
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre d'actes 2015 Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of

the published version may differ .

WifiOTP: Pervasive Two-Factor Authentication Using Wi-Fi SSID

Broadcasts

Huseynov, Emin; Seigneur, Jean-Marc

How to cite

HUSEYNOV, Emin, SEIGNEUR, Jean-Marc. WifiOTP: Pervasive Two-Factor Authentication Using Wi-Fi

SSID Broadcasts. In: Kaleidoscope International Conference. Barcelona (Spain). [s.l.] : [s.n.], 2015.

This publication URL: https://archive-ouverte.unige.ch//unige:76795

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:76795

WIFIOTP: PERVASIVE TWO-FACTOR AUTHENTICATION USING WI-FI SSID

BROADCASTS

Emin Huseynov, Jean-Marc Seigneur

University of Geneva

ABSTRACT

Two-factor authentication can significantly reduce risks of

compromised accounts by protecting from weak passwords,

online identity theft and other online fraud. This paper

presents a new easy solution to implement two-factor

authentication without affecting user experience by

introducing minimum user interaction based on standard

Wi-Fi. It has been validated with different software and

hardware implementations in a real life environment to

show it can easily be deployed in many cases.

Keywords— user-friendly security, multi-factor

authentication

1. INTRODUCTION

Traditional two-factor authentication solutions use

standalone hardware or software tokens (often isolated from

the primary system, e.g. a mobile application running on a

smartphone) that generate one-time passwords (OTP) for

the second step of the login process [1]. Users need to

transfer these OTPs to the primary system to complete the

process. In most of the cases (with a few exceptions

described in Section 2), users need to type the OTP

manually. This introduces a certain level of inconvenience

that leads to negative user experience and ultimately user

resistance.

WifiOTP is a concept of simplifying user interaction with

systems requiring two-factor authentication by eliminating

the need of typing OTPs manually; instead, a special device

(WifiOTP Token) will generate and broadcast OTP as a

part of wireless network service set identifiers (SSID). This

SSID will contain a system ID (a prefix to distinguish

between other SSIDs) and an OTP part encrypted with a

symmetric algorithm.

In this paper we present the concept on WifiOTP. In

Section 2, we discuss related work. Section 3 presents the

model of our solution and Section 4 shows how we have

validated it with different software and hardware

implementations to show it can easily be deployed in many

cases. We conclude in Section 5.

2. RELATED WORK

We have reviewed a number of research and commercial

products in the same or similar area. We believe the

examples below have limited success in reaching the

balance of strong security and minimal user interaction.

2.1. Google Authenticator

As our proof-of-concept will be a “drop-in” replacement of

popular strong security systems, we review one of the most

commonly used two-factor authentication systems, Google

Authenticator, a mobile application concept used to secure

services provided by Google, as well as many other services

[2]. The application generates one-time passwords (OTP)

by calculating a hash based on a secret shared key (known

to mobile application and the authentication server) and the

current timestamp with a 30 seconds modulo as defined in

RFC 6238, Time-Based One-Time Password Algorithm

(TOTP) [14].

As per described procedures, the authentication process

assumes that user would manually type in the OTPs

generated by mobile application. Obviously, this process is

not very user friendly, and we will attempt to minimize user

interaction by keeping the same security level.

2.2. Zero Interaction Authentication

Zero Interaction Authentication (ZIA) is one example of an

effort for making security easy to use. A few academic

papers include concepts of using existing wireless or wired

network components for ZIA. However, the proposed

systems are based on actually connecting to common

wireless [3] or wired [4] networks which makes it

impossible to use in systems that do not allow multiple

wireless connections and presents additional risks of

network based attacks. These papers also use constant

characteristics of network components, such as BSSID of a

WLAN network or a MAC address of network routers,

which could make the systems vulnerable to replay attacks.

