

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Natural deduction calculus for computation tree logic.

Alexander Bolotov1
Oleg Grigoriev2
Vasilyi Shangin2

1 Harrow School of Computer Science, University of Westminster
2 Department of Logic, Faculty of Philosophy, Moscow State University

Copyright © [2006] IEEE. Reprinted from the proceedings of the IEEE John
Vincent Atanasoff 2006 International Symposium on Modern Computing
(JVA'06), pp. 175-183.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org. By choosing to view this document, you agree to
all provisions of the copyright laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

Natural Deduction Calculus for Computation Tree Logic

Alexander Bolotov
Harrow School of Computer Science, University of Westminster

Watford Road, Harrow HA1 3TP, UK.
A.Bolotov@wmin.ac.uk

Oleg Grigoriev, Vasilyi Shangin
Department of Logic, Faculty of Philosophy

Moscow State University, Moscow, 119899, Russia.
{shangin,grig}@philos.msu.ru

Abstract

We present a natural deduction calculus for the Compu-
tation Tree Logic, CTL, defined with the full set of classi-
cal and temporal logic operators. The system extends the
natural deduction construction of the linear-time temporal
logic. This opens the prospect to apply our technique as an
automatic reasoning tool in a deliberative decision making
framework across various applications in AI and Computer
Science, where the branching-time setting is required.

1 Introduction

This work on natural deduction proof system for
branching-time logic has been carried out as part of our in-
vestigation of various topics of use of formal specification
and deductive reasoning techniques related to the following
problem structure. Our interest lies in the area of complex
information systems that we have proposed to model in a
generic multi-layer architecture [1]. Among these layers we
distinguish the functionality layer (‘FL’ for short), the man-
agement layer (‘ML’) and the reasoning layer (‘RL’). These
layers represent respectively the functionality of the system,
the configuration and re-configuration management, and, fi-
nally, the automated reasoning engine. Within each of the
layers we embed a relevant model.

Within the FL the model represents the main function-
ality of the system, which consists of functional compo-
nents that carry out the required processing tasks. The man-
agement layer manages the configuration of these ’com-
ponents’ by providing the means to monitor and reconfig-
ure the functional components. Finally, the reasoning layer
communicates with the management layer in order to de-
termine which reconfigurations are plausible and propose

reconfigurations to the management layer. Our main focus
has been on the reasoning layer. Due to the dynamic and
non-deterministic nature of the underlying complex sys-
tems, we believe that the appropriate formal framework is
given in the so called branching-time setting. In [1] we have
shown how the specification language of the normal form
for branching-time logic [3] can be used in this framework
to enable a resolution based deductive verification.

The other set of problems relevant to the temporal rea-
soning within our problem structure is to equip the rea-
soning layer with the relevant goal-directed deductive tech-
nique to enable its problem-solving. Looking for the corre-
sponding deductive reasoning techniques, we have become
interested in natural deduction constructions for temporal
logic. The definition of natural deduction proof technique
for non-classical logic in general, and for temporal logic, in
particular, is also an important and challenging theoretical
task.

The particular approach to build an ND-calculus we are
interested in is described in detail in [4]. It is a modification
of Quine’s representation of subordinate proof [11] devel-
oped for classical propositional and first-order logic. The
ND technique initially defined for classical propositional
logic was extended to first-order logic [4, 5]. It has also
been extended to the non-classical framework of proposi-
tional intuitionistic logic [10].

In [2] we have developed an ND system for propositional
linear-time temporal logic. In this paper we extend this ap-
proach to capture the Computation Tree Logic (CTL) [6] as
the most commonly used logic for the desired branching-
time setting.

The paper is organized as follows. In §2 we review the
syntax and semantics of CTL. In §3 we describe and give
examples of the Natural Deduction System for CTL hence-
forth referred to as CTLND and then in §4 present the cor-

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

rectness argument. Finally, in §5, we provide concluding
remarks and identify future work.

2 Syntax and Semantics of CTL

2.1 CTL Syntax

We define the language of the computation tree logic
(CTL) using the following symbols.

• a set, Prop, of atomic propositions:
p, q, r, . . . , p1, q1, r1, . . . , pn, qn, rn, . . . ;

• classical operators: ¬,∧,⇒,∨;

• temporal operators:
– ‘always in the future’;

♦ – ‘at sometime in the future’;
g – ‘at the next moment in time’;
U – ‘until’.

• path quantifiers:
A – ‘for any future path;
E – ‘for some future path.

In the syntax of CTL we distinguish state (S) and path
(P) formulae, such that well formed formulae are state
formulae. These classes of formulae are inductively de-
fined below (where C is a formula of classical propositional
logic)

S ::= C|S ∧ S|S ∨ S|S ⇒ S|¬S|AP |EP
P ::= S|♦S| gS|S U S

Recall that the distinguished feature of CTL formulae is
that any temporal operator must be immediately preceded
by a path quantifier. Thus, examples of CTL formulae are
A gE(pU q), A(E(pU q)U (A gq)).

