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Abstract—We propose a concept drift detection method utiliz-
ing statistical change detection in which a drift detection method
and the Page-Hinkley test are employed. Our method enables
users to annotate clustering results without constructing a model
of drift detection for every input. In our experiments using
synthetic data, we evaluated our proposed method on the basis
of detection delay and false detection, also revealed relations
between the degree of drift and parameters of the method.

I. INTRODUCTION

Over the last decade, electronic signal data have been
produced and rapidly stored. A data stream is a series of data
continuously produced at high speed. Because of this nature of
streaming data, algorithms have to use limited computational
resources in terms of computational power, memory, commu-
nication, and processing time [1].

In this work, we aim at developing a monitoring system
for damage within fuel cells. Such damage is observed via
ultrasonic waves of acoustic emission (AE) produced by cracks
and/or delamination of the materials. Fukui et al. validated
that major types of damage can be clustered on AE events
via Kernelized self-organizing maps (SOM) [2]. Here it is
impractical to collect all possible damage types in advance
of monitoring; therefore, it is important to renew the cluster
model while adapting to changes in characteristics and types
of damage, i.e., concept drift [1], [3].

One way to adapt to concept drifting stream data is
an online learning approach wherein the model is updated
regardless of whether a concept drift exists [4]; however, since
online learning updates frequently and changes the model, it
is difficult for a user to intervene. Another way to adapt is
to first detect a concept drift, and then update the model via
a batch approach [5]–[10]. Using this methodology, a user
can intervene since the frequency of model updates can be
restrained. We employed the latter methodology because of
the labeling (i.e., annotation) process for SOM clustering in
our monitoring system.

Until now, research focused on concept drift detection
has primarily comprised a binary classification problem or
supervised learning [6]–[8]. In our application, AE events are
not always easy to categorize (i.e., label); hence, unsupervised
learning is preferable in our case. As for concept drift detection
methods with clustering, density-based approaches have been
proposed [9], [10]; however, a density-based method generally
has high computational cost. Morevover, the model must be

constructed for every data point or every window to compare
to past models. Model construction for concept drift detection
may cause detection delays of abnormalities during monitor-
ing.

In this work, we therefore propose a concept drift detection
method with clustering by adopting a statistical change detec-
tion method, namely the drift detection method (DDM) [6]
used for classification problems or supervised learning, and a
signal change detection method [11] in which the PageHinkley
test (PHT) is used. Our method allows a user to intervene
and is a non-density-based drift detection method for low
computational cost, since there is no model construction for
a drift detection. Here, though the SOM model has to be
reconstructed when a drift is detected, in this paper, we focus
on concept drift detection. Our experiments using synthetic
data validated the combined DDM and PHT-based proposed
method in terms of delays and false detection; furthermore, it
revealed relations between parameters in DDM/PHT and the
drift degree.

II. MONITORING ARCHITECTURE

To handle high-frequency sensor data streams and to
cluster AE events together with annotations, we propose the
architecture shown in Fig. 1, which combines a data stream
management system (DSMS) [12], [13] and a data mining
method [2] in cooperation with a user. The figure shows
the two types of processing. The low-frequency process for
clustering and labeling, which involves a domain expert, must
only be done when data changes on the left side of the
figure, whereas the high-frequency cluster assignment and
complex event processing are performed when data on the right
side delivers information in near real-time to the monitoring
application.

In the figure, the dotted line represents the system boundary
of the DSMS. The raw sensor stream is first preprocessed to
detect an AE event and extract features of the event (prepro-
cessing), and then the event is assigned to a pre-constructed
cluster map using the SOM (cluster assignment). Afterward,
concept drift is checked based on the cluster assignment of
the new event (concept drift detection). If a concept drift is
detected, clustering is re-produced using recent data (update
cluster map). Then, labels for clusters are updated, if necessary,
with a user intervention (update labeling), i.e., a meaningful
domain-based name such as “cracks in the electrode”, and then
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Fig. 1. Proposed monitoring architecture

archive the labeled cluster map (archive). While, if a concept
drift does not exist, the system checks user pre-defined rules
that combine events, count events, or detect temporal event
patterns to provide alert to the user (complex event processing).
These rules can be defined by symbolic rules, wherein the
symbols are derived from labels of clusters. For example, if
damaged events detected on the electrode are more than a
predefined threshold, then the damage monitor application is
informed or the damage control workflow is invoked.