2.3. Context-aware application and Wi-Fi proximity

A system based on WIFI SSID is proposed by Namiot [5],

[6] where SSID is used as a context-aware application

concept. This paper describes using the information

exchanged between access points and client devices to

determine proximity data and using this proximity data to

send promotional information, similar to Apple’s iBeacon

technology but based on Wi-Fi rather than BLE (Bluetooth

Low Energy). This paper uses similar concept of utilizing

Wi-Fi SSID to relay information, but does not provide any

security analysis as the system is not intended to be used as

a security mechanism.

2.4. One-touch financial transaction authentication

SSID broadcasts based systems are researched by authors

[7], where they propose to channel the authentication data

via SSID, however their approach assumes two-way

communication between the client and the SSID Access

point. This approach is logical if the purpose is to be used

in a typical online banking system where the user interacts

with the second factor authentication system. In this

approach, the client device sends a packet and receives a

response from the system broadcasting SSID in both

directions. The limitation of this method is that the client

device will need to emit SSID broadcasts and not only scan

for SSIDs; this method is a significant obstacle for systems

using WLAN as their primary connection. This would not

be required for TOTP based systems as only one-way data

flow is needed for such systems.

2.5. Amigo: proximity-based authentication of mobile

devices

Amigo [8] is another example of proximity authentication

based on Wi-Fi proximity, which utilizes promiscuous

mode for 802.11 frame packet scanning. This system

requires at least three trusted devices in the close proximity

(few meters), which can be considered a major drawback

compared to WifiOTP which requires only one device

providing Wi-Fi coverage with minimal signal strength (up

to 100 meters).

2.6. BLE based OTP tokens

Another system with closer implementation is proposed [9],

where TOTP broadcasts are emitted by a BLE based token

beacon device. This concept may be further developed

using Eddystone, an open beacon format recently

announced by Google [10]. The drawbacks of these systems

are: BLE is only supported on limited types of devices and

also Bluetooth is usually not activated on devices as users

often perceive it as a battery hog.

2.7. Authy Bluetooth

Authy Bluetooth is a TOTP based implementation of two

factor authentication very similar to WifiOTP concept. As it

is based on BLE protocol, the use of Authy Bluetooth [11]

is limited to situations were both a client access system (e.g.

a laptop) and the system running the token (e.g. a mobile

phone with the Authy app) support the BLE protocol. For

this reason, Authy Bluetooth is only supported on recent

Mac devices as clients, iPhone 4s and above, plus Android

devices running version 4.4.4 and above with BLE support

as mobile device.

In addition, the current implementation can hardly be

considered as a system with “minimal user interaction” as

users need to: launch Authy application, select an account

and after the current OTP is copied to clipboard, users are

advised to paste it to the form requiring the OTP.

2.8. Yubico hardware tokens

Yubico offers a number of products appearing to be the

achieving the real minimum of user’s interaction required to

submit second factor [12]. Yubico’s Nano and Neo

hardware tokens are designed to send generated OTPs via

NFC or USB (emulating keyboard input). These devices are

indeed making two-factor authentication much easier for

end users, however there are still some disadvantages. The

USB based token is impossible to use in the majority of

mobile devices without additional equipment, and the

activity range of NFC token is limited to 15 centimeters

[13]. Furthermore, the number of accounts each token can

use is limited to maximum 2 keys per device (up to 2 keys

per device), whereas WifiOTP as a concept poses no such

restriction.

3. OUR WIFIOTP SOLUTION

3.1. System model

The client part will be an application running on user's

device that queries the WLAN network adapter for the list

of currently available SSIDs and finds the one with required

prefix (System ID) then decrypts the OTP part using shared

key and sends as text to the relevant input fields either

automatically or when requested by the user (e.g. by

pressing a button or a keyboard shortcut). As a result, the

final authentication credentials will contain three

authentication components: the username (entered by user),

password (entered by user) and OTP (automatically read

from SSIDs and decrypted instantly upon activation).

The solution consists of two main components:

- WifiOTP client: a connector application or a

service/daemon running on the client device that scans the

broadcasted SSIDs periodically or when initiated by users

- WifiOTP token: a Wi-Fi access point running that

broadcasts a periodically changing SSID that contains the

encrypted one-time password together with other data

(e.g. system ID etc.)