Note that U and gform a functionally complete set of
temporal operators in the propositional linear-time temporal
logic and thus the other standard temporal operators,
and ♦ are expressible via this set [9]. However, we here
consider the formulation of CTL with the full set of classical
and temporal operators taking into account the use of the
logic in the specification of complex dynamic distributed
systems.

A temporal operator paired with a path quantifier is
called the basic modality of CTL. We will essentially use
the concept of basic modality in our construction of the nat-
ural deduction system for CTL, namely, our rules will be
applied to some basic modality PT where P is either of the
path quantifiers and T is either of the temporal operators.

2.2 CTL Semantics

We first introduce the notation of tree structures, the un-
derlying structures of time assumed for branching-time log-
ics, which we utilise in our presentation.

Definition 1 A tree is a pair (S, R), where S is a set of
states and R ⊆ S×S is a relation between states of S such
that

• s0 ∈ S is a unique root node, i.e. there is no state
si ∈ S such that R(si, s0);

• for every si ∈ S there exists sj ∈ S such that
R(si, sj);

• for every si, sj , sk ∈ S, if R(si, sk) and R(sj , sk)
then si = sj .

A path, χsi
is a sequence of states si, si+1, si+2 . . . such

that for all j ≥ i, (sj , sj+1) ∈ R. Let χ be a family of all
paths of M. A path χs0 ∈ χ is called a fullpath. Let X
be a family of all fullpaths of M. Given a path χsi

and
a state sj ∈ χsi , (i < j) we term a finite subsequence
[si, sj] = si, si+1, . . . , sj of χsi a prefix of a path χsi and
an infinite sub-sequence sj , sj+1, sj+2 . . . of χsi a suffix of
a path χsi

abbreviated Suf(χsi
, sj).

Definition 2 (Branching degree of a state) The num-
ber of immediate successors of a state si ∈ S in a tree
(S,R) is called the branching degree of si.

In a general case a state of a tree can have an infinite
number of successors. However, following [8] (page 1011),
trees with arbitrary, even uncountable, branching, “as far as
our branching temporal logic are concerned, are indistin-
guishable from trees with finite, even bounded, branching”.
Thus, without loss of generality, we assume that underlying
CTL tree models are of at most countable branching.

Definition 3 (Total countable ω-tree) A countable ω-tree,
τω , is a tree (S, R) with the family of all fullpaths, X , which
satisfies the following conditions:

• each fullpath is isomorphic to natural numbers;

• every state sm ∈ S has a countable number of succes-
sors;

• X is R-generable [8], i.e. for every state sm ∈ S,
there exists χn ∈ X such that sm ∈ χn, and for
every sequence χn = s0, s1, s2 . . . the following is
true: χn ∈ X if, and only if, for every m (1 ≤ m),
R(sm, sm+1).

Since in ω trees fullpaths are isomorphic to natural num-
bers, in the rest of the paper we will abbreviate the relation
R as ≤.

We interpret a well-formed CTL formula in a structure
M = 〈S,≤, s0, X, L〉, where (S,≤) is a countable ω-tree
with a root s0, X is a set of all fullpaths and L is an inter-
pretation function mapping atomic propositional symbols to
truth values at each state.

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

Recall that since the underlying CTL structures are R-
generable, they are suffix, fusion and limit closed [8].

Now in Figure 1 we define a relation ‘|=’, which evaluates
well-formed CTL formulae at a state sm in a model M (in
the rest of the paper we will use “iff” to abbreviate the ex-
pression “if, and only, of”).

〈M, sm〉 |= p iff p ∈ L(sm), for p ∈ Prop.
〈M, sm〉 |= ¬A iff 〈M, sm〉 6|= A
〈M, sm〉 |= A ∧B iff 〈M, sm〉 |= A and

〈M, sm〉 |= B
〈M, sm〉 |= A ∨B iff 〈M, sm〉 |= A or 〈M, sm〉 |= B
〈M, sm〉 |= A ⇒ B iff 〈M, sm〉 6|= A or 〈M, sm〉 |= B
〈M, sm〉 |= AB iff for each χsm

, 〈M, χsm
〉 |= B

〈M, sm〉 |= EB iff there exists χsm
such that

〈M, χsm
〉 |= B

〈M, χsm〉|= A iff 〈M, sm〉 |= A, for state
formula A

〈M, χsm〉|= B iff for each sn ∈ χsm , if m ≤ n
then 〈M, Suf(χsm , sn)〉 |= B

〈M, χsm
〉|=♦B iff there exists sn ∈ χsm

such that
m ≤ n and
〈M, Suf(χsm , sn)〉 |= B

〈M, χsm〉|= gB iff 〈M, Suf(χsm , sm+1)〉 |= B
〈M, χsm〉|= AU B iff there exists sn ∈ χsm such that

m ≤ n and
〈M, Suf(χsm

, sn)〉 |= B and for
each sk ∈ χsm

, if m ≤ k < n
then 〈M, Suf(χsm , sk)〉 |= A

Figure 1. CTL semantics

Definition 4 [Satisfiability] A well-formed CTL formula,
B, is satisfiable if, and only if, there exists a modelM such
that 〈M, s0〉 |= B.

