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Towards Axiomatic Foundations for Defuzzification Theory∗

Helmut Thiele

Abstract
The starting point of the paper presented are the well-known defuzzification procedures on
the one hand and approaches to axiomatize the concept of defuzzification, on the other hand.
We present a new attempt to build up an axiomatic foundation for defuzzification theory
using the theory of groups and the theory of partially ordered sets, and in particular, the
theory of GALOIS connections.

Keywords: Defuzzification, functional, bijective transformation, group, partially or-
dered set, GALOIS connection

1 Introduction

Defuzzification procedures are very important in designing fuzzy control circuits and also
in investigating and applying approximate reasoning.

Therefore in literature one can find a lot of approaches to develop and to apply such proce-
dures (algorithms), but, in general, on a more or less intuitive basis without a conceptional
foundation.

Examples for this are the methods denoted by First-of-Maxima, Middle-of-Maxima,
Center-of-Sums, Center-of-Area, Center-of-Largest-Area, Center-of-Gravity, and Height-
Defuzzification, for instance.

About five years ago some scientists began investigations with the goal of developping a
systematic theory of defuzzification and of incorporating these results [13–16] into fuzzy
logic.

To this end a set of thirteen axioms for defuzzification strategies [15] was formulated and the
attempt to interpret defuzzification as crisp decision under fuzzy constraints was made [13].

The role of a defuzzifier within the frame of a general fuzzy control circuit is expounded
in [17].

For definiteness we repeat some more or less well-known notions.

Let A and B be arbitrary (crisp) sets. By A j B we denote that A is a maybe non-proper
subset of B in the usual sense. Furthermore, ∅ is the empty set and PA is the power set of
A, i. e. the set of all subsets of A.

The set of all real numbers r with 05 r 5 1 is termed by 〈0,1〉. Let U be an arbitrary non-
empty set called universe. A fuzzy set F on U is a mapping

F : U → 〈0,1〉 .

We put

F(U) =def lF F : U → 〈0,1〉q

and call F(U) the fuzzy power set of U .

∗Revised version of a paper originally published in Second International Conference on Knowledge-Based Intel-
ligent Electronic Systems, Adelaide, Australia, April 21–23, 1998
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The support suppF of a fuzzy set F on U is the crisp set

suppF =def lx x ∈ U ∧ F(x) > 0q .

Assume that ν : 〈0,1〉 → 〈0,1〉 satisfies

∀r br ∈ 〈0,1〉∧ ν(r) > 0 → r = 0g .

The function ν can be interpreted as a kind of negation.

Furthermore assume that τ and σ are an arbitrary t-norm and s-norm, respectively. For ar-
bitrary F,G ∈ F(U) and x ∈ U we put

Fν(x) =def ν aF(x)f
aF τ∩Gf (x) =def τ aF(x),G(x)f
aF σ∪Gf (x) =def σ aF(x),G(x)f .

Assume that U , V , and W are arbitrary non-empty sets. We fix a set F of functions
F : U → V . Then a mapping Φ :F→ W is called a functional on F with values in W .

For our purpose we put

F =def F where F j F(U)
V =def 〈0,1〉
W =def U
δ =def Φ,

hence δ : F → U .

2 The fundamental axiom for characterizing
defuzzifiers

In the paper [15] the axioms were formulated under the assumption that U =R. Under this
strong assumption the authors could formulate very special axioms reflecting some proper-
ties of special defuzzification procedures. But for many applications the assumption U =R
is too special, one should admit U jRn (n= 1) or even thatU is a metric space with respect
to a given metric µ on U .

With respect to these remarks we ask, first of all, for “natural” axioms without using a struc-
ture in U . Assume F j F(U) and δ : F → U .

Axiom 1
∀F bF ∈ F ∧ suppF ≠ ∅ → δ(F) ∈ suppFg

This axiom causes some problems. On the one hand, one can have the opinion that a “rea-
sonable” defuzzifier must satisfy this axiom. On the other hand, there are defuzzification
procedures which do not fulfil the condition expressed by axiom 1. For instance, the Center-
of-Area method fails axiom 1, in general, which shows that this method is not “reasonable”
with respect to some applications.

