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Abstract

This paper presents a parallel version of the Interval

Categorizer Tessellation-based Model (ICTM) for the si-

multaneous categorization of geographic regions consider-

ing several characteristics (e.g., relief, vegetation, land use

etc.) in clusters, called HPC-ICTM . Interval techniques

are used for the modeling of uncertain data and the con-

trol of discretization errors. We analyze the performance

of the HPC-ICTM and present results concerning its ap-

plication to the relief/land-use categorization of the region

surrounding the lagoon Lagoa Pequena (RS, Brazil), which

is extremely important from an ecological point of view.

1. Introduction

The ICTM (Interval Categorizer Tessellation Model) is a

multi-layered and multi-dimensional tessellation model for

the simultaneous categorization of geographic regions con-

sidering several different characteristics (relief, vegetation,

climate, land use etc.) of such regions, which uses interval

techniques [6, 9] for the modeling of uncertain data and the

control of discretization errors.

To perform a simultaneous categorization, the ICTM

proceeds (in parallel) to individual categorizations consid-

ering one characteristic per layer, thus generating different

subdivisions of the analyzed region. An appropriate pro-

jection procedure of the categorizations performed in each

layer into a basis layer provides the final categorization that

allows the combined analysis of all characteristics that are

taken into consideration by the specialists in the considered

application, allowing interesting analyzes about their mu-

tual dependency.

An implementation of the ICTM for the relief catego-

rization of geographic regions, called TOPO-ICTM (In-

terval Categorizer Tessellation Model for Reliable Topo-

graphic Segmentation), performs a bi-dimensional analysis

of the declivity of the relief function in just one layer of

the model [7]. The input data are extracted from satellite

images, where the heights are given in certain points refer-

enced by their latitude and longitude coordinates. The ge-

ographic region is represented by a regular tessellation that

is determined by subdividing the total area into sufficiently

small rectangular subareas, each one represented by one cell

of the tessellation. This subdivision is done according to a

cell size established by the geophysics or ecology analyst

and it is directly associated to the refinement degree of the

tessellation. Applications in Geophysics and Ecology were

found, where an adequate subdivision of geographic areas

into segments presenting similar topographic characteristics

is often convenient (see, e.g: [2, 3]).

The aim of this paper is describe a particular implemen-

tation of the model for clusters, called HPC-ICTM, ex-

tending preliminary results presented in Aguiar et al [8].

We discuss the performance of the HPC-ICTM and present

some results concerning the application of a 2-layered bi-

dimensional model to the relief/land use categorization of

the region surrounding the lagoon Lagoa Pequena (Rio

Grande do Sul, Brazil), which is extremely important from

an ecological point of view.

The paper is organized as follows. Section 2 presents

the ICTM model and the categorization process. The paral-

lel implementation of the model is described in Section 3.

Some results on categorizations and the performance of the

HPC-ICTM is discussed in Section 4. Section 5 is the con-

clusion.
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2. The ICTM Model

This section shows the multi-layered interval categorizer

tessellation-based model, formalized in terms of matrix op-

erations. The single-layered ICTM was firstly presented

in [7]1. Here, we present the generalization of the number

of the layers and the corresponding projection procedures.
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Figure 1. The ICTM multi-layered.

This type of projection allows interesting analysis of the

mutual dependency of the analyzed characteristics. Each

characteristic of the space is represented in a layer of the

ICTM model. Thus, by the independency of the analysis,

the subdivisions in each layer also occurs in a independently

way. In the Figure 1, each bidimensional layer is repre-

sented by a label. All the steps of the categorization process

is schematically presented at the Figure 2.

A tessellation is a matrix M with nr rows and nc

columns. The entry at the x-th row and the y-th column

is called the xy-cell of M 2.

Considering a nc×nr tessellation M and l ∈ N, a multi-

layered tessellation L-M is the structure

L-M = (1-M, . . . , l-M)

where the entry at the l-th layer, x-th row and y-th column

is denoted by l-mxy.

