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Abstract—We propose a network for semantic mapping called
the Dense Dilated Convolutions Merging Network (DDCM-Net)
to provide a deep learning approach that can recognize multi-
scale and complex shaped objects with similar color and textures,
such as buildings, surfaces/roads, and trees in very high resolution
remote sensing images. The proposed DDCM-Net consists of
dense dilated convolutions merged with varying dilation rates.
This can effectively enlarge the kernels’ receptive fields, and,
more importantly, obtain fused local and global context infor-
mation to promote surrounding discriminative capability. We
demonstrate the effectiveness of the proposed DDCM-Net on the
publicly available ISPRS Potsdam dataset and achieve a per-
formance of 92.3% F1-score and 86.0% mean intersection over
union accuracy by only using the RGB bands, without any post-
processing. We also show results on the ISPRS Vaihingen dataset,
where the DDCM-Net trained with IRRG bands, also obtained
better mapping accuracy (89.8% F1-score) than previous state-
of-the-art approaches.

Index Terms—Dense Dilated Convolutions Merging (DDCM),
deep learning, semantic mapping, remote sensing

I. INTRODUCTION

Automatic semantic interpretation of remote sensing images
is important for a wide range of practical applications, such as
urban land cover classification , traffic monitoring and ve-
hicle detection. Large-scale semantic mapping is a challenging
task which consists of the assignment of a semantic category to
every pixel in very high resolution (VHR) aerial images. Due
to the successes of deep learning methods, a large variety of
modern approaches to pixel-to-pixel classification are based
on deep convolutional neural networks (CNN), in particular
end-to-end learning with fully convolutional neural networks
(FCN) . However, to achieve higher performance, CNN
and FCN based methods [3]-[5]] normally rely on deep multi-
scale architectures which typically require a large number of
trainable parameters and computation resources.

This work is supported by the foundation of the Research Council of
Norway under Grant 220832 and Grant 239844.

Fig. 1. Examples of semantic mapping of remote sensing images on RGB
(top-left) and IRRG data (bottom-left) respectively with our DDCM network.
From left to right, test images, ground truths, and mapping results.

In this work, we propose a novel network architec-
ture, called the dense dilated convolutions merging network
(DDCM-Net), which utilizes multiple dilated convolutions
merged with various dilation rates. The proposed network
learns with densely linked dilated convolutions and outputs
a fusion of all intermediate features without losing resolutions
during the extraction of multi-scale features. Our experiments
demonstrate that the network achieves robust and accurate
results with relatively few parameters and layers. Fig. [T shows
illustrative examples of semantic mapping results on RGB and
IRRG data respectively with our DDCM-Net methods. These
results will be further discussed in section [[IIl

II. METHODS

We first briefly revisit dilated convolutions which are used
in DDCM networks. We then present our proposed DDCM
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architecture and provide training details.

A. Dilated Convolutions

Dilated convolutions [6] have been demonstrated to im-
prove performance in many classification and segmentation
tasks [7]-[10]. One key advantage is that they allow us to
flexibly adjust the filter’s receptive field to capture multi-scale
information without resorting to down-scaling and up-scaling
operations. A 2-D dilated convolution operator can be defined
as

C,
gig(we) =D 0,7 «af (1
c=0
where, * denotes a convolution operator, g; j : RFexWexCe
RAe+1xWerr - convolves the input feature map z, €
RHXWexCe within channel ¢ € {0,1,...,C,} at row i and
column j. A dilated convolution 8y, ,- with a filter £ and dilation
r € Z* is only nonzero for a multiple of r pixels from the
center. In dilated convolution, a kernel size k is enlarged to
k+ (k—1)(r—1) with the dilation factor r. As a special case,
a dilated convolution with dilation rate » = 1 corresponds to
a standard convolution.

B. Dense Dilated Convolutions Merging Module

The proposed dense dilated convolutions merging (DDCM)
module densely stacks multi-scale features and merges them
to yield more accurate and robust representations with fewer
parameters. Fig. [2] illustrates the basic structure of the DDCM
module.

