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1. ABSTRACT

In this paper the problem of pattern classification
for inputs with missing values is considered. A
general fuzzy min-max (GFMM) neural network
utilising hyperbox fuzzy sets as a representation of
data cluster prototypes is used. It is shown how a
classification decisions can be carried out on a
subspace of a high dimensional input data. No
substitution scheme for missing values (approach
quite commonly used) is utilised. The result is a
classification procedure that reduces a number of
viable class alternatives on the basis of available
information rather than attempting to produce one
winning class without supporting evidence. A number
of simulation results for well known data sets are
provided to illustrate the properties and performance
of the proposed approach.

2. INTRODUCTION

Missing values have been largely ignored in the
pattern recognition literature, although problems with
incomplete feature vectors are quite common and of
great practical and theoretical interest [1, 4-8].

The reasons for missing data can be multifold
ranging from sensor failures in engineering
applications to deliberate withholding of some
information in medical questioners. Whatever the
reason for missing data the fact remains that most of
the pattern recognition algorithms are not able to
cope with such deficient inputs. It is in a sharp
contrast to the very efficient way in which humans
deal with unknown data and are able to carry out
various pattern recognition tasks given only a subset
of input features.

One of the most common ways of dealing with
missing values is to substitute the missing features
with their estimates [1]. These could include the
mean value calculated over all examples (or k-nearest
neighbours) for a particular feature. However, as it
has been pointed out in [4,5,8] such a “repaired” data
set may no longer be a good representation of the
problem at hand and quite often leads to the solutions
that are far from optimal. Instead the authors in the
above mentioned papers used the approach based on
estimating conditional probability distribution over
all unknown features given the known features. And
although it is another form of estimating the missing
values it proved to be more accurate than the heuristic
approaches used before.

Another approach presented in [7] advocates the

creation of a set of classifiers that would work on
different subsets of input features. Unfortunately, this
method of training classifiers for all possible
combinations of input features very quickly explodes
in complexity with an increasing number of features.

One of the potential drawbacks of the methods
based on the estimation of missing features is the fact
that once the estimated value has been used (in
implicit or explicit way) the output of the classifier
does not differ in any way from the output generated
for examples with all features present. To give an
extreme example a classification of an input with no
missing values can produce the same result as the
classification of the input with all features missing.
Clearly in the second case, since there is no evidence
supporting the choice of any of the classes, this
should be reflected in the classification output by
making all the classes equally viable alternatives. In
other words there are a number of applications (i.e.
diagnostic analysis) where for inputs with missing
features the aim of classification should be the
reduction of viable alternatives rather than finding
the most probable class. It is worth mentioning that
the reduction of viable alternative classes does not
rule out the possibility of choosing only one class as
a result of classification as long as the evidence for
this result is contained in the given subset of features.

In this paper the operation of the GFMM [2,3]
neural network for classification of inputs with
missing values is presented. The recall stage is only
considered and the classification results are analysed.
It is shown how a classification decisions can be
carried out on a subspace of a high dimensional input
data. A specific form of cluster prototypes (hyperbox
fuzzy sets) in combination with a classification
function based on a fuzzy membership function are
shown to facilitate the classification of incomplete
input vectors without any modifications done to the
NN structure or substituting of missing features with
estimated values. The result is a classification
procedure that reduces a number of viable class
alternatives on the basis of available information
rather than attempting to produce one winning class
without supporting evidence. The remaining of this
paper is organized as follows. Section 3 presents a
summary of the GFMM neural network with
definitions of hyperbox fuzzy sets and associated
fuzzy membership function. A way of dealing with



missing features within the GFMM NN structure is
described in Section 4. The simulation results for a
number of well known data sets follow in Section 5.
And finally the conclusions are drawn in the last
section.