It is important to mention that WifiOTP concept does not

require the clients to be connected to the detected WifiOTP

network; in fact, it would be rather inconvenient as the

SSID broadcasted by WifiOTP token changes periodically

as mentioned above. The clients can be connected to any

other network, wired or wireless, or via cellular data

connections. Therefore the type of the encryption used for

WifiOTP wireless network does not matter, in our

implementation we created secured WLAN with randomly

changing pre-shared key value.

The system’s principle is illustrated in Figure 1. The device

used as an access point is using a locally stored secret hash

to generate OTP values and broadcasts an SSID that

includes the system identifier and the current OTP. OTP

values change periodically (every 30 seconds as per TOTP

specification [14]), therefore the broadcasted SSID equally

changes.

Variables:
Shared Key

Current Time
Encryption key

Prefix

Generate OTP
using secret

shared key and
current time

Encrypt OTP
using

encryption key

Disable current
SSID

Create new SSID
with

Prefix+Encrypted
OTP+ Increment

Create new
increment value

(old value + 1 , or 1
if > 9999)

WiFiOTP Token WiFiOTP Client Application

Variables:
Encryption key

Prefix

Broadcasted
SSIDs

Scan
broadcasted

SSIDs, search for
prefix

Wi-Fi
Broadcast

Decrypt OTP
using

encryption key

OTP Decrypted
successfully

Send OTP to
authentication

server

Yes

Authentication Server

Generate
OTP based
on Shared

Key and
Timestamp

Variables:
Shared Key

Current Time

HTTP/HTTPS

Compare
generated
OTP with

user’s OTP

OTPs match

Authenticatio
n Successful

Broadcast
SSID

Figure 1. WifiOTP Logical diagram

The format of SSID broadcasted by WifiOTP token is

shown on Figure 2.

Figure 2. Format of SSIDs broadcasted by WifiOTP tokens

The connector application on the client device scans the

broadcasted SSIDs periodically searching for SSIDs starting

with predefined prefix (in the example above, “WOTP__”)

then parses the SSID name to extract the system ID and

encrypted OTP. The system ID is used to distinguish

between multiple WifiOTP accounts running in parallel on

the same token device. The last portion of SSID, Increment

ID, is required to overcome the SSID name “caching” on

the client systems. The value of Increment ID will

increment on every OTP change and the SSID with larger

increment value will be used as the current OTP (if the

increment reaches 99999, the SSID with increment equal to

1 will be considered the most current one). The client

application may use a predefined API to pass the

authentication data to the validating server, or just pass the

parsed data to another application (i.e. a web browser) using

keyboard shortcut or other methods. This data flow is

illustrated in Figure3.

WOTP_1234_A7A
D8F096_1122

Web Application
User

Login Form

A
uthentication Request

A
uthentication Response

SSID Broadcast

U
se

rn
am

e
P

as
sw

o
rd

 d
ec

ry
p

te
d

 O
TP

Username Password

WifiOTP Client

WiFiOTP
token

 Figure 3. WifiOTP Data flow model

In this example, the current OTP (decrypted by the client

application) is passed to the server together with the first

authentication factor (username and password). At the final

step, all submitted data is verified on the server: username

and password checked for validity, and submitted OTP

checked with the OTP generated on the server using the

same secret hash.

3.2. One-Time password generation and encryption

As described above, we will be using TOTP as the standard

for generating OTP. In principle, TOTP is a version of

HOTP where current time is used as a part of secret key

[14]. The value of OTP is calculated using function:

TOTP (K, T) =Truncate (Hash (K, T))

where:

T – The current timestamp’s increment value,

K – The shared secret key (stored on the authentication

server and the WifiOTP device),

Hash – a hash function (HMAC-SHA-256, HMAC-SHA-

512 or other HMAC-based functions),

Truncate- a function to select a certain portion of the

generated hash to be used as the OTP.