For the following investigations we assume that the defuzzifiers considered satisfy axiom 1.
But we have to state that this assumption is restrictive to a certain extend as the following
theorems show, in particular, theorem 7 and 8 and their proofs.

So, we define
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Definition 1
δ is said to be a defuzzifier on F with respect to U

=def δ satisfies axiom 1.

By D(U) we denote the set of all defuzzifiers on F with respect to U .

Remarks

1. Obviously, the concept of defuzzifiers is closely related to the well-known concept of
choice function used in many branches of mathematics. For definiteness we repeat:

Let S be an arbitrary system of subsets of a set S. Then a mapping α : S → S is said
to be a choice function on S if and only if the following condition holds

∀X bX ∈ S ∧ X ≠ ∅ → α(X) ∈ X g .

If we define S =def U ×〈0,1〉, then an arbitrary fuzzy set F : U → 〈0,1〉 is a subset of S,
hence a system F j F(U) of fuzzy sets on U is a system of subsets of S. If we have
a defuzzifier δ on F with respect to U , then by the definition

α(F) =def
L
Nδ(F),F bδ(F)gOQ

we get a choice function on F .

Vice versa, if we have a choice function α on F , then by the definition

δ(F) =def x (F ∈ F , x ∈ U)

where α(F) = [x,F(x)] we get a defuzzifier on F with respect to U .

2. We get a modification of the concept of defuzzifier by introducing a new element
undefined ∉ U and by modifying definition 1 by adding the condition

∀F bF ∈ F ∧ suppF = ∅ → δ(F) = undefinedg .

With respect to applications this modification could be a better mathematical mod-
elling of the intuitive concept of defuzzification procedure. But, with respect to the
following mathematical investigations, we can not see any advantages, therefore we
shall not use this modification in the following.

3. In the paper [2] the authors allow that for a fuzzy set F ∈ F(U) the value δ(F) of δ is
a subset of U , i. e. δ(F)jU . But for using defuzzifiers in fuzzy control circuits this
approach is unapplicable because the input of the plant controlled must be an element,
i. e. the plant can not process a set as control signals, in general.

Furthermore, it is interesting that axiom 1 implies some simple, but important facts about
the value δ(F) of the defuzzifier δ for special fuzzy sets F . Let τ and σ be an arbitrary t-norm
and s-norm, respectively.

Proposition 1
1. ∀c∀x dc ∈ 〈0,1〉 ∧ c > 0 →δ cFc

x h = xi
2. ∀F cF ∈ F ∧ suppFν ≠ ∅ → δ bFνg ∉ suppFh
3. ∀F∀G bF,G ∈ F ∧ supp(F τ∩G) ≠ ∅ → δ(F τ∩G) ∈ suppF ∩ suppGg
4. ∀F∀G bF,G ∈ F ∧ supp(F σ∪G) ≠ ∅ → δ aF σ∪Gf ∈ suppF ∪ suppGg

Proof
Obviously by the definitions. �
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The following axioms 2-5 will not be valid for arbitrary F jF(U) and arbitrary defuzzifiers
δ and norms τ,σ.

In a forthcoming paper we shall investigate how F ,δ,τ,σ are to be restricted so that the
axioms hold.

Axiom 2
∀c∀F bc ∈ 〈0,1〉 ∧ c > 0 ∧ F ∈ F ∧ suppF ≠ ∅ → δ aτ(c,F)f = δ(F)g

Axiom 3
∀F bF ∈ F ∧ supp(F) ≠ ∅ → δ(F τ∩F) = δ(F)g

Axiom 4
∀c∀F bc ∈ 〈0,1〉 ∧ c > 0 ∧ F ∈ F ∧ suppF ≠ ∅ → δ aσ(c,F)f = δ(F)g

Axiom 5
∀F bF ∈ F ∧ suppF ≠ ∅ → δ(F σ∪F) = δ(F)g

3 Bijective Transformations of Fuzzy Sets and
Defuzzifiers

Now, we consider and investigate the fact that there are defuzzifying procedures which are
invariant with respect to certain transformations of the fuzzy sets considered.

