Mapping urban deprivation from Sentinel 1/2 using
artificial intelligence and weakly labelled data

Julien Govoorts Tais Grippa
ANAGEO - DGES ANAGEO - DGES
Université Libre de Bruxelles Université Libre de Bruxelles
Brussels, Belgium Brussels, Belgium

Abstract—This research aims at assessing the potential of
an semi-unsupervised approach to create labeled samples for
predicting deprivation probability at 100x100m. We compare
Machine Learning (ML) and Deep Learning approaches (DL)
with a combination of Sentinel-1 (S1) and Sentinel-2 (S2) data.
Our results confirm that the propose approach for creating
labelled samples using semi-supervised method works. The best
performance is achieve by the ML approach combining S2 and
S1 data and reach an overall accuracy of 95.34%.

Index Terms—slum, deprivation, Nairobi, machine learning,
deep learning

I. INTRODUCTION

Around 1 billion people or a third of the global urban
population are currently living in informal settlements and
23% of whom are situated in Sub-Saharan Africa ([1], [2]). By
2030, the United Nations estimated that this population will
continue growing and probably reach 3 billion loc. cit.. This
phenomenon is mainly caused by the fast urbanisation and the
demographic growth that African countries are facing. In the
frame of humanitarian aid or social concerns, it is essential
to determine and monitor the spatial extent of slums in sub-
Saharan African cities. The Earth observation methods seem to
be the rare techniques that could achieve this task with limited
time and cost. Some research integrate earth observation
methods with ancillary data such as OpenStreetMap [3] but
the vast majority are mostly based on the morphological and
spectral features to determine the slums. The morphology of
these slums “is generally characterised by irregular patterns
of small buildings and a scarcity of green areas [4] but in
some examples the slum areas can be high-rise building with
a regular pattern. Consequently, the methods being based on
physical features could represent a source of limitations due
to the large variety of slums.

The use of artificial intelligence and Sentinels-1/2 (S1/S2)
data is a well developed and a common approach to map
slums. Despite its low spatial resolution, the main benefit of
S1/S2 data is to be available at no cost which allows a regular
update of this fast-changing environment. A previous research
by Vanhuysse, Georganos, Kuffer, et al. [4] used S1/S2 to
generate a gridded deprivation probability over the city of
Nairobi (Kenya) [4]. Beside S1/S2 images, spectral indices and
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textures were computed with several kernel sizes. The area of
interest had been classified into 8 different classes where two
of which were labelled as deprived areas. Their results showed
that a supervised machine learning (ML) classifier (Random
Forest) achieve 80% overall accuracy when based only on the
S1 and 91% when based on S2 images, depending on the class
of slum. Another study by Ienco, Interdonato, Gaetano, et al.
[5] used Sentinel data in a deep learning (DL) approach to
predict land use of the Réunion Island and Koumbia in Burkina
Faso. They used a double stream model called TWINNS
and inspired by the VGG model. Each branch (stream) of
the model uses as input either the S1 dual-pol (VV, VH) or
radiometric indices and time series from the S2. The training
patches with a 5x5 pixels size have been labelled into 8 and
13 classes respectively for Koumbia and the Réunion Island.
The results of the TWINNS model have been compared with
multiple DL and ML architectures. Their model did not obtain
the best accuracy depending on the area of interest. However,
when the classes are analysed separately, the F-measurements
of the TWINNS model are globally better than the metrics
of the other models. Generally, while supervised approaches
such as ML or DL models work well, they rely on the
existence of labelled training data which is often not available
and/or difficult to collect. In this paper, we investigate a
hybrid unsupervised/supervised workflow to predict a gridded
deprivation probability over the city of Nairobi (Kenya). More
precisely, we try to assess how a unsupervised approach can
be leverage to create (weakly-)labelled data to train supervised
ML and DL approaches.