With WifiOTP, OTP is encrypted with a symmetric

encryption algorithm in order to avoid transmitting current

OTPs in plaintext. Due to the limitations of SSID name

length (maximum 64 characters), the algorithms that can be

used for this step are also limited. The value transmitted

using WifiOTP is calculated using the following function:

WifiOTPServer (K, T, E) = CiphEncr (TOTP (K, T), E)

where:

CiphEncr – a symmetric encryption function (e.g. RC4),

E - a key for encrypting the OTP (known to WifiOTP

device and the client application).

The client application will scan the broadcasted networks

and select one SSID matching the defined conditions (e.g.

having a specific prefix and the highest increment number).

Then, the OTP to be transferred to the authentication server

will be calculated using the function:

WifiOTPClient (COTP,E) = CiphDecr (COTP,E)

where:

COTP- ciphered value of OTP broadcasted as a part of

SSID,

CiphDecr - a decryption function utilizing the same key as

in WifiOTPServer function.

4. VALIDATION OF OUR WIFIOTP SOLUTION

 In order to validate WifiOTP in practice we have created

the following system prototypes as a proof of concept:

- WifiOTP Token: a service running on a Windows 7

computer with a wireless network card,

- WifiOTP Client:

a) an application on Windows 7

b) an Android application

c) an Android custom keyboard

4.1. WifiOTP token

WifiOTP Token is the central component of the system. It

periodically generates the one-time passwords based on

stored secret hash key and current time and broadcasts it as

a part of a wireless network name (SSID) in encrypted

format.

As building or configuring a standalone WifiOTP Token

device might be rather complex, in order to ease the

validation a Windows application has been created to be

used as a WifiOTP Token. Windows application is based on

creating computer-to-computer (ad hoc) wireless network

using “netsh hostednetwork” command. An application has

been created using Autoit [15] that generates and encrypts

one-time passwords and passes SSID name as an argument

to netsh command. This application can run on any

computer equipped with a WLAN network card and a

recent Windows operating system (tested on Windows XP,

Windows 7, Windows 8.x and Windows 10 Preview). The

parameters, such as SSID prefix, secret shared key and

encryption key are stored in an ini file.

Figure 4. WifiOTP Token application for Windows

4.2. WifiOTP client applications

WifiOTP Client searches for the SSID with encrypted one-

time passwords broadcasted by WifiOTP Tokens. For this

proof of concept, we created a Windows client application

and an Android app. The user interaction model of each

application is explained within the use cases section of this

paper.

4.2.1. Windows application

Standard Windows netsh command is capable of scanning

the SSIDs broadcasted (“netsh wlan show networks”) [16].

The parsed SSID data needs to be decrypted and sent to

input field requesting OTP, which is then submitted the

validation server together with other data. A simple system

daemon has been developed using Autoit [15] monitors a

specific keyboard shortcut (e.g. Ctrl+Alt+X) to send

currently broadcasted OTP to active text input. Optionally,

it can send return character together with OTP to minimize

user’s interaction: e.g. when user is prompted to enter OTP

in a web application, pressing Ctrl+Alt+X will insert the

required OTP and submit the current form immediately. A

screenshot of a running WifiOTP Client application is

shown on Figure 5. The window below shows the current

OTP for demonstration purposes only; the client application

should run silently in the background with only an icon

displaying its activity in the tray area.

Figure 5. WifiOTP Client for Windows

4.2.2. Android mobile application

We decided to prototype an Android application for

WifiOTP Client using PhoneGap [17] platform. A

PhoneGap plugin scanning Wi-Fi networks currently in

range was created for this prototype application. The

broadcasted OTP is fetched by the application using the

same methods as with the Windows application. The

unencrypted OTP can subsequently be copied to the

clipboard allowing pasting of the current OTP to a relevant

field in any application (e.g. a web browser).

Figure 6. WifiOTP Android client. Clipboard mode

The application can also act as a web browser, and in this

mode, the field requesting the OTP, is populated

automatically.

Figure 7. WifiOTP Android client. Web browser mode

4.2.3. Android custom keyboard

Using a separate mobile application introduces a number of

restrictions, the main one being the inability to use

WifiOTP with any standard application, such as web

browser. To resolve this, we need a resource containing

WifiOTP Client code, which would be available to any

application throughout the system. Android allows

developers to create custom keyboards and run any type of

code associated with its keys, including scanning for

available Wi-Fi networks [18].