2.1. The interval matrices

In topographic analysis, usually there are too many data,

most of which is geophysically irrelevant. We then take,

for each subdivision, the average value of the heights at the

1The proofs are omitted since they are similar to those presented in [7].
2For the application considered in this paper, the entries of the tessella-

tion matrices are all non-negative. However, negative values may also be

considered (e.g., when the data coming from the relief are determined with

respect to the sea level).

points supplied by the satellite photos, which are the entries

of the tessellation M , denoted by l-mabs
xy .

We are interested in comparing the values corresponding

to different cells, so we are not interested in absolute values,

only in relative ones. To simplify the data of the matrix,

we normalize them by dividing each l-mabs
xy by the largest

l-mmax of these values.

l-M rel =
l-Mabs

l-mmax

.

The heights are measured pretty accurately, so the only

errors in the values l-mxy come from the discretization of

the area in terms of the discrete set of tessellation cells. In

other words, it is desirable to know the values of the relief

function for all points in the space, but only the values de-

termined by division of the region in nrnc cells, are used in

the effective calculations.

In the following, we apply Interval Mathematics tech-

niques to control the errors associated to the cell values. To

see examples of the advantages of using intervals in solving

similar problems see, e.g., [2, 6].
The approximation error εx (at the coordinate x) is de-

noted by

εx ≤ ∆x = 0.5·min

“

|l-mrel
xy − l-mrel

(x−1)y |, |l-m
rel
(x+1)y − l-mrel

xy |
”

.

Analogously, the approximation error εy is denoted by

εy ≤ ∆y = 0.5·min

“

|l-mrel
xy − l-mrel

x(y−1)|, |l-m
rel
x(y+1) − l-mrel

xy |
”

.

If l-mx±

xy = l-mrel
xy ± ∆i and l-my±

xy = l-mrel
xy ± ∆j , the

interval matrices l-Mx[ ]

and l-My[ ]

, associated with the

relative matrix l-M rel, are defined by the nr × nc interval

matrices

l-Mx[ ]

=
[

l-mx[ ]

xy

]

=
[[

l-mx−

xy , l-mx+

xy

]]

and

l-My[ ]

=
[

l-my[ ]

xy

]

=
[[

l-my−

xy , l-my+

xy

]]

.

2.2. The declivity registers and the state
matrix

We proceed to a declivity categorization inspired by [2].

To narrow the solution space to a minimum, we take a qual-

itative approach to the relief approximation functions, clus-

tering them in equivalence classes according to the sign of

their declivity (positive, negative, null), thus making the

tessellation-based model build a single qualitative solution

to that constraint satisfaction problem, namely, the class of

approximation functions compatible with the constraints of

the interval matrix. We proceed as follows:

Let l-Mx[ ]

and l-My[ ]

be interval matrices of layer l.

For a given xy, if:
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Figure 2. The categorization process performed by ICTM.

(i) l-mx+

xy ≥ l-mx−

(x+1)y, then there exists a non-increasing

relief approximation function between xy and (x+1)y
(direction west-east).

(ii) l-mx−

(x−1)y ≤ l-mx+

xy , then there exist a non-decreasing

relief approximation function between (x−1)y and xy

(direction west-east).

(iii) l-my+

xy ≥ l-m
y−

x(y+1), then there exists a non-increasing

relief approximation function between xy and x(y+1)
(direction north-south).

(iv) l-m
y−

x(y−1) ≤ my+

xy , then there exists a non-decreasing

relief approximation function between x(y−1) and xy

(direction north-south).

For each cell, four directed declivity registers3 – reg.e

(east), reg.w (west), reg.s (south) and reg.n (north) – are

defined, indicating the admissible declivity sign of the func-

tion that approximates the relief function in any of these

directions, taking into account the values of the neighbor

cells.

