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Abstract—This paper reviews in detail the contributions of 

hyperspectral imaging to the topic of urban remote sensing. 
Hyperspectral imaging is traditionally connected to the spectral 
characterization of surface materials. Moreover, urban areas are 
characterized by a very complex geometrical structure, which 
requires either very high spatial resolution or complex unmixing 
procedures based on linear and non-linear mixing models. Non-
linear unmixing and material mapping using both spectral and 
spatial features are therefore two important topics when using 
hyperspectral imaging to monitor human settlements and 
infrastructures. Finally, even when no specific material and or 
urban element is sought, the mixture of artificial (as opposed to 
natural) materials in human settlements can be used to delineate 
their extents, with excellent results with respect to those obtained 
by multispectral optical sensors with the same spatial resolution. 
 

Index Terms—urban unmixing, urban extent extraction. 

I. INTRODUCTION 
HE use of hyperspectral imaging to characterize human 
settlements and artificial infrastructures is less common in 

technical literature than its counterpart, i.e. the exploitation of 
hyperspectral data to analyze natural elements such as 
vegetation, water and soil. As a matter of fact, the main limit 
to the use of hyperspectral imagers in urban remote sensing 
application is the (relatively) coarse spatial resolution of 
existing and planned spaceborne platforms, as well as the high 
acquisition costs per square km of airborne platforms. 
Notwithstanding these limits, there has been a number of 
works devoted to the use of hyperspectral imaging in urban 
areas, notably [1] where possible applications in urban areas 
of the EnMAP sensor have been introduced.  
Hyperspectral imaging can be used to monitor human 
settlements and artificial infrastructure in many ways. The 
spectral (ultra)fine resolution of these sensors allows the 
detection and classification of artificial materials [2], as well 
as their aging situation [3], which are invaluable for the safety 
of human beings [4]. They are also useful to characterize 
urban vegetation [5], quickly discriminating between healthy 
trees and stressed ones. Finally, exploiting spectral and spatial 
properties of the elements of a scene is the usual way to 
translate urban hyperspectral images into thematic maps [6, 7], 
for land cover/land use purposes or climate analyses [8]. 
Since urban details are often very fine, and do not match the 
spatial resolution of hyperspectral sensors, limited by the large 

number of bands and the minimum SNR to be guaranteed, 
material abundances are achieved by means of unmixing 
techniques [9]. However, the complex interactions due to the 
urban geometry justify (better, require) the use of non-linear 
mixing models [10]. By retrieving abundances, more accurate 
maps as well as biophysical parameters can be extracted. 
Whenever useful, abundances can be also combined to extract 
specific targets: this is the case for instance for human 
settlement extents without any limitation as for the 
geographical area and the time of acquisition [11]. 
Following to this quick list of urban remote sensing 
applications of hyperspectral imaging, Section II is devoted to 
summarize and discuss existing studies on material and 
vegetation characterization in urban areas through 
hyperspectral imaging. Section III introduces the issues related 
to the two- and three-dimensional landscape of human 
settlements, and summarizes the approaches designed to tackle 
with mapping urban elements jointly considering spectral and 
spatial pattern similarity. Section IV delineates options to 
exploit spaceborne hyperspectral sensors to extract urban 
extents at the global level. Finally, Section V includes open 
challenges and opportunities to be considered for future 
researches involving hyperspectral imaging of urban areas. 

II. URBAN MATERIAL AND VEGETATION CHARACTERIZATION 
The urban environment is the most complex and 

heterogeneous landscape on Earth. It is characterized by a 
frequent change of artificial as well as natural surfaces. 
Consequently, this leads to a very high spectral and spatial 
information content of urban hyperspectral imageries and 
requires (1) a profound knowledge of the chemical 
composition, physical structure, spectral behavior of urban 
surfaces, (2) image based effects and (3) specific techniques 
and analyses concepts for an area-wide surface inventory.  

Because of the wide range of thematic applications, several 
classification schemes have been developed [9, 12, 13]. Most 
of them can be traced back to the land cover/land use 
classification scheme of [14], and are the link between the 
physical surface material characteristics and their functions in 
the urban ecosystem.  