Definition 5 [Validity] A well-formed CTL formula, B, is
valid if, and only if, it is satisfied in every possible model.

3 Natural Deduction System CTLND

3.1 Extended CTL Syntax and Semantics

To define the rules of the natural system we extend the
syntax of CTL by introducing labelled formulae.

Firstly, we define the set of labels,

Lab = LabS ∪ LabP

where
LabS = {x, y, z, . . . }

is a set of variables interpreted over states of a tree and

LabP = {α, β, γ, . . . }

is a set of variables over paths, elements of a tree.
We will distinguish universal and rigid variables. This

second type of variables is linked with the restrictions on
the application of some of the rules which will be explained
later. In the rest of the paper we will refer to the sets
of labels that represent universal and rigid variables as to
Labuniv

S , Labuniv
P and Labrigid

S , Labrigid
P , respectively.

We then define two binary relations ‘¹’ and ‘Next’, and
the operation ′ using the following notation. By (i ¹ j)ϕ or
Next(i, j)ϕ we abbreviate “i ¹ j (or Next(i, j)) holds in
an (arbitrary or some) branch ϕ (depending on whether ϕ is
universal or rigid), which starts at a point i and includes j”,
i.e. we agree that the starting point of path ϕ is the state that
corresponds to the first state variable, i, in the relation ¹ or
Next.

Definition 6 (Relations ≺,',¹ and Next, operation ′)
Given a countable total ω-tree, (S,≤), with the set of
paths, χ, let gS be a function from LabS to S, and gP be a
function from LabP to χ. Then for any i, j ∈ LabS and
ϕ ∈ LabP :

(6.1) gS(i) is the least element in gP (ϕ) iff if gS(j) ∈
gP (ϕ) and gS(j) < gS(i) then gS(i) = gS(j),

(6.2) (i ≺ j)ϕ iff if gS(i) and gS(j) are in gP (ϕ) then
gS(i) < gS(j) and gS(i) is the least element in gP (ϕ),

(6.3) (i ' j)ϕ iff if gS(i) and gS(j) are in gP (ϕ) then
g(i) = g(j),

(6.4) (i ¹ j)ϕ iff if i ≺ j or i ' j,

(6.5) (i ¹ j)ϕ iff if gS(i) and gS(j) are in gP (ϕ) then
gS(i) < gS(j) and gS(i) is least in gP (ϕ) or gS(i) =
gS(j) and gS(i) is the least element in gP (ϕ),

(6.6) Next(i, j)ϕ iff if gS(i) and gS(j) are in gP (ϕ)
then g(j) = g(i) + 1 and gS(i) is the least element in
gP (ϕ),

i.e. ‘Next’ is the ‘predecessor-successor’ relation such
that for any i ∈ LabS , there exists j ∈ LabS such that
Next(i, j)ϕ (seriality),

(6.7) Given a label i, the operation ′ applied to i gives us the
label i′ such that Next(i, i′)ϕ.

We also introduce the notation (i ¹ j)sfαk
to abbreviate

that i ¹ j holds in Suf(αk, i) for an arbitrary (or some)
branch αk.

The following properties follow straightforwardly from
Definition 6.

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

For any i, j, k ∈ LabS and ϕ,ψ ∈ LabP

• if (i ≺ j)ϕ then (i ¹ j)ϕ,

• if Next(i, j)ϕ then (i ¹ j)ϕ,

• (i ¹ i)ϕ (reflexivity),

• if (i ¹ j)ϕ and (j ¹ k)ψ then (i ¹ k)ψ′ , where

– ψ′ is a new label from Labrigid
P if ϕ ∈ Labrigid

P

or ϕ ∈ Labrigid
P (transitivity);

– otherwise, ψ′ ∈ Labuniv
P ,

• if (i ¹ j)sfϕ and (j ¹ k)sfϕ then (i ¹ k)sfϕ,

• if (i ¹ i′)sfϕ and Next(i′i′′)sfϕ′i then (i ¹ i′′)sfϕ.

Following [12], the expressions representing the proper-
ties of ¹ and Next are called ‘relational judgements’.

Now we are ready to introduce the CTLND syntax.

Definition 7 (CTLND Syntax)

• If A is a CTL formula and i ∈ LabS then i : A is a
CTLND formula.

• Any relational judgement of the type Next(i, i′)ϕ,
Next(i, i′)sfϕk

, (i ¹ j)ϕ, and (i ¹ j)sfϕ, where
i, j ∈ LabS and ϕ ∈ LabP is a CTLND formula.