A declivity register of an xy-cell is a tuple

reg = (reg.e, reg.w, reg.s, reg.n),

where the values of the directed declivity registers are given

by:

(a) For non border cells, reg.e = 0, if (i) holds; reg.w =
0, if (ii) holds; reg.s = 0, if (iii) holds; reg.n = 0, if

(iv) holds; reg.e, reg.w, reg.s, reg.n = 1, otherwise.

(b) For east, west, south and north border cells: reg.e = 0,

reg.w = 0, reg.s = 0 and reg.n = 0, respectively4.

The other directed declivity registers of border cells are

also determined according to item (a).

3This paper uses the dot notation of the object-oriented programming

languages to represent the components of a data structure ( e.g., reg.e

denotes the component e of the data structure reg).
4This is consistent with the relief function being a constant in the border

cells.

The declivity register matrix of the layer l is defined as

an nr × nc matrix l-M reg =
[

l-mreg
xy

]

, where the entry at

the x-th row and the y-th column is the value of the declivity

register of the corresponding cell.

Let wreg.e = 1, wreg.s = 2, wreg.w = 4 and wreg.n = 8
be weights to be associated to the directed declivity regis-

ters. The state matrix is defined as an nr × nc matrix given

by l-M state =
[

l-mstate
xy

]

, where the entry at the x-th row

and the y-th column is the value of the corresponding cell

state, calculated as the value of the binary encoding of the

corresponding directed declivity registers, given as

l-mstate
xy = wreg.e × l-mreg.e

xy + wreg.s × l-mreg.s
xy

+wreg.w × l-mreg.w
xy + wreg.n × l-mreg.n

xy .

Thus, for given xy, the correspondent cell can assume

one and only one state represented by the value l-mstate
xy =

0..15, previously defined.

2.3. The limit matrix and the constant-
declivity sub-regions

A limit cell is defined as the one where the relief function

changes its declivity, presenting critical points (maximum,

minimum or inflection points). To identify such limit cells,

we use a limit register associated to each cell. The border

cells are assumed to be limit cells.

The limit matrix of the layer l is defined as the nr × nc

matrix given by l-M limit =
[

l-mlimit
xy

]

, where the en-

try at the x-th row and the y-th column is determined as

l-mlimit
xy = 0, if the relief function no changes its declivity,

and l-mlimit
xy = 1, otherwise.

Analyzing the limit matrix it is easy to detect the exis-

tence of known relief configurations. The presence of limit

cells allows the subdivision of the whole area into declivity

categories.

The constant declivity sub-region associated to the non

limiting cell xy, denoted l-SRxy, is inductively defined as

follows: (i) xy ∈ l-SRxy; (ii) If x′y′ ∈ l-SRxy, then all

its neighbor cells that are not limiting cells also belong to

l-SRxy.
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Observe that l-SRxy = l-SRx′y′ if and only if x′y′ ∈
l-SRxy (resp., xy ∈ l-SRx′y′

). The above definition leads

to a recursive algorithm similar to the ones commonly used

to fill polygons in computer graphics.

3. Parallel Implementation

This section describes the parallel implementation of the

ICTM for clusters, called High Performance Computing In-

terval Categorizer Tessellation-based Model (HPC-ICTM).

The first step to implement a parallel version of ICTM
is to identify how the model can be broken in independent

tasks. We explored four possibilities for problem decom-

position: Layers - each parallel process calculates a deter-

mined layer of the model; Functions - each parallel process

calculates a independent function of the model; Domains -

each parallel process calculates part of the region that will

be analyzed; Cells - each parallel process calculates indi-

vidual cells of the model.

Since in clusters architectures the interconnection net-

work can be considered bottleneck (the cost of local com-

putation is much cheaper then communication with neigh-

bors nodes) we are interested in a problem decomposition

that results in big chunks of work with low communication

overhead (coarse grain [13]).

Considering this granularity issue, decomposition in lay-

ers is the more simple and direct way to implement a paral-

lel version of the ICTM. Being each process responsible for

a determined layer of the model, these processes perform

the ICTM calculations for each property in parallel.