A. Artificial materials  
First basic studies have shown that artificial urban surfaces 
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are characterized by material specific reflectance features [15, 
13, 12]. Moreover, urban surface material classes are also 

characterized by high within-class variability as shown in Fig. 
1, which is due to several factors, such as color, coating, 

degradation [3] and illumination [16].  The highest inter- and 
intra-class variability can be found for roof materials due to 
their often varying orientations towards the sun/illumination 
and the sensor. [17] and [18] have analyzed the bidirectional 
reflectance behavior of selected roofing materials and found 
not only variations in amplitude as for most of the materials 

but also non-systematic hot spot effects especially for metals. 
Despite the described spectral complexity in airborne and 

thus also in spaceborne hyperspectral imageries, there are 
spectral reflectance characteristics that can be used to identify 
material type of surfaces. These so called robust spectral 
features are observable independent from intra-class 
variability and effects occurring due to preprocessing [13]. 
Importantly, not only one spectral feature such as the position 
and depth of a absorption is necessary, the combination of 
different features is highly recommended and leads to the best 
separability. Additional height and thermal information can 
greatly improve the separability [2, 19, 9], especially for 
materials that are manufactured using the same base material 
such as roofing tiles and red loose chippings or bitumen and 
asphalt streets. The correct separation of these surfaces is 
important because of their different ecological functions in the 
urban systems. 

 
Fig. 1: Spectral separability of urban surface materials based on airborne 
hyperspectral HyMap image of Munich, Germany (RGB: [1652, 719, 543] 
nm). 

B. Urban vegetation  
Vegetation is especially important in the urban environments 

due to their positive impacts on urban heat island mitigation, 
air pollution removal, carbon storage, building energy-use 
modification, and storm water runoff reduction [20-22].  

Tree species mapping is important because limited tree 
diversity in urban areas increases the likelihood of mass 
mortality from outbreaks of insects and disease [23]. [24] use 
airborne hyperspectral AVIRIS data for tree species mapping 
of the Santa Barbara region, USA, and in [25] balloon-borne 
hyperspectral imagery is analyzed using classification and 
unmixing techniques to separate plant species in an urban 
estuary. The synergistic use of hyperspectral and LIDAR data 
is well known and can greatly improve results by using both, 
functional traits from hyperspectral data and structural traits 

from LIDAR data [5, 26]. In lower resolution data where 
crowns can’t be resolved, gradients of forest composition have 
been explored [27]. Results contributed to a better 
understanding of forest functioning in urban ecosystems and 
highlight the potential of spaceborne imaging spectrometers 
such as HyspIRI, PRISMA and EnMAP. 

Imaging spectroscopy analyses can also be used to measure 
air pollution effects on vegetation. [28] have detected different 
levels of air pollution based on leaf-level reflectance studies of 
C. betulus. [29] could distinguish trees with lowered 
chlorophyll content due to a suboptimal habitat quality (more 
exposure to air pollution) from healthier ones based on a 
spectral NAOC (Normalized Area Over reflectance Curve). 
The authors of [30] investigated the effect of ambient air 
pollution on leafs using high spectral resolution solar-induced 
steady-state Chl fluorescence. They found an improved ability 
to detect stressed leafs using this new technique. 

III. MAPPING THE URBAN “BUILTSCAPE” 
As mentioned in the introduction, often the spatial 

resolution of hyperspectral sensors does not match the size of 
urban objects. This is definitely true for spaceborne missions, 
whose spatial resolution is always between 20 and 30 m, 
because of SNR constraints. Accordingly, most of the pixels in 
urban areas are mixed ones, and unmixing becomes necessary 
to extract abundances of artificial/natural materials and 
eventually mapping biophysical and land use/socio-economic 
variables. Linear mixture modeling has been widely used in 
technical literature, especially considering Multiple 
Endmember Spectral Mixture Analysis (MESMA) [31-33]. 
This approach has been limited, however, to multispectral 
(e.g., Landsat) data, where the small amount of bands and the 
coarse spectral information does not allow a precise 
characterization of the mixtures. In hyperspectral imaging it is 
instead natural to move from MESMA to non-linear mixtures, 
since the data allows detecting much finer spectral details. 

Indeed, the extremely complex 2D and 3D patterns of urban 
elements call for non-linear models to understand the multiple 
reflections and interactions that concur to the final reflected 
signal at each wavelength. Accordingly, non-linear unmixing 
has been introduced in urban remote sensing [10], and 
different models has been validated and compared. As “non-
linearity” has quite a broad definition, the degree of non-
linearity [34] is also object of investigations, in order to adapt 
the model to the urban landscape.  