DDCM module consists of a number of Dilated CNN-
stack (DCs) blocks with a merging module as output. A basic
DCs block is composed of a dilated convolution followed
by PReLU [11] non-linear activation and batch normalization
(BN) [12]. It then stacks the output with its input together
to feed the next layer, which can alleviate context information
loss and problems with vanishing gradients when adding more
layers. The final network output is computed by a merging
layer composed of 1 x 1 filters with BN and PReLU in
order to efficiently combine all stacked features generated by
intermediate DCs blocks.

In a DDCM module, all feature maps are maximally uti-
lized with high computational efficiency while preserving the
input resolution throughout the network. In particular, densely
connected DCs blocks, typically configured with linearly in-
creasing dilation factors, enable DDCM networks to have very
large receptive fields with just a few layers as well as to capture
rich global representations by merging multi-scale features
properly.

Fig. [3] shows the end-to-end pipeline of DDCM network
(DDCM-Net) architecture combined with a pre-trained ResNet
[13]] for semantic mapping tasks. The proposed DDCM-Net is
easy to implement, train and combine with existing architec-
tures. In our work, we only utilize the first 3 bottleneck layers
of ResNet50 and remove the last bottleneck layer and fully
connected layers to reduce the number of parameters to train.

Dilated CNN-stack (DCs) Block
Merging all stacked features

CNN i CNN 1x1
PReLU+BN : PReLU+BN
stack ;

Merging

Fig. 2. Example of the DDCM architecture composed of n DC blocks with
various dilation rates {1,2,3,...,n}.

up-softmax
argmax

Decoder of high level features

Fig. 3. End-to.end pipeline of DDCM-Net for semantic mapping of VHR
images. The encoder of low level features encodes multi-scale contextual
information from the initial input images by a DDCM module (output 3-
channel) using 3 X 3 kernels with 6 different dilation rates [1,2,3,5,7,9].
The decoder of high level features decodes highly abstract representations
learned from ResNet50 (output 1024-channel) by 2 DDCM modules with
rates [1,2,3,4] (output 36-channel) and [1] (output 18-channel) separately.
The transformed low-level and high-level feature maps by DDCMs are then
fused together to infer pixel-wise class probabilities. Here, "p’ and "up’ denote
pooling and up-sampling respectively.

C. Data augmentation and normalization

We randomly sample 5000 image patches of size 256 x 256
in run time from VHR training images (of size 6000 x 6000)
for each training epoch and flip and mirror images for data
augmentation. These patches are normalized to [0.0, 1.0] by
dividing by 255 for all bands (RGB, or IRRG). We used a pre-
trained ResNet50 model that has been trained on ImageNet
[14]. No mean and standard deviation normalization were
used.

D. Optimizer and weighted loss function

In our work, we choose Adam [[15] with AMSGrad [16]
as the optimizers with weight decay 5 x 10° and polynomial
learning rate (LR) decay (1 — -S4=1¢)0-9 wth the maximum
iterations of 10® for the model. We also set 2 x LR to all bias
parameters in contrast to weights parameters. Guided by our
empirical results, we use an initial LR of 82219 and step-
LR schedule method which drops the LR by 0.85 at every
15 epochs. As loss function, we apply a cross-entropy loss

function with median frequency balancing as defined in [|1].

III. EXPERIMENTS

We investigate the proposed network on the ISPRS 2D
semantic labeling dataset [17] which is comprised of very
high resolution aerial images over two cities: Potsdam and



Vaihingen in Germany. In this work, we only use RGB bands
of Potsdam dataset and IRRG (Infrared-Red-Green) bands of
Vaihingen dataset.