The next step is to define how the processes will be co-

ordinated to solve the problem. We implemented, using

the MPI (Message Passing Interface) [12] library, a master-

slave scheme [13] (Figure 3). The master process is respon-

sible for loading the input files and parameters (the data and

the radius), divide total work in nl tasks (nl is the number

of layers that will be processed), send the radius value and

the tasks for all slave processes to start the categorization

process, and keep control of the tasks. The slave processes

receive the information sent by the master process, execute

their tasks and generate their own outputs. The directory

with input and output files is in the same file system, being

accessible by all the cluster nodes. After that they ask the

master for more work. Until there is work to do the master

keep sending tasks to the slaves.

Decomposition in layers follows the rule np = nl + 1,

where np indicates the number of processes and nl indicates

the number of layers or properties that need to be processed,

considering each slave process running in a different node.

Thus, each layer is analyzed by a different slave process and

the remnant process is the master process.

Communication occurs between master and slaves (not

among slaves) and only (i) when the master process sends
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ICTM 
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output file
layer 1
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Figure 3. Master-slave scheme to solve the

problem of decomposition in layers.

the radius value and a layer for a slave to compute, and (ii)

when a slave notifies the master that finished the computa-

tion of a layer.

Each slave allocates only the amount of memory needed

to calculate one layer/property of the model. However, if the

main memory size of a cluster node is insufficient to execute

one layer of the model, the application will access the hard

disk (swap) or, in the worst case, it will abort. In these cases,

the problem decomposition in layers is not recommended.

4. Performance Analysis

This section presents the relief and land use categoriza-

tions obtained for the region surrounded the lagoon Lagoa

Pequena (Rio Grande do Sul, Brazil). These analyzes are

to be used for the environment characterization of that re-

gion, aiming to give subsidies for its integrated preserva-

tion/management. Figure 4 shows the location of the lagoon

and a land use categorization of the region surrounded it,

which shall be combined with relief categorizations.

Figure 4. LANDSAT image – Land use Map of

the region surrounded the Lagoa Pequena.

For the performance analysis, we consider three differ-
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ent portions of the region surrounding the Lagoa Pequena,

each with a type of tessellation matrix: Portion A with 241

rows and 241 columns; Portion B with 577 rows and 817

columns; and Portion C with 1309 rows and 1765 columns.

The results were obtained in two clusters of the CPAD5,

each one with the following configuration:

32 bits cluster: composed of 8 machines with two Pentium

III 32 bits 1Ghz processors and 256MB of main mem-

ory (HP e800 Server), interconnected by a Myrinet

network.

64 bits cluster: composed of 5 machines with two Itanium

2 64 bits 1.5Ghz processors and 2GB of main memory

(HP Integrity rx2600 IA64), interconnected by a Fast-

Ethernet network.

Both clusters have the following software configuration:

MPICH implementation of the MPI Library; GNU Linux

Operating System installed in each node (Debian distribu-

tion); GNU compiler collection (gcc 3.3.5). Further, we uti-

lized also the Intel compiler (icc 8.0) in the 64 bits cluster

nodes.

Table 1 presents the results of a sequential implemen-

tation of the model processed in a e800 and IA64 ma-

chine, the results of parallel implementation processed in

the above clusters considering the rule np = nl + 1, and

also the obtained speedups in each case. All measurements

use the same radius value (radius = 1).

Notice that, increasing the input data set and/or the num-

ber of layers, the sequential execution time and the amount

of memory necessary to execute the model also increases

because the layers are processed sequentially in a only ma-

chine, being their outputs generated in the same text file on

the current directory. For the test case of the portion C in the

e800 machines with 3 layers, the amount of free memory

in one node was not sufficient and the application needed

to make accesses to the hard disk to calculate the model

(swap). This of course increased the execution time con-

siderably. With 5 and 7 layers, the memory needed by the

application was much greater then the amount of free main

memory in one node, and the operational system aborted

the application. An advantage of the parallel implementa-

tion of the ICTM running in a cluster is that in some cases it

can solve bigger problems since the calculation is not lim-

ited by the main memory size of the sequential machine.