Since the DSMS runs in memory, relevant information
should be archived in a database, we recommend to store at
least the complex and symbolic events for later analysis. For
provenance, the labeled cluster maps or raw AE events may
also be archived, but this may lead to excessive volumes of
data, hence, using intelligent archiving techniques would be
preferred.

In the next section, we mainly focused on the concept drift
detection method used in our architecture.

III. CONCEPT DRIFT

In streaming data, the nature of data often changes over
time due to factors such as changes in situations, degradation
of sensors, and accidents. “Concept drift” refers to changes of
a “concept” or model that the algorithm must learn over time
[1], [3].

A. Types of Concept Drift

There are several types of concept drift. Given conditional
probability distribution Pr(X|S) with variables X and infor-
mation source S, we next introduce some concept drift types
that are related to our solid oxide fuel cell (SOFC) damage
monitoring system.

1) Sudden Drift: Illustrated in Fig. 2a, sudden drift is a
simple change in which the conditional probability distribution
changes from Pr(X|S1) to Pr(X|S2) at time t due to changes
of the information source from S1 to S2. Examples on the
application of SOFC monitoring include the exchange of a
cell to a new one, and sudden equipment failure.

2) Gradual Drift: Illustrated in Fig. 2b, gradual drift refers
to a slow change of the information source from S1 to
S2. Here, Pr(S1) gradually decreases and Pr(S2) increases
over time. In SOFC monitoring, damage types change over
time depending on the inner state [2], for example, damage
gradually shifts from cracks in the electrolyte to cracks in the
glass seal.

3) Incremental Drift: Illustrated in Fig. 2c, incremental
drift is a gradual change of Pr(X|S) that becomes a different
distribution of variable X due to changes in the nature of S.
This type of drift is typically the most difficult to detect. In
SOFC monitoring, the characteristic power spectrum of AE
events, even from the same material, changes depending on
the temperature and oxidation stage [2].

B. Statistical Concept Drift Detection Methods

In this section, we introduce drift detection methods using
supervised classification and signal processing; furthermore,
we propose an approach for applying unsupervised clustering.

1) Drift Detection Method (DDM): Gama et al. proposed
DDM, which utilizes statistical process control (SPC) for
binary classification problems [6]. We describe the details of
DDM below.

Let data (�xi, yi) be continuously provided, where �xi is a
feature vector, yi is its binary class, and i is the data number.
Then, a trained decision model predicts a class ŷ for each input.
Here, yi = ŷ is positive and yi �= ŷ is false (i.e., error), i.e., an
error is determined by a Bernoulli trial. Therefore, as false
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(a) Sudden Drift (b) Gradual Drift (c) Incremental Drift

Fig. 2. Types of concept drifts

Algorithm 1 Drift Detection Method (DDM)

Input:
labeled dataset x1, x2, · · · , xt

warning threshold tw (default tw = 2)
detection threshold td (default td = 3)
warm-up window size w0 (default w0 = 30).

1. Initialize minimum classification error pmin = ∞ and
corresponding standard deviation smin = ∞. Set warning
zone flag fw to false and w1 = 0.

2. For j = 1 to t− 1 (all observations)
if j < w0 then then

wj+1 = wj +1(warm up, only grow the window)
else

i. Train a classifier on current window of size wj .
ii. Classify observation wj+1.
iii. Update the error rate over the current win-
dow. Let p̂ be the updated error rate and ŝ =√
pi(1− pi)/wj be the updated standard deviation.

iv. If (p̂+ ŝ) < pmin+smin, then update minimum
error via pmin = p̂ and smin = ŝ
v. If (p̂+ ŝ) ≥ (pmin + td ∗ smin) and fw = true
then a change is detected; set detection time as
td = j
Obtain all observations on the new training and
detection window since tw (size of wj+1 = j−tw+
1), and set pmin =∞, smin =∞ and tw =∞.