II. STUDY AREA AND DATA
A. Study area

We focus on Nairobi City, the Kenyan capital, and its
surroundings. The size of the area of interest (AOI) is around
664 km? that corresponds to a surface 6 times bigger than
the city of Paris. This region is situated near the equator
thus the intertropical convergent zone. As a result, our AOI
is affected by a nearly constant cloud cover that limits the
use of images from optical sensors mounted on satellites. The
AOI has been delimited from the administrative boundaries
and the morphological boundaries. The last boundaries mainly
rely on the Global Human Settlement Layer Urban Centre
Database that determines the degree of urbanisation ([4], [6]).



The analysed region is highly heterogeneous in terms of land
use. Consequently, the model will deal with a large variety of
slums and other housing types (high-rise, urban, rural, ...) and
green areas.

B. Data

Our study uses S1 and S2 images as well as Google Open
Buildings dataset in order to determine the probability of
deprivation at 1 ha. The S2 data consists of an atmospherically-
corrected cloud-free temporal composite of the first quarter
of 2019 to bypass the constant cloud cover typical of the
tropical region and resampled at 10 meters. S1 data used
for our experiments are dual-pol (VV+VH) Interferometric
Wide swath mode images. Ten images have been averaged
using SNAP [7] on the same period as the S2 images to
lower the SAR data noise. Before averaging, the S1 have
been pre-processed with thermal noise removal and terrain
correction. We also use an interferometric coherence (VV)
computed from 6 pairs of images with 12-days intervals
between the two images (see Vanhuysse [8] for the details
of the processing). Using coherence in addition to intensity
was considered potentially beneficial, as high phase stability
between different SAR images is expected for man-made
structures such as buildings and paved surfaces. All dual-pol
and coherence bands have been co-registered and resampled to
match with the S2 images. The data over the whole AOI have
been tiled based on a regular grid of 100x100m and normalized
based on the min-max method before being used. The Google
Open Buildings dataset (GOB) is used for generating the
training set using a semi-unsupervised approach.

III. METHODS

Our workflow is presented in Fig. /. The first step consists
in using GOB dataset to create labelled samples using a semi-
unsupervised approach. This labelled dataset is then used to
train both ML and DL supervised approaches.
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Fig. 1. The workflow of this research.

A. Generation of training data

In order to create labelled training data we computed 23
interpretable urban morphometrics from the GOB footprints
(e.g., distance between buildings, spatial arrangements). Next,
we derived features by computing four contextual statistics in
grid cells (100m x 100m) and performed dimensionality reduc-
tion with principal component analysis based on a threshold of
cumulative percentage of variance explained. Those features
are used to group similar grid cells into 10 clusters using a
probabilistic algorithm (namely Gaussian mixture). The num-
ber of clusters was determined empirically to be sure to capture
Deprived Urban Areas (DUAs) and the membership associated
to the cluster that best matched the spatial patterns of DUAs
was used as a proxy for the morphological deprivation proba-
bility and mapped as a first output. We compared this output
to DUAs outlines produced through visual interpretation of
very-high resolution (VHR) WorldView-3 imagery (30 cm).
After a manual cleaning to discard mislabeled or uncertain grid
cells belonging to DUAS clusters, we performed a stratified
sampling to select a balanced labelled training set with more
or less half of them being slums and the other half labelled as
non-slums.

B. ML approach

For the ML approach, we computed 20 spectral indices and
textures for S2, along with S1 VV intensity, VH intensity,
coherence and 18 related textures. At the grid cell level, seven
statistics were computed for all indices and textures, giving a
total of 140 S2-features and 147 S1-features. We used, on the
one hand, only S2 features and, on the other hand, both S1
and S2 features in Random Forest (RF) models.

C. DL approach

For the DL approach, we conducted several experiments
based on different S1/S2 bands combination as reported in 7ab.
1. For S2, we first use a simple combination of visible and near-
infrared bands (RGBNIR). We also design two experiments
with SWIR bands (BNIR and RNIR) because previous studies
determined that the red and the short-wave infrared bands
(SWIR) have the biggest impact on the slum prediction ([4],
[9D.

For S1, the ’TALLS1’ combination include dual-pol images
(VV and VH) and the coherence create by [4]. To determine
whether the coherence band is important, the *VVVHSI’
combination has been built only with the dual-pol S1 bands.