For instance, the defuzzifying procedures listed on in chapter 1 are invariant with respect
to arbitrary linear transformations. New ideas with respect to the claim of invariance are
developed in [8].

In the following we generalize and systematize these observations using the theory of GA-
LOIS connections and the theory of groups.

By B(U) we denote the set of all bijections β on U . Obviously, the set B(U) forms a group
with respect to the concatenation of bijections from B(U). For simplification this group is
denoted by the same symbol B(U).

Let F ∈ F(U) and β ∈ B(U). Then by β(F) we denote the one fuzzy set on U , which is
defined for every x ∈ U by

bβ(F)g (x) =def F bβ(x)g .

Fundamental for all following considerations is the concept of admitting expressed by def-
inition 2 where δ is an arbitrary defuzzifier on F with respect to U and β is an arbitrary
bijection on U .

Definition 2
δ admits β with respect to F

∀F cF ∈ F → δ bβ(F)g = β bδ(F)gh.

As the following examples show there are defuzzifiers which admit every bijection on U
and there are other defuzzifiers which do not admit every bijection on U .

Example 1

Put
U1 =def k1,2,3p
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F1 =def lF F : U1 → 〈0,1〉 ∧ ∀u∀v au,v ∈ U1 ∧ F(u) = F(v) →u = vfq
δ1(F) =def x where x ∈ U1 and F(x) = maxlF(u) u ∈ U1q .

Obviously, for every F ∈ F1 the value x is uniquely defined, hence δ1 is a defuzzifier on F1
with respect to U1.

Furthermore, it is clear that for every bijection β on U1 we have

δ1 bβ(F)g = β bδ1(F)g
for all F ∈ F1.

Example 2

Put
U2 =def U1 = k1,2,3p
F2 =def kF,Gp where

F(1) =def
1
4 , F(2) =def

1
2 , F(3) =def

3
4

G(1) =def
1
2 , G(2) =def

1
4 , G(3) =def

3
4

β(1) =def 2, β(2) =def 1, β(3) =def 3

Then we have G = β(F).

Now, we define δ2 as follows

δ2(F) =def 2
δ2(G) =def 2,

hence

β bδ2(F)g = β(2) = 1,
δ2 bβ(F)g = δ2(G) = 2,

i. e. δ2 bβ(F)g ≠ β bδ2(F)g.

The examples above give the occasion to define for an arbitrary BjB(U) and an arbitrary
DjD(U) where F j F(U) is fixed

Definition 3
1. DEFUZZ(B) =def

R
S
T
δ δ ∈ D(U) ∧ ∀β∀FF

Hβ ∈ B ∧ F ∈ F → δ bβ(F)g = β bδ(F)g IK
U
V
W

2. BIJECT(D) =def
R
S
T
β β ∈ B(U) ∧ ∀δ∀FF

Hδ ∈ D ∧ F ∈ F → δ bβ(F)g = β bδ(F)g IK
U
V
W
.

Of course, DEFUZZ(B) and BIJECT(D) depend on F . But, because F is fixed throughout
the paper we omit the letter F .

The set DEFUZZ(B) can be interpreted as the set of all general defuzzifiers which admit all
bijections from B. Analogously, the set BIJECT(D) is the set of all bijections on U which
are admitted by all defuzzifiers from D.

Theorem 2
The pair [DEFUZZ,BIJECT] is a GALOIS connection between the posets [PB(U),j] and
[PD(U),j].