ElseIf (p̂+ ŝ) ≥ (pmin + tw ∗ smin) then
If fw = false then

switch warning zone flag fw = true
and set warning time tw = j.

Else
set fw = false and update the
window by adding xj+1 to it (size
wj+1 = wj + 1)

end if
DTDDM = tw
Output: detection time DTDDM

probability pi follows a binomial distribution, the standard
deviation si of pi can be given by

si =
√
pi(1− pi)/i. (1)

In DDM, pi and si are updated and maintained for suc-
cessive inputs, then used for drift detection. These values are
updated when pi + si < pmin + smin is satisfied. Here, a
binomial distribution approximates a normal distribution when

the number of samples is sufficient. Therefore, confidence
interval 1 − δ/2 can be pi ± α ∗ si, where α is a confidence
coefficient. For example, α = 2 and α = 3 corresponds to
approximately 95% and 99% confidence intervals, respectively.

The original DDM uses two thresholds, namely “Warning
level” and “Drift level”. The warning level uses α = 2 as
pi + si ≥ pmin + 2 ∗ smin, whereas the drift level uses α = 3
as pi + si ≥ pmin + 3 ∗ smin. When input xw exceeds the
warning level, all inputs after xw are stored. Then, when input
xd exceeds the drift level, the model is reconstructed using the
stored data (xw, · · · , wd). In addition, pi and si are reset. This
DDM algorithm is presented in Algorithm 1.

2) Application to Clustering: As mentioned above, DDM
was originally developed for binary classification problems.
The false probability pi is followed by the binomial distribu-
tion; hence its standard deviation si can be calculated by (1).
This work utilizes the assignment error of data xi to the SOM
model as pi as

pi = min
j
||xi −Wj || (j = 1, 2, ...,m) (2)

where Wj denotes the reference vector of the j-th neuron node
in SOM and m is the number of nodes.

Regarding si, by using window as pi−w, pi−w+1, ..., pi
(where w is the window size) for pi, si is calculated as

si =

√∑i
n=i−w(pn − μ)2

w + 1
, (3)

where μ is an average of pi in the window.

3) Page-Hinkley test (PHT): This test [14] is a sequential
analysis method that has been used for change detection
[11]. PHT assumes that a random variable follows a normal
distribution and detects a change in its average. In PHT,
cumulative error UT from the beginning to the current time
is calculated as

UT =
T∑

t=1

(yt − yT − σ), (4)

where yt is an observed value, yT is an average observed value

given by yT = 1/T
∑T

t=1 yt, σ is a parameter to determine the
degree to which noise is permitted, and mT is maintained as
the minimum value of UT , i.e., mT = min(U1, U2, · · · , UT ).
Then, variable PHT is given as PHT = UT −mT . Concept
drift is judged when PHT becomes greater than the predefined
parameter λ, i.e.,

PHT > λ. (5)
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Algorithm 2 Page-Hinkley test (PHT)

Input:
dataset y1, y2, · · · , yt
magnitude threshold σ
detection threshold λ
for t > 0 do

1 Compute
yT = 1/T

∑t
t=1 xt

UT =
∑T

t=1(xt − yT − σ)
mT = min(U1, U2, ..., UT )

If PHT = UT −mT > λ
Return and report a change at time tPH

else
Return to 1

end for
Output: detection time tPH

The complete PHT algorithm is described in Algorithm 2.
Here, in our situation, the assignment error eq. (2) is also used
for yi in PHT.

IV. EXPERIMENTS

We validated the DDM and PHT-based concept drift de-
tection methods for clustering using synthetic data, which we
describe below.

A. Synthetic Data

The synthetic data is generated from two classes of two-
dimensional normal distributions with different centers. Fig. 3
illustrates a data distribution in which the distance between
classes is 1.5. The distance between classes varied in our
experiments.

Fig. 3. Data distribution of synthetic data

B. Experimental Procedure

We conducted our experiments as follows:

α

Fig. 4. Relation between the drift degree and detection delay in DDM

Experimental Procedure� �
1) Generate data for class 1 (350 points) and for

class 2 (350 points) with different centers.
2) Construct a SOM model for class 1 (using 300

points).
3) Successively assign class 1 (50 points) followed

by class 2 (350 points) to the SOM model.
Judge a concept drift via DDM or PHT for every
assignment.