CTLND Semantics. For the interpretation of CTLND

formulae we adapt the semantical constructions previously
defined for the logic CTL. In the rest of the paper we will
use capital letters A,B, C, D, . . . as metasymbols for CTL
formulae, and calligraphic letters A,B, C,D . . . to abbrevi-
ate formulae of CTLND, i.e. either labelled formulae or
relational judgements. The intuitive meaning of i :A is that
A is satisfied at the world i ∈ LabS . Thus, based on our ob-
servations above, we simply need the following statements.

Let Γ be a non-empty set of CTLND formulae, let
LabΓ

S = {x|x :A ∈ Γ}, LabΓ
P = {ϕ|Bϕ ∈ Γ} (where B ab-

breviates relational judgements), let M = 〈S,R, s0, X, L〉
be a model as defined in §2, and let χ be a set of paths. Note
that obviously since LabΓ

S ⊆ LabS and LabΓ
P ⊆ LabP

functions gS and gP introduced by Definition 6 are also de-
fined for these sets. Let us abbreviate these specific cases
of the mappings from LabΓ

S to S and from LabΓ
P to χ as gΓ

S

and gΓ
P , respectively. Moreover, if Γ contains a relational

judgement Bϕ then, depending on its structure, items (6.1)
- (6.6) of Definition 6 are satisfied.

In the following definition we introduce a notion of re-
alisability of Γ in a model M utilising Definition 6. Since
Γ can contain formulae of the type i :A or relational judge-
ments we will tackle each of these cases, treating possible
variations of world and path labels.

Definition 8 (Realisation of CTLND formulae in a model)
Model M realises a set of CTLND formulae, Γ, if the fol-
lowing conditions hold:

(1) For any i ∈ LabΓ
S , such that i ∈ Labuniv

S and for any
A, if i : A ∈ Γ then 〈M, gΓ

S(i)〉 |= A for any function
gΓ

S .

(2) For any i ∈ LabΓ
S , such that i ∈ Labrigid

S and for any
A, if i :A ∈ Γ then g′ΓS (i) = gΓ

S(i) and 〈M, gΓ
S(i)〉 |=

A for any function gΓ
S and g′ΓS .

(3) For any i, j, k, ϕ, if (i ≺ j)ϕ ∈ Γ, [(i ≺ j)sfϕ,
(i ¹ j)ϕ, (i ¹ j)sfϕ, Next(i, i′)ϕ, Next(i, i′)sfϕ ∈
Γ] then the relation ≺ϕ [≺sfϕ, ¹ϕ, ¹sfϕ, Nextϕ,
Nextsfϕ] is defined

- for all gΓ
S , if gΓ

S is applied to k ∈ Labuniv
S ,

- for all gΓ
S , if gΓ

S is applied to k ∈ Labrigid
S and

gΓ
S(k) = g′ΓS (k), for any gΓ

S and g′ΓS ,

for the tree on which the model M is based.

The set Γ in this case is called realisable.

Definition 9 (CTLND Validity) A well-formed CTLND

formula, A = i : B, is valid (abbreviated as |=ND A)
if, and only if, the set {A} is realisable in every possible
model, for any function f .

3.2 Rules for Boolean Operations

The set of rules is divided into the two classes: elimina-
tion and introduction rules. Rules of the first group allow us
to simplify formulae to which they are applied. These are
rules for the ‘elimination’ of logical constants. Rules of the
second group are aimed at ‘building’ formulae, introducing
new logical constants.

Below we define the sets of elimination and introduction
rules, where ‘el’ and ‘in’ that follow a Boolean operation
abbreviate an elimination or an introduction rule of this op-
eration.

Elimination
Rules :

∧ el1
i :A ∧B

i :A

∧ el2
i :A ∧B

i :B

∨ el
i :A ∨B i :¬A

i :B

⇒ el
i :A ⇒ B i :A

i :B

¬ el
i :¬¬A
i :A

Introduction
Rules :

∧ in
i :A i :B
i :A ∧B

∨ in1
i :A

i :A ∨B

∨ in2
i :B

i :A ∨B

⇒ in
[i :C] i :B
i :C ⇒ B

¬ in
[j :C] i :B i :¬B

j :¬C

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

In the formulation of the rules ‘⇒ in’ and ‘¬ in’ for-
mulae [i : C] and [j : C] respectively must be the most re-
cent non discarded [5] assumptions occurring in the proof.
When we apply one of these rules on step n and discard an
assumption on step m, we also discard all formulae from m
to n−1. We will write [m−(n−1)] to indicate this situation.