A. Dataset

The ISPRS Potsdam dataset contains 38 RGB images
(6000 x 6000) annotated with six different labels including
impervious surfaces, buildings, trees, low vegetation, cars and
clutters. Originally, 24 of the images were public available and
14 were included in a hold-out test set. The Vaihingen dataset
has 33 IRRG images, where 16 were from the original public
dataset, and 17 were included the hold-out test set. To evaluate
our models, the original public part (24 images) of the Potsdam
dataset was divided into training, validation (areas: 4_10 and
7_10), and local test set (areas: 5_11, 6_9 and 7_11). The
the original public part (16 images) of the Vaihingen dataset
was similarly split into training, validation (tiles of 7 and 28),
and local test set (tiles of 5, 15, 21, and 30). Please note that
our trained models are evaluated both on the local test sets to
compare with our previous work , , and on the hold-out
test sets to compare with other related published work.

B. Evaluation methods

We train and validate all networks with patches of size 256 x
256 as input and batch size of 5. All hyper-parameters settings,
except the learning rates, were shared for the different models.
At test time, we apply test time augmentation (TTA) in terms
of flipping and mirroring. We use sliding windows (with 448 x
448 size at a 100px stride) on a test image and stitch the results
together by averaging the predictions of the over-lapping TTA
regions to form the output. The performance is measured by
both the Fl-score [1]], and mean Intersection over Union (IoU)

[18].
C. Results

Table [l shows our results on the hold-out test sets and our
local test sets of ISPRS Potsdam and Vaihingen separately
with a single trained model. The mean Fl-score (mF1) and
the mean IoU (mlou) are computed as the average measure of
all classes except the clutter class. Fig. 4] shows a qualitative
comparison of the semantic mapping results from our model
and the ground truths.

TABLE I
RESULTS ON THE HOLD-OUT TEST IMAGES OF ISPRS POTSDAM AND
VAIHINGEN DATASETS WITH A SINGLE TRAINED DDCM-R50 MODEL

SEPARATELY.
Potsd: Avg. Build Tree Low-veg  Surface Car OA
F1-score 0.923 0.969 0.894 0.877 0.929 0.949 0.908
0.925* | 0.983*  0.892*  0.865* 0.946* 0.939* 0.931*
" ToU [ 0860 | 0940 ~ 0809 0781 ~  0.867 0902 |
0.863* | 0.966*  0.805*  0.762* 0.898* 0.885*
Fl-score 0.898 0.953 0.894 0.833 0.927 0.883 0.904
0.909* | 0.973* 0.914* 0.814* 0.934* 0.909* 0.921*
" ToU | 0817 0909 0808 0713 ~ 0863 0790 |
0.837* | 0.948*  0.842*  0.686* 0.876* 0.832*

" Results were measured on our local test images.

We also compare our results to other related published work
on the ISPRS Potsdam RGB dataset and Vaihingen IRRG
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Fig. 4. Mapping results for test images of Vaihingen tile-27 (left) and Potsdam
tile-3_14 (right). A. Test images (top), B. the Ground truths (center), C.
DDCM-R50 (bottom).

dataset. These results are shown in Table [[] and [l respectively.
Our single model with overall Fl-score (92.3%) on Potsdam
RGB dataset, achieves around 0.5 percent higher than the
secondary best model - FuseNet+OSM which used Open-
StreetMap (OSM) as an additional data source. In other words,
our model achieves better performance with fewer labeled
training data. Similarly, our model trained on Vaihingen IRRG
images, also obtained the best overall performance with 89.8%
Fl-score which is around 1.1% higher than the second best
model GSN [20]. It’s worth noting that our model is the only
one that works equally well on both Vaihingen IRRG dataset
and Potsdam RGB dataset, which outperforms the DST_2
model with 3.9% and 0.6% higher F1-score on Vaihingen and
Potsdam dataset respectively.