4) Repeat Steps 1 to 3 several times with different
random values for the data distributions.

� �
For SOM settings, we used a regular grid of 10 × 10
nodes, a Gaussian function for the neighborhood function, and
randomly generated initial reference vectors.

C. Experiment 1. Detection Delay and Drift Degree

We first validated the effect of detection delay by vary-
ing the distance between classes of data distributions as
0.25, 0.50, 0.75, · · · , 2.00, which corresponds to drift degree.
The smaller the distance, the smaller the drift, thus making
the drift degree more difficult to detect. For each distance,
we tested 30 trials with different random values for the data
distributions. In addition, the earliest correct detection was data
number 51; therefore, we set this moment as zero delay.

1) DDM: Detection parameter α were varied as
2.00, 2.25, 2.50, · · · , 5.00 with fixed window size w = 10.
Note that as mentioned above, since pi was not guaranteed
to follow a binomial distribution in our method, α does not
correspond to a confidence interval. Therefore, we varied α as
a parameter to check its relevance to detection. Fig. 4 shows
our results with the distance between classes represented on
the x-axis and medians of detection delay on the y-axis.

2) PHT: Detection parameter λ were varied as
0.2, 0.4, 0.6, · · · , 2.0 with the other parameter fixed at
σ = 0.05, which has been commonly used in previous
research [11]. Results shown in Fig. 5 are the same as in
DDM.

3) Discussion: From Figs. 4 and 5, when the distance
between classes is large, the detection delay becomes small
in both methods. From this result, we conclude that our
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λ

Fig. 5. Relation between the drift degree and detection delay in PHT

proposed method works as a concept drift detection method
for unsupervised clustering when the drift is sufficiently large.

Furthermore, the delay increases after distance 1.0 for both
DDM (Fig. 4) and PHT (Fig. 5), in which distance 1.0 is
equal to 1σ of the normal distribution in the synthetic data.
For values larger than 1σ, though smaller detection delays can
be obtained depending on the parameter, there is a trade-off
between delay and false detection, as presented in the next
section.

D. Experiment 2. Effect of Window Size

In the second experiment, we varied the window size
of DDM to evaluate the effect window size would have on
detection performance. Window size were varied as 10, 30,
and 40. The distance between classes were varied as 0.5,
1.0, and 1.5 since the detection delays changed around 1σ
in Experiment 1. Furthermore, we tested 50 trials for each
distance.

Medians of detection delay and the number of false detec-
tion among 50 trials are shown in Figs. 6, 7, and 8. Here, false
detection is considered when an algorithm detects drift before
the predefined correct drift of data number 51. Since there is
a trade-off between the detection delay and false detection,
Pareto solutions were calculated in the graphs; therefore, the
closer to the origin of the graph, the better performance of the
algorithm.

From these results, we first confirm that DDM performed
better than PHT for all distances when an appropriate window
size was set. Furthermore, when a small window size was used
(w = 10), a lower variety of Pareto solutions were obtained.
This variety of Pareto solutions indicates that we have an
applicable range for balance between detection delay and false
detection.

Next, in DDM, detection delay and false detection depend
on window size w and detection parameter α. When the
distance between classes is small (Fig. 6), a larger window
size is better as the Pareto solutions are closer to the origin.
When the distance is large (Fig. 8), performance does not
depend on window size since they are approximately equal
when adjusting the detection parameter.

DDM
DDM
DDM

Fig. 6. Pareto solutions of the detection delay (median) and the number of
false detection (d = 0.5)

DDM
DDM
DDM

Fig. 7. Pareto solutions of the detection delay (median) and the number of
false detection (d = 1.0)

Standard deviation si becomes stable and asymptotically
close to the true value when a larger window size is used;
however, since sensitivity for error and for immediate response
are trade-offs, the detection delay increases with the larger
window size. Therefore, when the distance between classes
is small, i.e., a smaller drift, it is efficient to use the larger
window size to reduce false detection and adjust the detection
parameter to balance the detection delay and false detection.