3.3 Rules for Temporal Logic

Elimination Rules:

A gel
i :A gA

Next(i, i′)ϕ, i′ : A
i′ : A ∈ M1

E gel
i :E gA

Next(i, i′)ϕ, i′ : A
ϕ ∈ Labrigid

P ,
i′ : A ∈ M1

A el
i :A A

(i, j)ϕ, j :A

E el
i :E p

(i, j)ϕ, j :A
ϕ ∈ Labrigid

p

E♦el
i :E♦A

(i, j)ϕ, j :A
j ∈ Labrigid

s , ϕ ∈ Labrigid
p

j 7→ i, ∀C(j :C 6∈ M1)

A♦el
i :A♦A

(i, j)ϕ, j :A
j ∈ Labrigid

s , j 7→ i
∀C(j :C 6∈ M1)

EU el1
i :E(AU B), i :¬B
i :A, (i, j)ϕ, j :B

ϕ ∈ Labrigid
P , j ∈ Labrigid

S , j 7→ i, ∀C(j :C 6∈ M1)

AU el1
i :A(AU B), i :¬B
i :A, (i ¹ j)ϕ, j :B

j ∈ Labrigid
s , j 7→ i

∀C(j :C 6∈ M1)

PU el2
(i[AB] ¹ j[AB])ϕ, (i[AB] ¹ k)ϕ, (k ≺ j[AB])ϕ

k : A

Introduction Rules:

E gin
i′ :A, Next(i, i′)ϕ

i :E gA

A gin
i′ :A, Next(i, i′)ϕ

i :A gA
ϕ 6∈ Labrigid

P

i′ 6∈ Labrigid
S

A in
j :A, [(i ¹ j)ϕ]∗

i : A A

ϕ 6∈ Labrigid
p

j 6∈ Labrigid
s

j :A 6∈ M1

E in
j :A, [(i ¹ j)ϕ]∗

i : E A
j 6∈ Labrigid

s

j :A 6∈ M1

A♦in
j :A, (i ¹ j)ϕ

i : A♦A
ϕ 6∈ Labrigid

p

E♦in
j :A, (i ¹ j)ϕ

i : E♦A

EU in1
i :A, i′ :B, Next(i, i′)ϕ

i :E(AU B)

EU in2

j :A, l :B, (i ¹ l)sfϕ, [(i ¹ j)sfϕ]∗, [(j ¹ l)sfϕ]∗
i :E(AU B)

where j 6∈ Labrigid
S , j :A 6∈ M1

AU in1
i :B

i :A(AU B)

AU in2
i :A, i′ :B, Next(i, i′)ϕ

i :A(AU B)
ϕ 6∈ Labrigid

P

AU in3

j :A, l :B, (i ¹ l)sfϕ, [(i ¹ j)sfϕ]∗, [(j ¹ l)sfϕ]∗
i :A(AU B)

ϕ 6∈ Labrigid
P , j 6∈ Labrigid

S , j :A 6∈ M1

• If a type of a variable that occurs in a premise of a rule
is not indicated then it can be either universal or rigid.

• The condition ∀C(j :C 6∈ M1) in the rules P♦el and
PU el1 means that the label j should not occur in the
proof in any formula, C, that is marked by M1.

• The condition j : A 6∈ M1 in the rules P in and
PU in3 means that j :A is not marked by M1.

• In P gel rules the conclusion i′ :A is marked by M1.

• In the rules AU el2 and EU el2 the expression i[AB]

is used with the following meaning: a variable i in the

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

derivation can be marked with [AB] if it has been in-
troduced in the derivation as a result of the applica-
tion of the rule AU el1 or EU el1 to i : A(AU B) or
E(AU B).

• Applying the rules AU in3 or EU in2 on the step n of
the proof, we discard that labelled assumption, (i ¹ j)
or (j ¹ l), which occurs earlier in the proof and all
formulae until the step n.

• If an application of a rule leads to the introduction of a
world variable j ∈ Labrigid

S in its conclusion which is
a relational judgement (i ¹ j)ϕ, where ϕ ∈ Labrigid

P ,
then we mark this variable as iϕ.

• For any rule which does not require rigid world vari-
ables in its conclusion, if an application of such a rule
introduces a rigid variable, say, j, in the relational
judgement (i ¹ j)ϕ(ϕ ∈ Labrigid

P), and jβ , for some
β, then either this variable should be fresh from the list
of rigid variables or the conclusion should have a form
(i ¹ j)β .

• In any rule if (i ¹ j)ϕ in [(i ¹ j)ϕ]∗ is an assumption,
then it must be the most recent assumption that must
be discarded. Applying the rule on step n of the proof,
we discard (i ¹ j)ϕ and all formulae until the step n.

• Any time when we apply a rule where rigid variables
are introduced in its conclusion, we pick a new variable
from a list of available rigid variables. A newly intro-
duced rigid world variable relatively binds the other
variable in the relational judgement; it is similar to
PLTL - this binding relation is transitive but cannot be
reflexive.

• A variable which is not indicated as rigid is universal.

In addition to these we also require the following Induc-
tion Rules:

A Induction

i :A, [(i ¹ j)ϕ]∗, j :A ⇒ A gA
i :A A

where ϕ 6∈ Labrigid
P , j 6∈ Labrigid

S and j :A 6∈ M1

E Induction

i :A, [(i ¹ j)ϕ]∗, j :A ⇒ E gA
i :E A

where ϕ 6∈ Labrigid
P and j :A 6∈ M1.