We have created a custom keyboard, based on a sample

provided within the Android developer guide [19]. The

keyboard consists of two keys: the first will execute Wi-Fi

scanning, parse and decrypt OTPs broadcasted by WifiOTP

Token and insert the OTP to current input field, the second

will delete contents of current input field. User interaction

required for our initial implementation of WifiOTP Android

custom keyboard is shown in Figure 8. As can be seen from

the image, the user interaction for entering second factor to

authenticate can be reduced to two actions: selecting

WifiOTP keyboard and hitting “Insert OTP” key. This

process can be simplified further to reduce the number of

actions to one: this will require the keyboard to

automatically send an OTP upon activation.

Figure 8. WifiOTP Android custom keyboard

Having an additional keyboard only for authentication

purposes may introduce a certain level of inconvenience for

users, especially for users frequently using more than one

keyboard layout. To overcome this, a custom keyboard

containing standard language layout and one additional key

to insert OTP, can be created. With this keyboard set as

default, user interaction to enter the OTP in the relevant

field is reduced to pressing a key when prompted. See the

example below (Figure 10) of such a keyboard based on

English (US).

Figure 9. Custom WifiOTP keyboard based on English (US) layout

4.3. Use cases

In this section, we present two use cases to illustrate the

usage of the WifiOTP in real-life scenarios. Both cases will

consider logon to a web application with two-factor

authentication enabled account. As a part of use case

review, we will compare user experience with a classic two-

factor logon process that has the following steps (assuming

correct credentials are supplied):

1) User navigates to a login page

2) User enters first factor credentials (username and

password)

3) User submits the logon form, either by clicking on a

button or hitting Enter key on the keyboard

4) On the next window, the system asks for the second

factor (one-time password), where the user manually enters

the digits shown on the device or mobile application (OTP)

5) Login process completes

The flowchart of the classic process looks like shown on

Figure 10.

Figure 10. Classic two-factor authentication flowchart

4.3.1. Use case 1: minimal user interaction

Using WifiOTP Client for Windows is an example of this

use case. Assuming a WifiOTP Token is correctly

configured and active, the procedure of logging in to a

standard system with two-factor authentication will consist

of the following user interaction stages:

1) User navigates to login page

2) User enters first factor credentials (username and

password)

3) On the next window, when the system asks for the second

factor (one-time password), user presses Ctrl+Alt+X

combination on the keyboard

4) Login process completes

As can be seen from the procedure, also illustrated on

Figure 11, the second factor is entered automatically, with

the only difference of using a specific keyboard shortcut

(Ctrl+Alt+X) instead of hitting enter or clicking on Submit

button.

Figure 11. Two-factor authentication flowchart with WifiOTP Windows

client

This use case requires no modification on the server side,

thus can be used on existing systems with two-factor

authentication implemented in one (where both factors are

requested in the same time, e.g. on the same login form) or

two steps using any standard software. This use case was

successfully tested on a number of public services

(including Gmail and Dropbox) using a standard web

browser, as well as special applications (e.g. Google Drive).

This use case is also valid for Android custom keyboard.

4.3.2. Use case 2: zero user interaction

To demonstrate this use case, we have developed an

Android WifiOTP Client application that will allow zero

user interaction for providing second factor during the

authentication process. Procedure for this use case is as

follows:

1) User launches the mobile application

2) User enters first factor credentials (username and

password)

3) On the next window, when the system asks for the second

factor (one-time password), the mobile application

automatically populates the relevant field with OTP and

submits the form without any user interaction

4) Login process completes

The flowchart shown on Figure 12, illustrates that there are

no additional actions required from the users to securely

authenticate, which makes the user experience similar to

one-factor authentication systems.

Figure 12. Zero user interaction two-factor authentication using Android

mobile application

4.3.3. Summary of reviewed use cases

Both use cases demonstrated that using WifiOTP simplifies

users’ interaction compared to classic two-factor

authentication systems. Although case 1 still requires

additional user action, it has its advantages, as it can be

used with existing client side applications without any

modification of authentication systems. With Use case 2,

user interaction is reduced to zero, but the method can only

be used via a special mobile application. A detailed

summary table of use cases is provided in Table 1 below.