V. FUTURE WORK

In this work, we validated the statistical concept drift
detection method with clustering as a first step; however,
other detection methods are also available that use the same
framework, including an early drift detection method (EDDM)
[7], an exponentially weighted moving average (EWMA) [15],
and a statistical test of equal proportions to detect concept
drift (STPED) [8], all of which should be investigated. In
addition, though only sudden drift was tested in this study,
other drift types, including gradual and incremental drifts,
should be tested. Moreover, the presented algorithms must be
evaluated on real-world data with non-Gaussian distributions.
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DDM
DDM
DDM

Fig. 8. Pareto solutions of the detection delay (median) and the number of
false detection (d = 1.5)

VI. CONCLUSION

In this paper, we proposed a concept drift detection method
for unsupervised clustering utilizing two kinds of statistical
change detection methods, namely DDM and PHT. Our ex-
periments using synthetic data revealed that DDM performed
better than PHT in terms of detection delay and false detection
as long as the appropriate window size was used. Moreover,
the smaller the degree of drift, the greater effect the window
size had on DDM. Since detection delay and false detection are
trade-offs, in practice, using a larger window size and adjusting
detection parameter to balance delay and false detection is an
efficient approach.
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[1] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, pp. 44:1–44:37, 2014.

[2] K. Fukui, S. Akasaki, K. Sato, J. Mizusaki, K. Moriyama, S. Kurihara,
and M. Numao, “Visualization of damage progress in solid oxide fuel
cells,” Journal of Environment and Engineering, vol. 6, no. 3, pp. 499–
511, 2011.

[3] I. Zliobaite, “Learning under concept drift: an overview,”
http://arxiv.org/abs/1010.4784, 2010.

[4] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L.
F. D. Carvalho, and J. Gama, “Data stream clustering: A survey,” ACM
Computing Surveys (CSUR), vol. 46, no. 1, pp. 1–31, 2013.

[5] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data
streams,” in Proceedings of the 30th Very Large Data Bases Conference
(VLDB), 2004, pp. 180–191.

[6] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Proc. Brazilian Symposium on Artificial Intelligence,
2004, pp. 286–295.

[7] M. Baena-Garcia, J. del Campo-Avila, R. Fidalgo, A. Bifet, R. Gavalda,
and R. Morales-Bueno, “Early drift detection method,” in Proc.
ECML/PKDD 2006 Workshop on Knowledge Discovery form Streams,
2006, pp. 77–86.

[8] K. Nishida and K. Yamauchi, “Detecting concept drift using statistical
testing,” in Proc. 10th International Conference on Discovery Science
(DS-10), 2007, pp. 264–269.

[9] G. Cabanes and Y. Bennani, “Change detection in data streams through
unsupervised learning,” in Proc. The 2012 International Joint Confer-
ence on Neural Networks (IJCNN), 2012, pp. 1–6.

[10] R. M. Vallim, J. A. A. Filho, R. F. de Mello, A. C. P. L. F. de Carvalhol,
and J. Gama, “Unsupervised density-based behavior change detection
in data streams,” Intelligent Data Analysis, vol. 18, no. 2, pp. 181–201,
2014.

[11] H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi, “Test of page-hinckley,
an approach for fault detection in an agro-alimentary production sys-
tem,” in 5th Asian Control Conference, vol. 2, 2004, pp. 815–818.

[12] H.-J. Appelrath, D. Geesen, M. Grawunder, T. Michelsen, and D. Nick-
las, “Data stream clustering: Odysseus: a highly customizable frame-
work for creating efficient event stream management systems,” in
Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems, 2012, pp. 367–368.

[13] D. Geesen, M. Brell, M. Grawunder, D. Nicklas, and H.-J. Appelrath,
“Data stream management in the AAL: Universal and flexible prepro-
cessing of continuous sensor data,” in Proceedings of 5th AAL Kongress,
2012, pp. 213–228.

[14] D. Hinkley, “Inference about the change point in a sequence of random
variables,” Biometrika, vol. 57, no. 1, pp. 1–17, 1969.

[15] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand, “Expo-
nentially weighted moving average charts for detecting concept drift,”
Pattern Recognition Letters, vol. 33, pp. 191–198, 2012.

424242


