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Abstract—Chest X-ray examination plays an important
role in lung disease detection. The more accuracy of this
task, the more experienced radiologists are required. After
ChestX-ray14 dataset containing over 100,000 frontal-view
X-ray images of 14 diseases was released, several models
were proposed with high accuracy. In this paper, we
develop a work flow for lung disease diagnosis in chest
X-ray images, which can improve the average AUROC of
the state-of-the-art model from 0.8414 to 0.8445. We apply
image preprocessing steps before feeding to the 14 diseases
detection model. Our project includes three models: the
first one is DenseNet-121 to predict whether a processed
image has a better result, a convolutional auto-encoder
model for bone shadow exclusion is the second one, and
the last is the original CheXNet.

Index Terms—medical image processing, bone shadow
exclusion, CheXNet, X-ray images, radiological diagnosis

I. INTRODUCTION

Lung cancer is the leading cause of death world-
wide, accounting for 1.69 million cases in 2015 [1],
more than breast, colon and prostate cancers combined.
Funding for lung cancer research is critical due to
the illness’s prominence and this disease is often di-
agnosed in later stages, when it is less treatable. New
advances, including deep neural networks, hold great
promise for screening, early detection and personalized
therapies. Furthermore, lung cancer does not have to
be fatal, groundbreaking new treatments dramatically
alter lung cancer survival rates every day [2]. Previous
lung diseases can lead to lung cancer in the future. The
history of COPD, chronic bronchitis or emphysema,
and pneumonia are top diseases which have a high
probability of causing lung cancer [3].

Pneumonia is a serious lung infection, and is also the
second most common cause of death in people with lung
cancer. This disease can be mild and in most cases only
require a few weeks of treatment. A small number of
cases require several weeks of staying in the hospital or
this disease can also be life-threatening and even fatal.
Higher than cigarette smoking, lung cancer patients get
a high risk of developing pneumonia. Symptoms of
pneumonia in lung cancer cases are tough to identify
with normal medical checks, such as physical exam,

listening to patients’ chest with a stethoscope while
breathing [4]. Usually, doctors require imaging studies,
and chest X-ray is the first priority choice. Looking at
lung structure and chest cavity in X-ray images is an
effective way for medical experts to make decisions.

CheXNet [5] was published on 14th November 2017
by Standford Machine Learning group. This algorithm
is the state-of-the-art method for radiological diagnosis
of lung disease, especially since it has a higher accuracy
in Pneumonia compared with experienced radiologists.
Using a very deep neural network, it improves the
accuracy of previous methods to 0.8414. However, we
realize that preprocessing the training dataset is an
essential work that is not applied to the current model.

X-ray image enhancement and bone suppression help
improve the accuracy of diagnosing. In most cases, lung
cancer lesions that are missed on frontal-view chest
radiological images are situated behind ribs, and soft
tissue images can improve the performance of medical
experts in disease detection [6]. Moreover, the contrast
of X-ray images is usually low [7], degrading the image
quality as well as decreasing accuracy when feeding
directly to CheXNet model. To remove these noises,
we build a process for improving CheXNet accuracy by
preprocessing input images.

Our flow (shown in Figure I) defines the end-to-end
process that inputs a chest X-ray image and outputs
the probability of 14 lung diseases with a heatmap
localizing the areas of the (denoised) image most in-
dicative of top injuries. The BXF model is built for
binary classification with the idea from CheXNet, to
decide whether the preprocessing of an image is essen-
tial. At the processing-denosing stage, a convolutional
auto-encoder neural network is used for bone shadow
exclusion from X-ray images. CheXNet is the main
model for lung disease detection. We have trained two
CheXNet models with two versions of ChestX-ray14
dataset: the published version and our preprocessed one.

The main contributions of our paper are as follows:

• Bone shadow exclusion and contrast enhancement
are applied to X-ray images for clarifying the key
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Fig. 1. Our flow includes a filtering model which predict whether an input image have a high accuracy when preprocessing. The (preprocessed)
image is fed to CheXNet model for diagnosing 14 lung diseases. The CheXNet* is trained with bone shadow exclusion version of ChestX-ray14
dataset .

features.
• We propose a deep learning model to automatically

decide whether preprocessing is necessary for each
individually X-ray image.