Table 1. Use case comparison

Comparison

aspect

Classic two-factor

authentication

Use Case 1 Use Case 2

User

interaction

User should

manually type OTPs

generated by token

Minimal

(keyboard

shortcut)

Zero

Software

requirements

No additional

application on

client system.

Can be used

with any

application

on Windows

operating

system

Access to

systems can

only be done

via WifiOTP

Android

application

Server side

web application

Any Any Any

WifiOTP Token Any Any Any

Hardware

requirements

Network access

equipment

(wireless, wired or

cellular)

Wireless

Network

Card

Wireless

Module

Additionally, we would like to clarify that the platforms

chosen for both use cases are only examples chosen for our

validation and not based on any technical restriction: i.e.

Use Case 2 can be easily implemented as a Windows

application and vice versa. Due to the fact that the

interaction flows are similar for Windows Client and

Android custom keyboard based solution, we have not

reviewed it as a separate use case.

Both use cases demonstrated no interference or other

negative effect to any of existing wireless or wired

networks: we successfully tested the functionality on

systems connected over different networks (such as Wi-Fi,

wired network and cellular data network on mobile devices)

as per current and proposed connectivity standards [20] [21]

[22].

4.3.4. Security analysis and discussion

Generic security analysis of proposed two-factor

mechanism is already done by many authors, and we will

refer to existing work [23] as full analysis would be out of

scope of this paper.

An additional security risk is introduced by transmitting

OTPs via SSID name broadcast, which is publicly readable.

This risk is still minimal even if OTPs are transmitted in

plain text and equal to a situation when attackers gain

access to the OTP device (e.g. a hardware token). However,

even with this minimal risk, we attempted to eliminate it by

introducing symmetric encryption of broadcasted OTPs

using RC4 encryption algorithm. RC4 is rather weak

compared to other modern cryptographic methods [24],

however the limitation of the SSID length [22] does not

allow many options to choose from.

Applications for other platforms (such as MacOSX, Linux

and Windows Phone) could be also created. Only iOS

devices can't have WifiOTP as long as API methods for

scanning Wi-Fi networks are not publicly available. Future

versions of iOS may allow it though.

5. CONCLUSION

User authentication is a balance of security and user

experience. This paper presents the possibility of creating a

simple and low-cost two-factor authentication system that

simplifies user’s interaction compared to existing solutions

by minimizing or completely eliminating the actions

required to add the second factor for authentication.

The solution proposed also presents a possibility of

introducing an additional authentication factor – the

physical location of the user, which we will investigate in

future work.

REFERENCES

[1] F. Aloul, S. Zahidi and W. El-Hajj, "Two factor

authentication using mobile phones," IEEE/ACS

International Conference on Computer Systems and

Applications, pp. 641 - 644, 2009.

[2] Google Inc., "Open source version of Google

Authenticator," 15 June 2015. [Online]. Available:

https://github.com/google/google-authenticator/. [Accessed

20 July 2015].

[3] T. Christophersen, Zero Interaction Multi-factor

Authentication, Kongens Lyngby: Technical University of

Denmark, 2010.

[4] M. Corner and B. Noble, "Zero-Interaction Authentication,"

in SIGMobile, Ann Arbor, MI, 2002.

[5] D. Namiot, Network Proximity on Practice: Context-aware

Applications and Wi-Fi Proximity, Moscow: International

Journal of Open Information Technologies, 2013.

[6] D. Namiot, "Wi-Fi Proximity as a Service," SMART 2012:

The First International Conference on Smart Systems,

Devices and Technologies, pp. 62-68, 2012.

[7] D. V. Bailey, J. G. Brainard, S. Rohde and C. Paar, One-

touch Financial Transaction Authentication, Bochum:

SECRYPT, 2009.