Proof
By definition of GALOIS connection (see [3], chapter 24, for instance) we have to prove for
every BjB(U) and DjD(U),

Dj DEFUZZ(B) ↔ Bj BIJECT(D).
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I (!)
Assume

Dj DEFUZZ(B),(1)

hence by definition of DEFUZZ

∀δ dδ ∈ D → ∀β∀F cβ ∈ B ∧ F ∈ F → δ bβ(F)g = β bδ(F)ghi .(2)

Assume

β′ ∈ B,(3)

then we have to show

∀δ∀F cδ ∈ D ∧ F ∈ F → δ bβ′(F)g = β′ bδ(F)gh .(4)

But (4) follows immediately from (2) and (3).

II ( )
As for I (!). �

Theorem 3
For every B,B′jB(U) and every D,D′jD(U),

1. Bj B′ →DEFUZZ(B′)j DEFUZZ(B)

2. Dj D′ →BIJECT(D′)j BIJECT(D)

3. Bj BIJECT aDEFUZZ(B)f
4. Dj DEFUZZ aBIJECT(D)f
5. DEFUZZ(B) = DEFUZZ bBIJECT aDEFUZZ(B)fg
6. BIJECT(D) = BIJECT bDEFUZZ aBIJECT(D)fg

Proof
This theorem follows from theorem 2 within the framework of the general theory of GALOIS

connections. �

Corollary 4
1. BIJECT is a bijection from the set mDEFUZZ(B) BjB(U)r onto the set

mBIJECT(D) DjD(U)r
2. DEFUZZ is the inversion of the mapping BIJECT.

From applications we know that the set of all linear transformations (which are admitted
by the defuzzifying procedures listed on in chapter 1) forms a group. Furthermore, we can
state that this group is even commutative.

In the following we shall discuss these facts within the framework of our general approach.

For definiteness for every β,β′ ∈ B(U) by ββ′ and β−1 we denote the product of β,β′ and
the inversion of β, respectively, defined by

bββ′g(u) =def β′ bβ(u)g , u ∈ U β−1(u) = v =def u = β(v), u,v ∈ U.

Theorem 5
For every DjD(U), if

∀β∀F eβ ∈ BIJECT(D) ∧ F ∈ F → β(F) ∈ F ∧ β−1(F) ∈ F j ,
then BIJECT(D) is a group with respect to the product of bijections, hence a subgroup of
B(U).
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Proof
We have to show

1. ∀β′∀β cβ′,β ∈ BIJECT(D) → bββ′g ∈ BIJECT(D)h
2. ∀β dβ ∈ BIJECT(D) → β−1 ∈ BIJECT(D)i

ad 1
Assume

∀δ cδ ∈ D ∧ F ∈ F → δ bβ(F)g = β bδ(F)gh(1)

and

∀δ cδ ∈ D ∧ F ∈ F → δ bβ′(F)g = β′ bδ(F)gh(2)

We have to show

∀δ dδ ∈ D ∧ F ∈ F → δ cbββ′g(F)h = bββ′g bδ(F)gi .(3)

Now, by (1) we get

bββ′g bδ(F)g
= β′ cβ bδ(F)gh
= β′ cδ bβ(F)gh .

(4)

Furthermore, by assumption we have

∀F bF ∈ F → β(F) ∈ F g ,(5)

hence by (2) we obtain

β′ cδ bβ(F)gh = δ cβ′ bβ(F)gh
= δ cbββ′g(F)h ,(6)

hence because of (4) and (6), (3) holds.

ad 2
Assume

∀δ∀F cδ ∈ BIJECT(D) ∧ F ∈ F → δ bβ(F)g = β bδ(F)gh .(7)

We have to show

∀δ∀F F
Hδ ∈ BIJECT(D) ∧ F ∈ F → δ eβ−1(F)j = β−1 bδ(F)gIK .(8)

Because of assumption we have

∀F eF ∈ F → β−1(F) ∈ F j ,
hence from (7) we get

δ FHβ eβ−1(F)jIK = β F
Hδ eβ

−1(F)jIK ,(9)

hence by ββ−1 = ε where ε denotes the identical bijection

δ(F) = β F
Hδ eβ

−1(F)jIK ,(10)

hence

β−1 bδ(F)g = β−1
F
G
H
β F
Hδ eβ

−1(F)jIK
I
J
K

= δ eβ−1(F)j .
(11)

�
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Corollary 6
BIJECT is an injection from the set mDEFUZZ(B) BjB(U)r into the set
lS S is a subgroup of B(U)q.