We design the YMCA model (Y-Model for Classification
by ANAGEO) (fig. 2) to predict deprivation probability. This
is a Y-shape functional model mainly inspired by Atienza [10]
(pp- 47-53) and modified to fit with our patch size, improving
the validation accuracy and reducing overfitting.

The model has two separate inputs (10x10x4 for S2 ;
10x10x3 for S1) which are concatenated to apply the same
data augmentation (random flip horizontally and vertically and
random rotation with max angle of £72°). Then, the S1/52
augmented layers are separated into two parallel branches and
processed independently. The images follow two sequences



TABLE I
Combination of the Sentinel-1/2 level-1 images for the different experiments.

Sentinel-2 Sentinel-1
Bands BNIR RNIR RGBNIR ALLS1 VVVH
1 B02 (Blue) B04 (Red) B04 (Red) Coherence  VV
2 BO0O8 (NIR) BO0O8 (NIR) BO3 (Green) | VV VH
3 B8A (NIR) B8A (NIR) B02 (Blue) VH
4 B12 (SWIR) BI12 (SWIR) BO08 (NIR)

YMCA : Y-Model for Classification by ANAGEO
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Fig. 2. Representation of the YMCA model.

of 3 layers: a 2-dimensional convolution layer with a kernel
of 2x2, a batch normalisation layer and a dropout layer.
Finally, each branch ends with a maxpooling layer. Then, both
branches are concatenated and flattened into a one-dimensional
vector followed by three dense+dropout layers. The output
layer has only one neuron with a sigmoid activation function
that attributes a score of being a DUA. In other words, the
model outputs value between 0 and 1 and patches with values
above 0.5 are considered as DUAs. For each k-fold (see after),
the weights of the best epoch are saved and used to predict
the entire scenery.

D. Performance evaluation

For training and validation purposes, we use 6922 tiles de-
rived from an unsupervised clustering performed on the same
statistics as those used in Vanhuysse [8] and by photointerpret-
ing the clusters belongingto the deprived areas. Performance
was evaluated through both 5-fold cross-validation (80/20) and
we compare the predictions of the models to the manually
delineated DUA outlines created by a local expert.

IV. RESULTS

The ML approach achieves an overall accuracy of 93.7%
when using only S2 features, and reaches 95.6% when used
together with S1 features. Similarly, the DL results show that
the combined use of BNIR and ALLS1 bands achieve the best
accuracy (+ 89%) compared to the other experiments. The
impact of discarding S1 in the DL experiments was variable

depending on the S2 bands used, with losses between 1%
and 5%. When BNIR is replaced by RNIR for the S2 data,
the k-fold standard deviation is increasing significantly and
the performance is lower. Interestingly, the RGBNIR dataset
combined with ALLS1 achieves similar performance to the
best-performing combination BNIR+ALLS1, with less than 1
percentage point of difference. When looking on the perfor-
mance of the DUA class only, F1-score achieve acceptable for
the ML approach but significantly weaker for the DL one.

The performance metrics computed on the independent test
set confirm the results of the kfold cross-validation, with the
ML approach outperforming the DL one, reaching respectively
95.34% and 93.05% overall accuracy. While the difference in
terms of overall accuracy is limited, the visual inspection of
cartographic results, as visible on Fig. 3, shows clear differ-
ences. The DL approach under-predicts for slums, especially
in the north of the city and over-predicts a lot in the Western
and southern part of the city. The better performance of the
ML approach could be explained by the use of texture rasters
with kernel sizes bigger than the patch size used in DL. Indeed,
some textures uses a kernel of 11x11 pixels and could extract
patterns in a larger depth of field, better suited to discriminate
DUAs and non-DUAs.

V. CONCLUSION

Our research demonstrates that semi-unsupervised approach
combining local-expertise and visual interpretation could be
used to generate labelled samples for predicting deprivation
probability on 100x100m gridded products. Also, we show
the added-value of combining S1 in addition to S2 data, either
using ML or DL approach.
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