Furthermore, even when the number of layers increased

(3, 5 and 7), there is no significant difference in the parallel

execution time. This behavior proves the effectiveness of

this parallel version of the ICTM.

Figure 5 shows the ICTM behavior for the portion B of

the region surrounding the Lagoa Pequena, considering 7

5Research Center of High Performance Computing of PUCRS/HP,

Brazil, RS – http://www.cpad.pucrs.br.

layers, e800 and IA64 machines, and different np values.

We utilized the IA64 sequential results as the reference

value to measure the speedups. This decision had a great

impact on the speedups of the 32 bits cluster, being a gain

of performance only observed with more then 4 processors.

Not only the better performance of the 64 bits processors

and the bigger main memory contributed to this gap but also

the better optimization of Intel compiler used in the Itanium

machines (icc).
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Figure 5. Parallel behavior of the ICTM for

portion B(577×817) with 7 layers.

The parallel implementation may be considered when

the ICTM presents more than one layer. However, it be-

comes really necessary in the case that it has a great amount

of layers or when the input data set of the layers is very

big (analysis of big regions), since, in this case, a sequential

implementation is practically not feasible.

5. Conclusions and Future Work

In the categorizations produced by the ICTM, the state

of a cell in relation to its neighbors, concerning the decliv-

ity, is shown directly by arrows (see Figure 6), which has

been considered a very intuitive representation, by the ecol-

ogists, since most geographic information systems present

this kind of result by the usual color encoding of declivity,

with no indication of direction.

The ICTM is regulated by two aspects, namely, the spa-

tial resolution of the image (used data) and the neighbor-

hood radius of the cell. Thus, regions with an agglomer-

ation of limiting cells can be studied with more details by

just increasing the resolution of altimetry data, or reducing

the neighborhood radius. In plain areas (see Figure 6 (re-

gion A)), a large neighborhood radius indicated reasonable

approximations for the declivity degree. However, regions

with too much declivity variation (see Figure 6 (region B))

obtained good approximations only with small radius. The

number of categories obtained is always inversely propor-

tional to the neighborhood radius and to the area of a tessel-

lation cell.
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32 bits machines (e800) 64 bits machines (IA64)

Portion nl Sequential Parallel Speedup Sequential Parallel Speedup

Results Results Results Results Results Results

3 1.909s 2.085s 0.92 1.119s 1.711s 0.65

A(241×241) 5 3.069s 2.285s 1.34 1.827s 2.378s 0.77

7 4.287s 2.840s 1.51 2.516s 2.630s 0.96

3 15.885s 7.119s 2.23 7.188s 4.013s 1.79

B(577×817) 5 26.777s 7.437s 3.60 11.979s 4.557s 2.63

7 37.045s 8.055s 5.00 16.818s 5.568s 3.02

3 4714.042s 28.621s 164.71 33.652s 13.564s 2.48

C(1309×1765) 5 aborted 30.627s no value 56.226s 14.014s 4.01

7 aborted 31.005s no value 79.568s 14.433s 5.51

Table 1. Results of sequential and parallel implementation in a 32 bits and 64 bits cluster (np = nl +1
for the parallel versions).

Figure 6. Relief categorization of a portion of

LANDSAT image.

The analysis of some related works concerning im-

age segmentation [1, 4, 5, 10] turns out that those meth-

ods are, in general, heuristic, and, therefore, the ICTM

model presented here is more reliable (for other works, see,

e.g.: [2, 11]).

The HPC-ICTM significantly reduced the execution

time for our test cases, minimizing the amount of memory

necessary to perform the model and allowing the analysis

of bigger geographic regions.

This parallel implementation of the ICTM is being re-

fined and the other presented alternatives for problem de-

composition are being investigated. Furthermore, a parallel

version of the ICTM for computational grids is being devel-

oped, that will allow higher speedups and the utilization of

distributed geographic information.
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