[8] A. Varshavsky, A. Scannell, A. LaMarca and E. de Lara,

"Amigo: Proximity-Based Authentication of Mobile

Devices," UbiComp 2007: Ubiquitous Computing, pp. 253-

270, 2007.

[9] R. van Rijswijk-Deij, Simple Location-Based One-time

Passwords, Utrecht: Technical Paper, 2010.

[10] Google Inc., "Eddystone™, the open beacon format from

Google," 15 July 2015. [Online]. Available:

https://developers.google.com/beacons/. [Accessed 20 July

2015].

[11] Authy, "Authy | The Future," 22 04 2015. [Online].

Available: https://www.authy.com/thefuture#bluetooth.

[12] Yubico Inc., "YUBIKEY STANDARD & NANO," 2015.

[Online]. Available:

https://www.yubico.com/products/yubikey-

hardware/yubikey-2/.

[13] R. Want, "Near Field Communication," IEEE Pervasive

Computing vol.10, no. 3, pp. 4-7, 2011.

[14] D. M'Raihi, S. Machani, M. Pei and J. Rydell, "TOTP:

Time-Based One-Time Password Algorithm," May 2011.

[Online]. Available: http://www.rfc-editor.org/info/rfc6238.

[15] Autoit Consulting, "AutoIt : Overview," [Online].

Available: https://www.autoitscript.com/site/autoit/.

[Accessed 15 05 2015].

[16] Microsoft, "Netsh Command Reference," 2 07 2002.

[Online]. Available: https://technet.microsoft.com/en-

us/library/cc754516%28v=ws.10%29.aspx. [Accessed 27

05 2015].

[17] Y. Patel and R. Ghatol, Beginning PhoneGap: Mobile Web

Framework for JavaScript and HTML5, New York: Apress,

2012.

[18] Google Inc., "Android Developer Guides: Creating an Input

Method," 26 03 2015. [Online]. Available:

http://developer.android.com/guide/topics/text/creating-

input-method.html. [Accessed 28 05 2015].

[19] T. G. Takaoka and Google Inc., "Android samples:

SoftKeyboard," 15 10 2014. [Online]. Available:

https://android.googlesource.com/platform/development/+/

master/samples/SoftKeyboard/. [Accessed 28 05 2015].

[20] IEEE, 802.1X-2004 - IEEE Standard for Local and

Metropolitan Area Networks, IEEE, 2004.

[21] R. Valmikam, "EAP Attributes for Wi-Fi - EPC

Integration," 5 01 2015. [Online]. Available:

https://tools.ietf.org/html/draft-ietf-netext-Wifi-epc-eap-

attributes-16. [Accessed 26 05 2015].

[22] IEEE, 802.11 standard for LAN/MAN, 2012.

[23] A. Dimitrienko, C. Liebschen and C. Rossow, "Security

Analysis of Mobile Two-Factor Authentication Schemes,"

Intel Security Journal, vol. 18, no. 4, pp. 138-161, 2014.

[24] S. Fluhrer, M. Itsik and S. Adi, Weaknesses in the key

scheduling algorithm of RC4, Berlin: Springer , 2001.

[25] D. Tavares, M. Lima, R. Aroca, G. Caurin, A. C. de Oliveira

Jr, T. Santos Filho, S. Bachega, M. Bachega and S. da Silva,

"Access Point Reconfiguration Using OpenWrt," in

Proceedings of The 2014 World Congress in Computer

Science, Computer Engineering, Las Vegas, 2014.

[26] R. Swan, "SIMPLE OATH TOTP RFC 6238 IN PHP," 09

05 2013. [Online]. Available:

http://www.opendoorinternet.co.uk/news/2013/05/09/simple

-totp-rfc-6238-in-php. [Accessed 15 05 2015].

[27] OpenWRT, "Nexx WT3020," [Online]. Available:

http://wiki.openwrt.org/toh/nexx/wt3020. [Accessed 15 05

2015].

[28] D. Howett, "iPhone Development Wiki:

MobileWifi.framework," 12 07 2014. [Online]. Available:

http://www.iphonedevwiki.net/index.php/MobileWifi.frame

work. [Accessed 28 05 2015].