We also need the following rules.

reflexivity

(i ¹ i)χ

transitivity (i ¹ j)χ, (j ¹ k)ϕ

(i ¹ k)ψ

where ψ ∈ Labrigid
P is a new label, if at least one of χ

or ϕ are elements of Labrigid
P , and ψ ∈ Labuniv

P otherwise.

gseriality

Next(i, i′)χ

g/ ¹
Next(i, i′)χ

(i ¹ i′)χ

≺ / ¹ (i ≺ j)χ

(i ¹ j)χ

Definition 10 (CTLND proof) An ND proof of a CTL
formula B is a finite sequence of CTLND formulae
A1,A2, . . . ,An which satisfies the following conditions:

• everyAi (1 ≤ i ≤ n) is either an assumption, in which
case it should have been discarded, or the conclusion
of one of the ND rules, applied to some foregoing for-
mulae,

• the last formula, An, is x : B, for some label x,

• no rigid variable – world or path label – occurs in the
conclusion or relatively binds itself.

When B has a CTLND proof we will abbreviate it as `ND

B.
Examples. As examples we will prove two theorems of

CTL.
Example 1.

A g(p ⇒ q) ⇒ (A gp ⇒ A gq) (1)

1. x : A g(p ⇒ q) premise
2. x : A gp premise
3. Next(x, x′)α

gseriality

4. x′ : p ⇒ q A gel, 1, 3, x′ ∈ Labrigid
P

5. x′ : p A gel, 2, 3
6. x′ : q ⇒ el, 4, 5
7. x : A gq A gin, 3, 6
8. x : A gp ⇒ A gq ⇒ in, 7, [2− 7]
9. x : A g(p ⇒ q) ⇒
(A gp ⇒ A gq) ⇒ in, 8, [1− 8]

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

Example 2.

A (p ⇒ (¬q ∧ E gp)) ⇒ (p ⇒ ¬A(r U q)) (2)

1. x : A (p ⇒ (¬q ∧ E gp) premise
2. x : p premise
3. x : A(r U q) premise
4. (x ¹ y)α 1, A el
5. y : p ⇒ (¬q ∧ E gp) 1, A el
6. y : p premise
7. y : ¬q ∧ E gp 5, 6, ⇒ el
8. y : ¬q 7, ∧ el
9. y : E gp 7, ∧ el
10. y : p ⇒ E gp 9, ⇒ in, [6− 9]
11. y : E p 4, 6, 10, induction
12. x : p ⇒ (¬q ∧ E gp) 1, A el
13. x : ¬q ∧ E gp 2, 12, ⇒ el
14. x : ¬q 13, ∧ el
15. (y ¹ z)β 11, E el

β ∈ Srigid
P

16. z : p 11, E el
17. (x ¹ u)β 3, 14 AU el
18. u : q 3, 14 AU el,

u ∈ Srigid
P

19. u : p 11, E el
20. u : p ⇒ (¬q ∧ E gp) 1, A el
21. u : ¬q ∧ E gp 19, 20,⇒ el
22. u : ¬q 21,∧el
23. x : ¬A(r U q) ¬in, 18, 22, [3− 22]
24. x : p ⇒ ¬A(r U q) ⇒ in, 23, [2− 23]
25. x : (A (p ⇒ (¬q ∧ E gp))) ⇒

(p ⇒ ¬A(r U q)) ⇒ in, 24, [1− 24]

4 Correctness

In this section we will present the sketch of the correct-
ness proof of our contrusction.

4.1 Soundness

Lemma 1 Let Γ = {C1, C2, . . . , Ck} be a set of CTL for-
mulae such that Γ̂ = {C1, C2, . . . , Ck}, where each Ci (1 ≤
i ≤ k) is j : Ci, for some label j, is a set of non-discarded
assumptions which are contained in the CTLND proof for a
CTL formula B, at some step, m. Let Λ be a set of CTLND

formulae in the proof at step m such that for any D, D ∈ Λ
if it is obtained by an application of some ND rule, and let
∆ be a conclusion of a CTLND rule which is applied at step
m + 1. Let Γ̂? consist of all assumptions from Γ̂ that have
not been discarded by the application of this rule, the same
for a set Λ?. Then if Γ̂? is realisable in a model M then
Λ? ∪∆ is also realisable in M.

PROOF: We prove this lemma by induction on the number
of CTLND rules applied in the proof. Thus, assuming that
lemma is correct for the number, n, of the CTLND rules,
we must show that it is also correct for the n + 1-th rule.

The proof is quite obvious for the rules for Booleans. We
only show the most interesting case where the rule of ¬in
is applied.