TABLE II
COMPARISONS BETWEEN OUR METHOD WITH OTHER PUBLISHED
METHODS ON THE HOLD-OUT RGB TEST IMAGES OF ISPRS POTSDAM

DATASET.
Models OA Building Tree Low-veg  Surface Car mF1
HED+SEG.H-Sc ‘2] 0.851 0.967 0.686 0.842 0.850 0.858 0.846
RiFCN [23 0.883 0.930 0.819 0.837 0.917 0.937 0.861
RGB-+I-ensemble 0.900 0.936 0.845 0.822 0.870 0.892 0.873
Hallucination [24] 0.901 0.938 0.848 0.821 0.873 0.882 0.872
SegNet RGB |19] 0.897 0.929 0.851 0.850 0.930 0.951 0.902
DST_2 |21 0.903 0.964 0.880 0.867 0.925 0.947 0.917
FuseNet+OSM 0.923 0.959 0.851 0.863 0.953 0.968 0918
~ “DDCM-RS50 (ours) ~ [ 0.908° | 0969 ~ 0.894 ~ 0.877 ~ 0929 ~ 0949 [ 0923
(-1.5%) (+0.5%) (+1.4%) (+1.0%) (-24%)  (-1.9%) (+0.5%)

In addition, we evaluate our method on the local Potsdam
test set to compare with other popular architectures reviewed
and re-implemented in [18]]. Our DDCM-R50 model achieved
the highest mloU score (80.8%) compared to others while
using much fewer parameters and computational cost (FLOPs)
as shown in Table [V] Note that the performance on full
reference ground truths is slightly lower than on eroded
boundary ground truths as the boundary pixels are not ignored
during evaluation.



TABLE III
COMPARISONS BETWEEN OUR METHOD WITH OTHER PUBLISHED

METHODS ON THE HOLD-OUT IRRG TEST IMAGES OF ISPRS VAIHINGEN

DATASET.
Models OA Building Tree Low-veg  Surface Car mF1
UOA [25 0.876 0.921 0.882 0.804 0.898 0.820 0.865
ADL_3 [26] 0.880 0.932 0.882 0.823 0.895 0.633 0.833
DST_2 [21] 0.891 0.937 0.892 0.834 0.905 0.726 0.859
ONE_7 [27] 0.898 0.945 0.899 0.844 0.910 0.778 0.875
DLR_9 [22] 0.903 0.952 0.899 0.839 0.924 0.812 0.885
GSN [20] 0.903 0.951 0.899 0.837 0.922 0.824 0.887
" DDCM-R50 (ours) | 0.904 | 0.953 ~ 0894 ~ 0833 ~ 0927 ~ 0.883 | 0.898
(+0.1%) | (+0.1%) (-0.5%) (-1.1%) (+03%)  (+5.9%) | (+1.1%)
TABLE IV

QUANTITATIVE COMPARISON OF PARAMETERS SIZE, FLOPS (MEASURED

ON INPUT IMAGE SIZE OF 3 X 256 x 256), AND MIOU ON ISPRS
POTSDAM RGB DATASET.

Models Backbones | Parameters FLOPs mloU*
(Million) (Giga)
UNet [28] VGG16 31.04 15.25 0.715
FCN8s 2] VGG16 134.30 73.46 0.728
SegNet 29 VGG19 39.79 60.88 0.781
GCN [5 ResNet50 23.84 5.61 0.774
PSPNet |3 ResNet50 | 46.59 44.40 0.789
DUC 4] ResNet50 30.59 32.26 0.793
“ DDCM-R50 (ours) | ResNet50 | 999~~~ ~ ~ 48 0808 ~
“mIoU was measured on full reference ground truths of our local test images 5_11, 6_9 and

7_11 in order to fairly compare with our previous work [18].

IV. CONCLUSIONS

In this paper, we presented a dense dilated convolutions
merging (DDCM) network architecture for semantic mapping
in very high-resolution aerial images. The proposed architec-
ture applies dilated convolutions to learn features at varying
dilation rates, and merges the feature map of each layer with

the

feature maps from all previous layers. On both the Potsdam

and Vahingen datasets, the DDCM-Net architecture achieves

the
but

best mean F) score compared to the other architectures,
with much fewer parameters and feature maps. DDCM-Net

is easy to adapt to address a wide range of different problems
by using various combinations of dilation rates, is fast to train,
and achieves accurate results even on small datasets.