3. AN OVERVIEW OF GFMM
NEURAL NETWORK

The GFMM neural network for classification
constitutes a pattern recognition approach that is
based on hyperbox fuzzy sets. A hyperbox defines a
region of the n-dimensional pattern space, and all
patterns contained within the hyperbox have full
class membership. A hyperbox is completely defined
by its min-point and its max-point. The combination
of the min-max points and the hyperbox membership
function defines a fuzzy set. Learning in the GFMM
neural network for classification consists of creating
and adjusting hyperboxes in pattern space. For more
details concerning the training algorithm please refer
to [3]. Once the network is trained the input space is
covered with hyperbox fuzzy sets. Individual
hyperboxes representing the same class are
aggregated to form a single fuzzy set class.
Hyperboxes belonging to the same class are allowed
to overlap while hyperboxes belonging to different
classes are not allowed to overlap therefore avoiding
the ambiguity of an input having full membership in
more than one class. The input to the GFMM can be
itself a hyperbox (thus representing features given in
a form of upper and lower limits) and is defined as
follows:
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where Afl and AZ are the lower and the upper limit
vectors for the A-th input pattern. Inputs are contained
within the n-dimensional unit cube I". When A} =A"

the input represents a point in the pattern space.

The j-th hyperbox fuzzy set, B; is defined as

follows:

Bj = {4y, V), Wj, bj(X,, Vi W} M)
for all j=1,2,...,m, where VJ. = (vjl, Vigs oeos vj”) is the
min point for the Jj-th hyperbox,

W= (Wi Wi oo w)y) is the max point for the j-th

hyperbox, and the membership function for the j-th
hyperbox is:

bj(Ay) = min(min([1 ~flay;=w;p 1], )
1=1..n
[1 _f(‘{/j_a;lis 'Y,)]))
where:
1 if xy>1
fx,y) = xy if 0<xy<1 -twoparameterramp
0 if xy<O0

threshold function; y = [y, ¥, ....Y,] - sensitivity

parameters governing how fast the membership
values decrease; and 0 < b,.(Ah, Vi’ W,.) <1.

The membership values are used to decide whether
the presented input pattern belongs to the class
associated with the j-th hyperbox during the neural
network operation stage.

The neural network that implements the GFMM
classification algorithm is a three layer feedforward
neural network shown at Fig. 1.
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Figure 1: Three layer feedforward GFMM neural
network.

The input layer has 2*n processing elements, two
for each of the n dimensions of the input pattern

A, = [A} A!]. Each node in the second layer

represents a hyperbox fuzzy set. The connections of
the first and second layer are the min-max points and
the transfer function is the hyperbox membership
function. The min points matrix V is applied to the
first n input nodes representing the vector of lower

bounds Afl of the input pattern, and the max points
matrix W is applied to the other n input nodes
representing the vector of upper bounds A}, of the

input pattern. Each node in the third (output) layer
represents a class. The connections between the
nodes of the second and third layer are binary values
assuming 1 if the second layer hyperbox fuzzy set is
a part of the class represented by the output layer
node and O otherwise. They are stored in the matrix
U. The equation for assigning the values of U is

{]
u.,;, =
Jk 0

where b; is the j-th node in the second layer and ¢,

if b, is a hyperbox for class ¢
e NG

otherwise

is the k-th node in the third layer. The output of the
third layer node represents the degree to which the



input pattern A, fits within the class k. The transfer

function for each of the third layer nodes is defined as
m
¢ = max buy 4
[

for each of the p third layer nodes. The outputs of the
class layer nodes can be fuzzy when calculated using
equation (4) directly, or crisp when a value of 1 is
assigned to the node with the largest ¢ and O to the
other nodes.

4. INCOMPLETE
PROCESSING

It is assumed at this stage that the GFMM neural
network has been trained to classify n-dimensional
input patterns to one of the p classes. The
classification is based on a distance measure given by
the hyperbox membership function (2) and the
hyperbox aggregation formula (4).

The discriminative character of the hyperbox
membership function is based on penalising the
violations of hyperbox min and max values for each

DATA

input dimension. The smaller afli than v, or the

larger aj, than w;;, the smaller the membership

ji?
value, b,(A)), for the j-th hyperbox fuzzy set B;. If
the i-th feature (dimension) of the input pattern is
completely missing one would like to make sure that
the hyperbox membership values will not be
decreased due to this fact. It can be assured by the
following assignments for the missing i-th feature:

ay; = 1 and aj; = 0 )

In other words all values for i-th feature are
considered as equally likely as illustrated at Fig. 2
showing a simple 2 dimensional example.
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Figure 2: A simple 2 dimensional illustration of
incomplete data processing using GFMM NN for

two hyperbox fuzzy sets representing 2 classes (C1

and C2)

Case 1 - input pattern with second feature missing A j=(a;;,-);
Result: bj(A;)=by(A;)=1 - two equally likely alternatives.