Case ¬in. Let x : A be an element of Γ̂ which is the
most recent non-discarded assumption in the proof. An ap-
plication of the rule ¬in at step m + 1 gives a CTLND

formula x : ¬A as a conclusion. This means that at some
earlier steps of the proof we have y : C and y : ¬C. Here
we should consider several subcases that depend on the set
to which these contradictory CTLND formulae belong. We
now prove the lemma for some of these cases. Subcase 1.
Assume that both y : C and y : ¬C are in the set Γ̂? but nor
y : C neither y : ¬C coincides with x : A. Then the state-
ment that the realisability of Γ̂? implies the realisability of
Λ ∪ {x : ¬A} is true simply because Γ̂? is not realisable.
Subcase 2. Assume that both y : C and y : ¬C are in the
set Λ. Then if the set Γ̂ realisable, the set Λ should be re-
alisable as well. But, as assumed, it is not. So, Γ̂ also can
not be realisable. Note that Γ̂ = Γ̂? ∪ {x : A}. It should
be clear that if Γ̂? is realisable then also {x : ¬A} is. If we
think of the set Γ̂ as an initial part of the proof, then the set
Λ? is empty after the deletion of the corresponding steps of
proof. In this case we are done.

Cases with the rules for temporal operators that do not re-
quire restrictions on labels can be shown straightforwardly
from the semantics. For the cases where such a restriction
is required, for example as with the EU el rules, we show
that given that Λ? ∪ {j : A} is realisable provided that re-
alisability of Γ̂? holds. The crucial step here is to correctly
define mappings f ′S and f ′P simply accurately extending the
initial mapping fS and fP and justify these extensions.

(END)

Theorem 1 [CTLND Soundness] Let A1,A2, . . . ,Ak be
a CTLND proof of CTL formula B and let Γ =
{C1, C2, . . . , Cn} be a set of CTL formulae such that Γ̂ =
{C1, C2, . . . , Cn}, where each Ci (1 ≤ i ≤ n) is j : Ci, for
some label j, is a set of discarded assumptions which occur
in the proof. Then |=ND B, i.e. B is a valid formula.

PROOF: Consider the proof A1,A2, . . . ,Ak for some CTL
formula B. According to Definition 10, Ak has the form
x : B, for some label x. In general, x : B belongs to some
set, Λ, of non-discarded CTLND formulae in the proof. By
Lemma 1 we can conclude that realisability of Γ̂ implies re-
alisability of Λ. But Γ̂ is empty and, therefore, is realisable
in any model and for any function f by Definition 8. So Λ is
also realisable in any model and for any function f . That is,
any formula that belongs to Λ is valid. In particular x : B
is valid. (END)

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

4.2 Completeness

We will prove the completeness of CTLND by showing
that every theorem of the following axiomatics for CTL [8]
is a theorem of CTLND.

Axioms for CTL (schemes).
1. All schemes for classical logic
2. E♦A ≡ E(true U A)
3. A A ≡ ¬E♦¬A
4. A♦A ≡ A(true U A)
5. E A ≡ ¬A♦¬A
6. E g(A ∨B) ≡ E gA ∨ E gA
7. A gA ≡ ¬E g¬A
8. E(AU B) ⇒ (B ∨ (A ∧ E gE(AU B)))
9. A(AU B) ⇒ (B ∨ (A ∧ A gA(AU B)))
10. A gtrue ∧ E gtrue
11. A (A ⇒ (¬B ∧ E gA)) ⇒ (A ⇒ ¬A(C U B))
12. A (A ⇒ (¬B ∧ E gA)) ⇒ (A ⇒ ¬A♦B)
13. A (A ⇒ (¬B ∧ (C ⇒ A gA)) ⇒

(A ⇒ ¬E(C U A))
14. A (A ⇒ (¬B ∧ A gA)) ⇒ (A ⇒ ¬E♦B)
15. A (A ⇒ B) ⇒ (E gA ⇒ E gB)

where true as an abbreviation for ¬(p ∧ ¬p).
Rules:

• If ` A and ` A ⇒ B then ` B,

• If ` A then ` A A.

To prove the completeness of CTLND we first show that
every instance of the scheme of the above axiomatics is a
theorem of CTLND, and, secondly, for either of the infer-
ence rules, we establish that given that the assumptions of
the rule have a CTLND proof then so does its conclusion.

Lemma 2 Every instance of the scheme of the CTL ax-
iomatics is a theorem of CTLND.

PROOF: Proofs for instances for classical schemes can
be obtained by simple modifications of the corresponding
proofs in the classical ND system [4]. In the previous sec-
tion we proved formula (2), an instance of axiom 11. Due
to the space limit we omit proofs of other instances of the
axioms.
It is easy to establish the following proposition.

Proposition 1 Let A1,A2, . . . ,An be a CTLND proof of a
CTL formula B. Let B′ be obtained from B by substituting
a subformula C of B by C ′. ThenA′1,A′2, . . . ,A′n, where
any occurrence of C is substituted by C ′ is a CTLND proof
of B′.

Hence by Proposition 1 and the proofs of the instances
of PLTL axioms we obtain the proof for Lemma 2.

(END)

Lemma 3 If A has a CTLND proof then A A also has a
CTLND proof.

Lemma 4 If A ⇒ B and A have CTLND proofs then B
also has an CTLND proof.