The rest of the paper is organized as follows. In
Section 2, we briefly review the background and related
works. Our proposed workflow and context learning
model for bone shadow exclusion are in Section 3.
Experimental results on ChestX-ray14 dataset are dis-
cussed in Section 4. The final section is for conclusion
and future work.

II. BACKGROUND AND RELATED WORK

A. Bone shadow exclusion

Dual-energy subtraction (DES) [8] is an imaging
technique to reduce bone shadow in chest X-ray images.
DES involves capturing two radiographs with the use of
two different energy-level X-ray exposures. Depending
on the level, the output image highlights either soft-
tissue or bone components; these images are combined
to form the bone suppression. However, this DES system
is not available in all hospitals.

With deep learning development, we can use neural
networks to construct soft-tissue images from normal
chest X-rays. A three-layer convolutional neural net-
work was used to construct the virtual soft tissue image
[9]. The authors have trained the model with 404 dual-
energy exams to estimate and subtract the bone image
from the input image. This method can also be applied
to radiographs from different sources. Based on this
idea, Gusarev et. al. [6] develops a an autoencoder-
like convolutional model for bone shadow exclusion. By
proposing a new loss function, this model uses fewer
data but still keeps the high quality of output image.

The auto-encoder model is a stack of convolutional
auto-encoders with encoder and decoder sharing the
same but mirrored weights. The model includes three
encoders, each encoding an image into 16, 32 and
64 neurons, respectively. The optimizer minimizes the

mean squared error (MSE) along with maximizes multi-
scale structural similarity (MS-SSIM) [10] of decoded
image and a soft-tissue version (the ground truth). The
final loss function is defined as this formula:

L = α.MSSI + (1− α).MSE

with alpha = 0.84 following Zhao et. al. [11]
In previous research, the authors used 35 pairs of

chest radiographs and its soft-tissue versions. Most of
the soft tissue images are the results of dual-energy
subtraction, and were acquired from different online
sources. After getting 4000 image pairs from 35 initial
one by using combined affine transformations, these
images were cropped to 440x440 pixels before feeding
to the auto-encoder model

B. Contrast enhancement

X-ray images usually have low contrast, degrading
quality and affecting the diagnosis results of doctors.
Historically, histogram equalization is a popular method,
which distributes image intensity equally, increasing
contrast in lower regions. However, this equalization
works effectively if only histogram is not globally
equally distributed, and can increase noise in image,
blur or remove key features in X-ray images.

Local histogram equalization can work well with X-
ray images. Adaptive Histogram Equalization (AHE)
is an example; it adjusts the contrast locally in small
regions of image, increasing the contrast better than
global equalization. However, this method still makes
noise in output image. The Contrast Limited Adaptive
Histogram Equalization (CLAHE), another version of
AHE, adjusts the contrast without putting more noise
to the image. By defining a threshold when equalizing,
the noise is reduced. Research from Huang et. al. [7],
they used ”abolute mean brightness error” (AMB) to
qualify the images after equalization between AHE
and CLAHE. The result shows that AHE’s error is



Fig. 2. Images getting bad results when preprocessing

2.5 times higher than CLAHE’s, 62.3860 and 23.6596
respectively.

C. CheXNet

CheXNet is a 121-layer Dense Convolutional Neural
Network (DenseNet) [12] that is trained with ChestX-
ray14. DenseNets help improve the flow of informa-
tion and gradients through the network, increasing the
number of parameters without overfitting like fully-
connected networks. This kind of network works very
well with X-ray images. The model is trained with
the initial weights from ImageNet [13], the unweighted
binary cross entropy loss is used for optimization.
CheXNet outperformed the best published results on
all 14 pathologies in the ChestX-ray14 dataset. In
detecting Mass, Nodule, Pneumonia, and Emphysema,
CheXNet has a margin of > 0.05 AUROC over previous
results. The authors also compared this deep learning
model with radiologists having 4, 7, 25 and 28 years
of experience. Surprisingly, CheXNet’s performance is
statistically higher than radiologists’. The state-of-the-
art deep learning model can improve healthcare delivery
and create opportunities for poor condition parts of the
world to access to medical imaging expertise.

