spatial configuration, while the 
redensification in the megacity recently shows a decrease in 
complexity.  

Figure 4. Landscape metrics  

The results from the various methodologies clearly disclose 
analogies for the cities of Monterrey, Guadalajara and Puebla. 
The cities show comparable increase in population, spatial 

growth and a tendency to higher urbanization rates per person. 
Furthermore spatial configuration from the urban core to the 
periphery shows similar gradients in built-up density or a 
tendency from mono- to polycentric spatial configuration. 
Mexico City clearly differs due to its dimension; its main 
growth rates in peripheral areas as well as its polycentric 
configuration.    

V. CONCLUSION  
The study has demonstrated that urbanization and its 

spatiotemporal dimension and structure can be quantified and 
compared across cities using a combination of absolute 
parameters, zonal statistics, gradient analysis and landscape 
metrics. Landsat as well as TerraSAR-X data proved to be an 
independent, area-wide, long-time, up-to-date and (with 
respect to the limited geometric resolution) adequate data 
source for the analysis of large and fast-changing areas of 
Mexican cities. Comparative studies are crucial to detect urban 
growth trajectories across cities and to learn for sustainable 
urban planning from more than one individual city.  
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