Problem To characterize the subgroups S of B(U) which have the form S = BIJECT(D)
where DjD(U).

Now, for arbitrary β ∈ B(U) and arbitrary δ ∈ D(U) we define a left-product β ° δ and a
right-product δ ° β as follows where F ∈ F(U).

Definition 4
1. (β ° δ)(F) =def β bδ(F)g
2. (δ ° β)(F) =def δ bβ(F)g.

Now, we are going to formulate sufficient conditions for the fixed set F j F(U) and for the
given set DjD(U) of defuzzifiers on U such that the group BIJECT(D) is even commuta-
tive.

Theorem 7
For every DjD(U),
If 1. ∀β∀F dβ ∈ BIJECT(D) ∧ F ∈ F → β(F) ∈ F ∧ β−1(F) ∈ F i

2. lδ(F) δ ∈ D ∧ F ∈ F q = U and
3. ∀β∀δ bβ ∈ BIJECT(D) ∧ δ ∈ D → β ° δ ∈ Dg

then the group BIJECT(D) is even commutative.

Proof
Assume

β,β′ ∈ BIJECT(D).(1)

By theorem 5 it is sufficient to show

β ° β′ = β′ ° β,(2)

hence by definition of the product of bijections we have to prove

∀x cx ∈ U → β′ bβ(x)g = β bβ′(x)gh .(3)

By U ≠ ∅ and assumption 2 there is a δ such that

δ ∈ D.(4)

Then by (1) and assumption 3 we get

β′ ° δ ∈ D,(5)

hence by definition of BIJECT(D) and (1) we obtain for every F ∈ F

β cbβ′ ° δg(F)h = bβ′ ° δgbβ(F)g ,(6)

hence by definition of β′ ° δ,

β cβ′ bδ(F)gh = β′ cδ bβ(F)gh .(7)

Furthermore, by (1), (4) and definition of BIJECT(D) for F ∈ F we have

δ bβ(F)g = β bδ(F)g ,(8)
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hence by (7) and (8) we get

β cβ′ bδ(F)gh = β′ cβ bδ(F)gh(9)

for every δ ∈ D and F ∈ F .

Because of assumption 2 we obtain (3). �

The following theorem expresses a certain “inversion” of theorem 7.

Theorem 8
If 1. B is a commutative subgroup of the group B(U)

2. ∀β∀F bβ ∈ B ∧ F ∈ F → β(F) ∈ F g
3. ∀β∀F bβ ∈ B ∧ F ∈ F → suppβ(F) = suppFg

then

∀β∀δ bβ ∈ B ∧ δ ∈ DEFUZZ(B) →β ° δ,δ ° β ∈ DEFUZZ(B)g .

Proof
Assume

β ∈ B(1)

and

δ ∈ DEFUZZ(B).(2)

From (2) by definition of DEFUZZ(B) we get

∀F bF ∈ F ∧ suppF ≠ ∅ → δ(F) ∈ suppFg(3)

and

∀β′∀F′ cβ′ ∈ B ∧ F′ ∈ F → δ bβ′(F′)g = β′ bδ(F′)gh .(4)

ad 1 β ° δ ∈ DEFUZZ(B)
By definition of β ° δ and DEFUZZ(B) we have to prove

β ° δ ∈ D(U)(5)

and

∀β′′∀F′′ cβ′′ ∈ B ∧ F′′ ∈ F → (β ° δ) bβ′′(F′′)g = β′′ b(β ° δ)(F′′)gh .(6)