[1]

[2

—

[3

—

[4

=

[5

[ty

[6]
[7]

REFERENCES

M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, “Semantic segmenta-
tion of small objects and modeling of uncertainty in urban remote sens-
ing images using deep convolutional neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 1-9, 2016.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3431-3440, 2015.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” arXiv preprint arXiv:1612.01105, 2016.

P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell,
“Understanding convolution for semantic segmentation,” arXiv preprint
arXiv:1702.08502, 2017.

C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, “Large kernel matters—
improve semantic segmentation by global convolutional network,” arXiv
preprint arXiv:1703.02719, 2017.

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834-848,
2018.

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

D. M. Pelt and J. A. Sethian, “A mixed-scale dense convolutional neural
network for image analysis,” Proceedings of the National Academy of
Sciences, vol. 115, no. 2, pp. 254-259, 2018.

Y. Li, X. Zhang, and D. Chen, “Csrnet: Dilated convolutional neural
networks for understanding the highly congested scenes,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1091-1100, 2018.

Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng, and T. S. Huang, “Revisiting
dilated convolution: A simple approach for weakly-and semi-supervised
semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 7268-7277, 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
pp. 1026-1034, 2015.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770-778, 2016.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211-252, 2015.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond,” CoRR, 2018.

I. S. for Photogrammetry and R. S. (ISPRS), “2D Semantic Labeling
Contest.” online, 2018.

Q. Liu, A. Salberg, and R. Jenssen, “A comparison of deep learning
architectures for semantic mapping of very high resolution images,”
in IGARSS 2018 - 2018 IEEE International Geoscience and Remote
Sensing Symposium, pp. 6943-6946, July 2018.

N. Audebert, B. Le Saux, and S. Lefevre, “Joint learning from earth
observation and openstreetmap data to get faster better semantic maps,”
in EARTHVISION 2017 IEEE/ISPRS CVPR Workshop. Large Scale
Computer Vision for Remote Sensing Imagery, 2017.

H. Wang, Y. Wang, Q. Zhang, S. Xiang, and C. Pan, “Gated convo-
lutional neural network for semantic segmentation in high-resolution
images,” Remote Sensing, vol. 9, no. 5, p. 446, 2017.

J. Sherrah, “Fully convolutional networks for dense semantic labelling
of high-resolution aerial imagery,” CoRR, vol. abs/1606.02585, 2016.
D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani, M. Datcu,
and U. Stilla, “Classification with an edge: Improving semantic image
segmentation with boundary detection,” CoRR, vol. abs/1612.01337,
2016.

L. Mou and X. X. Zhu, “Rifcn: Recurrent network in fully convolutional
network for semantic segmentation of high resolution remote sensing
images,” CoRR, vol. abs/1805.02091, 2018.

M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, “Urban land cover
classification with missing data modalities using deep convolutional
neural networks,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 11, no. 6, pp. 1758-1768, 2018.
G. Lin, C. Shen, A. Van Den Hengel, and I. Reid, “Efficient piecewise
training of deep structured models for semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3194-3203, 2016.

S. Paisitkriangkrai, J. Sherrah, P. Janney, V.-D. Hengel, et al., “Effective
semantic pixel labelling with convolutional networks and conditional
random fields,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 36-43, 2015.

N. Audebert, B. Le Saux, and S. Lefevre, “Semantic segmentation of
earth observation data using multimodal and multi-scale deep networks,”
in Asian Conference on Computer Vision, pp. 180-196, Springer, 2016.
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention,
pp. 234-241, Springer, 2015.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” arXiv
preprint arXiv:1511.00561, 2015.



	I Introduction
	II Methods
	II-A Dilated Convolutions
	II-B Dense Dilated Convolutions Merging Module
	II-C Data augmentation and normalization
	II-D Optimizer and weighted loss function

	III Experiments
	III-A Dataset
	III-B Evaluation methods
	III-C Results

	IV Conclusions
	References