Case 2 - input pattern with first feature missing A,=(-,a5,);
Result: by(Ay)=1 > by(A,) - class Cl selected as a winner.

Assignment (5) also ensures that the structure of the
NN will not have to be changed when processing
inputs  with  missing dimensions.  Another
consequence of (5) is a possibility of an input with
missing features having a full membership in more
than one class. This, however, is something rather
desirable since it aids in distinguishing from cases
with all features present and reflects uncertainty
associated with missing data. Generally, the more
features missing the closer the membership value to 1
for more classes.

S. SIMULATION RESULTS

The testing of the proposed approach has been
carried out on three well known data sets, namely
IRIS, Wine and Ionosphere, obtained from the
repository of machine learning databases (http://
www.ics.uci.edu/~mlearn/MLRepository.html). The
sizes and splits for testing and training data for all
three data sets are shown in Table 1.

No. of data points

D No. of | No. of
ata set inputs | classes

p Total | Train | Test
IRIS 4 3 150 75 75
Wine 13 3 178 90 88
Ionosphere | 34 2 351 200 151

Table 1: The sizes of data sets used in
classification experiments.

First the GFMM neural network was trained using
training data sets without missing values.
Subsequently, the testing was conducted on all
testing data sets for a factor of missing features
ranging from 10% to 80%. At each level, the average
values over 100 testing runs, each for randomly
chosen missing features have been calculated. The
results obtained using the proposed method and their
comparison with the nearest neighbour classifier,
with missing values substituted with the mean values
calculated from the training set, are shown at Fig. 3.

The greyed area represents cases where 2 or more
classes have been identified as viable alternatives
(classes with equal, maximal degree of membership)
with the correct class always present. The area below
the greyed area refers to unique, correct classification
where only one, correct class has been chosen. The
area above the greyed area represents misclassified
cases.

What is interesting is the fact that the level of
misclassified cases remains roughly the same for a
whole range of missing features. The increasing level
of missing features is reflected in a higher percentage
of cases for which classification resulted in
producing more than one viable alternative but
almost always including the correct class. This can be
particularly observed for IRIS and Wine data sets.

However, as it can be seen for Ionosphere data set



even for a high level of missing features, one winning
class is produced for a vast majority of testing cases
(i.e. there is a very small grey area). This is an
example of how the classification with missing
features can result in a one class being selected if only
the known features are discriminative enough to do
SO.

Another interesting point is that the percentage of
cases with multiple alternatives seem to increase
more quickly with increasing ratio of missing
features for data sets with smaller input data
dimensionality. However, this observation will
require further investigations and the connection
between input data dimensionality and number of
classes will have to be analysed more thouroughly.

Results for IRIS data presented in [4,5,8] fall within
the grey area with a significant decrease in
performance for higher percentage of missing values.
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Figure 3: Classification results for a) IRIS, b) Wine,

and c) lonosphere data sets for different levels of
missing features. Comparison of the proposed

method with the nearest neighbour algorithm.

6. CONCLUSIONS

An approach based on GFMM neural network for
dealing with incomplete data in classification
problems has been presented. The resulting classifier
uniquely classifies inputs with missing features if the
evidence is present in the known features and
produces a number of equally viable alternatives
otherwise. In contrast to approaches based on
estimating missing values or conditional probability
distributions, uncertainty associated with missing
features is directly reflected in the GFMM classifier’s
output. It stems from a more general property of the
GFMM NN for classification and clustering which is
able to distinguish between “equally likely” and
“unknown” inputs [3].

When a classification process is required to
produce a winning class the proposed method could
be combined with approaches based on estimation of
conditional probability distributions and thus
providing more informative classification results.
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