We show (5). By definition of D(U) it is sufficient to prove

∀F bF ∈ F ∧ suppF ≠ ∅ → (β ° δ)(F) ∈ suppFg .(7)

From F ∈ F , suppF ≠ ∅, definition of β ° δ, (1), and (4) we obtain

(β ° δ)(F) = β bδ(F)g = δ bβ(F)g .(8)

From (1), F ∈ F , and assumption 3 we get

suppβ(F) = suppF,(9)

hence by suppF ≠ ∅ we have

suppβ(F) ≠ ∅.(10)
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Furthermore, (1), F ∈ F , and assumption 2 imply

β(F) ∈ F ,(11)

hence

δ bβ(F)g ∈ suppβ(F),(12)

hence by (9)

δ bβ(F)g ∈ suppF,(13)

hence by (8) we get (7).

Now, we show (6). Assume

β′′ ∈ B(14)

and

F ′′ ∈ F .(15)

By definition of β ° δ it is sufficient to show

β cδ bβ′′(F′′)gh = β′′ cβ bδ(F ′′)gh .(16)

From (13), (14) by (4) for β′ =def β′′ and F ′ =def F ′′ we get

δ bβ′′(F′′)g = β′′ bδ(F′′)g ,(17)

hence

β cδ bβ′′(F′′)gh = β cβ′′ bδ(F ′′)gh .(18)

Because B is commutative, we get

β cβ′′ bδ(F′′)gh = β′′ cβ bδ(F′′)gh ,(19)

hence (17) and (18) imply (15).

ad 2 δ ° β ∈ DEFUZZ(B)
By definition of δ ° β and DEFUZZ(B) we have to prove

δ ° β ∈ D(U)(20)

and

∀β′′∀F′′ cβ′′ ∈ B ∧ F′′ ∈ F → (δ ° β) bβ′′(F′′)g = β′′ b(δ ° β)(F′′)gh .(21)

We show (20). By definition of D(U) it is sufficient to prove

∀F bF ∈ F ∧ suppF ≠ ∅ → (δ ° β)(F) ∈ suppFg .(22)

By definition of δ ° β we get

(δ ° β)(F) = δ bβ(F)g .(23)

From (1), F ∈ F and assumption 3 we obtain

suppβ(F) = suppF,(24)

10



hence by suppF ≠ ∅ we get

suppβ(F) ≠ ∅.(25)

Furthermore, (1), F ∈ F and assumption 2 imply

β(F) ∈ F ,(26)

hence

δ bβ(F)g ∈ suppβ(F),(27)

hence by (24)

δ bβ(F)g ∈ suppF,(28)

hence by (23) we get (22).

Now, we show (21). We assume (14) and (15). By definition of β °δ it is sufficient to show

δ cβ bβ′′(F′′)gh = β′′ cδ bβ(F′′)gh .(29)

From (14) and (15) by (4) for β′ =def β and F′ =def F ′′ we obtain

δ bβ(F′′)g = β bδ(F′′)g ,(30)

hence

β′′ cδ bβ(F′′)gh = β′′ cβ bδ(F ′′)gh .(31)

Because B is commutative, we have

β′′ cβ bδ(F ′′)gh = β cβ′′ bδ(F ′′)gh .(32)

Because of (1) and (14), i. e. β,β′′ ∈ B, for the group B we obtain β °β′′ ∈ B, consequently
from (4) for β′ =def β′′ ° β and F ′ =def F ′′ we obtain

β cβ′′ bδ(F′′)gh = δ dβ cβ′′ bδ(F′′)ghi ,(33)

hence (31), (32), and (33) imply (29). �

4 Conclusions

The concepts and results of chapter 3 can be interpreted as first steps to build up a (new)
algebraic theory of defuzzification procedures. Whether this way will be successful can not
be estimated on the basis of the paper presented. Further investigations are necessary, in
particular, investigations with respect to the well-known defuzzification procedures listed
on in chapter 1 and the approaches published in [13–16] and also in other papers. In forth-
coming papers we shall study this area of problems.
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