The identification and linear and nonlinear combination of 
endmembers in natural environments has lead to models that 
have been also tested in urban areas. Since in all these cases 

 
Fig. 2:  Examples of linear and non-linear material interactions adding up, for 
instance, to non-linear mixing in urban areas. 
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bilinear models (such as [35]) explain only a tiny fraction of 
the mixtures, several models have been proposed to address 
the issue to track the physical interferences, scatterings and 
reflections that may occur in geometrically complex mixtures 
[36, 40]. Following the same line, in [37] a multilinear mixture 
model including all orders of interactions is used to describe 
the reflectance of hyperspectral images. Alternatively, the 
methods introduced in [38] and [39] can be used to retrieve a 
feasible description of the effects resulting from additive terms 
assumed to corrupt an originally linear mixture term.  

Several papers have recently addressed the topic of 
nonlinearity detection in hyperspectral images according to 
macroscopic mixture modeling.  For instance, a posteriori 
statistical tests have been used to understand bilinearity [41-
43]. 

IV. HYPERSPECTRAL MAPPING AT THE GLOBAL SCALE? 
One of the most important lines of research in urban remote 

sensing is nowadays urban monitoring at the national, 
continental or global scale. There are currently groups 
working on multispectral data, thanks to the Landsat legacy 
and the newly and freely available Sentinel data [44], and 
groups working on radar data, thanks to its all-weather 
capability, and finer spatial resolution [45]. Very small 
attention has been paid to spaceborne hyperspectral data [46, 
47], essentially because they are geographically very sparse. 
The opposite constrains of a limited storage space on-board 
and a spatial resolution as fine as the corresponding 
multispectral sensors lead usually to on-demand acquisitions. 
Still, this scenario does not prevent from using hyperspectral 
data to map urban areas whenever they are available, 
complementing in time and/or space other existing data sets. 
To this aim, a methodology to map human settlements 
(meaning both built-up areas and other artificial surfaces) still 
needs to be designed, in order to work at every latitude, season 
of the year, and acquisition geometry.  

A. Urban extent extraction via urban fraction unmixing 
Urban textures in hyperspectral images with spatial 

resolutions coarser than a single urban object are characterized 
by strong nonlinear contributions. Hence, the results of 
nonlinear unmixing applied to hyperspectral imagery can be 
combined into a metric in order to map and monitor urban 
extents. According to what has been mentioned in the previous 
section, the methods in [10] and [40] are good candidates in 
this sense, as they provide reliable evaluations of nonlinear 
phenomena in urban areas. Indeed, in [11] the volumetric 
abundances obtained by the polytope decomposition (POD) 
algorithm in [40] are used to compute a urbanization index. 
This index is defined as the complement to the fraction of the 
total abundances due to natural materials in the scene, whose 
endmembers (differently from artificial ones) are easily known 
in advance. Experimental validations in different geographical 
locations proved that anthropogenic extents are better 
characterized by the POD algorithm than by any other linear 
or bi-linear models, and non-urban regions are properly 
separated from artificial surfaces. Accordingly, POD-based 
segmentation of urban areas outperforms those obtained by 

other models and better match a visual interpretation of the 
same scenes.  

V. CONCLUSIONS AND FUTURE DIRECTIONS FOR RESEARCH 
While this is a review paper, a few conclusions can be 

drawn. Interesting lines of research remain still open, and we 
look forward to reading exciting works by colleagues 
widening the range of urban applications of hyperspectral 
imaging. The points that we would like to stress as preliminary 
results of this review are therefore as follows: 
1) The large variability (both in the spectral and spatial 

domain) of human settlements calls for more tests, by far 
larger of the existing data sets. Hyperspectral imaging in 
its infancy stage has focused mostly on natural 
environments (e.g. geology), as they served the purpose of 
highlighting the advantages of this technology. However, 
the role of human settlements for climate change is not 
fully understood. It requires more physical based 
information about object materials and their configuration 
in the urban environment to analyze the link between these 
characteristics and urban ecosystem functions. 
Hyperspectral imaging plays an essential role here. 

2) So far, the huge potential of using the hyper-dimensional 
spectral feature space for analyzing texture and structure 
metrics of the urban environment is still not used and calls 
for further algorithms development. Moreover, the 
knowledge about the scale dependency of spectral and 
textural information can largely contribute to use 
spaceborne hyperspectral sensors despite their rather 
coarse spatial resolution between 20 m to 30m. 

3) Very few studies are available that consider future 
spaceborne hyperspectral systems such as EnMAP, 
PRISMA, and HyspIRI. For global scale analyses of the 
urban environment, this has to be intensified, since the 
transferability of algorithms developed on VHR scale to 
coarser scales required different strategies and theories. 
The previously mentioned points can greatly contribute 
and prepare the ground for a global human settlement and 
infrastructure monitoring. 
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