Proofs for these lemmas follow by showing that the de-
sired reconstruction of the proof is always possible. In both
cases the crucial step is to show that we can rewrite the
proofs such that they would have completely different sets
of the world and path labels.

Now we are ready to prove the completeness of CTLND.

Theorem 2 [CTLND Completeness] For any CTLND for-
mula, A, if |=ND A then there exists a CTLND proof of
A.

PROOF: Consider an arbitrarily chosen theorem, A, of CTL.
By induction on n, the length of the axiomatic proof for A,
we now show that A also has a CTLND proof.

Base Case. n = 1. In this case A is one of the schemes
of the CTL axiomatics, and thus, the base case follows from
Lemma 2.

Induction step. If Theorem 2 is correct for the proof of
the length m, (1 ≤ m ≤ n) then it is correct for the proof
of the length m + 1.

Here the formula at the step m + 1 is either an axiom or
is obtained from some previous formulae either by general-
isation or the modus ponens rules. The proof for these cases
follows from all the properties analogous to those stated in
Lemma 3 and Lemma 4.

Therefore, given that A has an axiomatic proof it also
has a CTLND proof.

(END)

5 Discussion

We have presented a natural deduction system for the
computational tree logic CTL. This will open the prospect
to apply our technique as an automatic reasoning tool in a
deliberative decision making framework across various AI
applications where the branching-time setting is required.
Although a proof-searching technique for this novel con-
struction is still an open, and far from being trivial, prob-
lem, we expect to incorporate many of the methods previ-
ously defined for classical propositional and first-order log-
ics. The study of complexity of the method for both classi-
cal and temporal framework, in turn, is another component
of future research as well as the extension of the approach to
capture more expressive branching-time frameworks such
as ECTL, ECTL+ and CTL?.

We believe that being equipped with the goal-directed
searching procedure, based on our previous developments

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

[5], our technique opens broad prospects for the application
of the method even in wider areas of AI and computer sci-
ence, most notably, in agent engineering [13]. One of the
interesting ideas of such applications of natural deduction
can be found, for example, in [7]. Here the authors define a
framework to reason about security protocols, and showed
how the classical natural deduction system can be used as
an engine for constructing valid messages. Our extension
of the natural deduction to branching-time setting will be
useful in managing the security protocols in a more sophis-
ticated area of a complex dynamic environment.

References

[1] Alessandro Basso, Alexander Bolotov, Artie Ba-
sukoski, Vladimir Getov, Ludovic Henrio, and Mar-
iusz Urbanski. Specifcation and verifcation of recon-
fguration protocols in grid component systems. In To
be published in the Proceedings of IS-2006, 2006.

[2] A. Bolotov, A. Basukoski, O. Grigoriev, and
V. Shangin. Natural deduction calculus for linear-time
temporal logic. In To be publsihed in the Proceedings
of Jelia-2006, LNAI 4160, 2006.

[3] A. Bolotov and M. Basukoski. Clausal resolution
method for extended computation tree logic ECTL.
Journal of Applied Logic, in press, 4(2):141–167, June
2006.

[4] A. Bolotov, V. Bocharov, A. Gorchakov, V. Makarov,
and V. Shangin. Let Computer Prove It. Logic and
Computer. Nauka, Moscow, 2004. (In Russian).

[5] A. Bolotov, V. Bocharov, A. Gorchakov, and
V. Shangin. Automated first order natural deduction.
In Proceedings of IICAI, pages 1292–1311, 2005.

[6] E. M. Clarke and E. A. Emerson. Design and synthe-
sis of synchronisation skeletons using branching time
temporal logic. In Logic of Programs. Proceedings of
Workshop, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer-Verlag, 1981.

[7] E.M. Clarke, S. Jha, and W. Marrero. Using state
space exploration and a natural deduction style mes-
sage derivation engine to verify security protocols.
In Proceedings of the IFIP Working Conference on
Programming Concepts and Methods (PROCOMET),
pages 87–106, 1998.

[8] E. A. Emerson. Temporal and Modal Logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science: Volume B, Formal Models and Semantics.,
pages 996–1072. Elsevier, 1990.

[9] E. A. Emerson and A. P. Sistla. Deciding full branch-
ing time logic. In STOC 1984, Proceedings of, pages
14–24, 1984.

[10] V. Makarov. Automatic theorem-proving in intuition-
istic propositional logic. In Modern Logic: Theory,
History and Applications. Proceedings of the 5th Rus-
sian Conference, StPetersburg, 1998. (In Russian).

[11] W. Quine. On natural deduction. Journal of Symbolic
Logic, 15:93–102, 1950.

[12] A. Simpson. The Proof Theory and Semantics of Intu-
itionistic Modal Logic. PhD thesis, College of Science
and Engineering, School of Informatics, University of
Edinburgh, 1994.

[13] M. Wooldridge. Reasoning about Rational Agents.
MIT Press, 2000.

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