To interpret the network predictions, the authors also
use class activation mappings (CAMs) [14] to visualize
the areas of the image most indicative of the disease.
These localizations in output images can help doctors
deeply observe high-value areas.

III. PROPOSED METHOD

A. Overview

Figure I describes overall our flow in chest X-ray
diagnosis. The Bad X-ray Filtering model (BXF) choose
the appropriate strategy for each individual chest frontal-
view radiograph, increasing the accuracy of CheXNet
model on each single input. This decision is made
completely automatic by previous learning key features
from the dataset, no human being effort involves in this
task.

Good images predicted by the BXF model will be
diagnosed better, get higher accuracy with CheXNet
model after preprocessing. In the other hand, the original

version of bad images will be predicted better than the
preprocessing version. Therefore, bad images will be fed
directly to a CheXNet model. This model is trained with
published ChestX-ray14 dataset. Besides that, another
CheXNet model will receives good images which are
chosen for preprocessing strategy. This model is trained
with the bone suppression and contrast enhancement
version of ChestX-ray14 (BSE version). There is no
weights sharing between two models, each of them was
trained with initial weights from a pretrained model of
ImageNet.

Before observing the dataset carefully, we had ex-
pected that using only BSE version can get the better
result. However, when suppressing bone shadow from
normal X-Ray images, the training dataset misses some
special types that currently exist on ChestX-ray14 (Fig-
ure 2). Therefore, the BSE data cannot increase the
quality of the CheXNet model individually.

B. Context learning for bone shadow exclusion

The BXF model is build with a 121-layer DenseNet
like CheXNet but the softmax cross entropy is used as a
loss function instead of the binary cross. Figure 3 shows
the specific architecture of BXF model. The model con-
tains 4 DenseBlocks and 3 TransitionBlocks situated in
interleave positions. The initial Convolution layer has a
kernel of 7x7. This layer includes Batch Normalization,
RELU and 3x3 Max Pooling with stride of 2. Each
DenseBlock has several densely connected convolution
block, each output of convolution block is the input of
all forward blocks. In every ConvolutionBlock, there are
1 Batch Normalization, 1 RELU, 1 1x1 Convolution,
1 Batch Normalization, 1 RELU, 1 3x3 Convolution
and 1 2x2 Average Pooling with stride of 2. After each
DenseBlock, a TransitionBlock is located with layers
of Batch Normalization, RELU, 1x1 Convolution and
2x2 Average Pooling with stride = 2. The final fully-
connected layer with softmax cross entropy give the 2-
element vector output.

On CheXNet, the label is independent; the first-
dimension sum of a sigmoid vector is not equal to 1, so
the binary cross entropy is used. However, in this task,
we classify images with only 2 labels, and the total
probability of those labels must be 1.0, so the softmax
function can work in this case.

Softmax cross entropy function:

L(W ;X,Y ) = −
N∑
i=1

C∑
j=1

yji log(ŷji) (1)

= −
N∑
i=1

C∑
j=1

yji log

(
exp(wT

j xi)∑C
k=1 exp(w

T
k xi)

)
(2)

= −
N∑
i=1

C∑
j=1

yji log (softmax(W,xi)) (3)
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Fig. 3. BXF architecture

with W is training weights, X is input, Y is label, N is
number of data, C is number of classes (2 in this case).

IV. EXPERIMENTS

A. Bone shadow exclusion

Using 247 pairs of X-ray images at JSRT [15] and
BSE-JSRT [16], we get 4,199 pairs of images from
augmentation with a combination of affine transforma-
tions, including horizontal flipping, random zooming,
shearing, shifting and rotating. We have trained in 150
epochs, each contains 800 steps, the initial learning rate
is 0.001 and decay 25% after 100 epochs. Besides that,
we chose a batch size of 5 and standard α = 0.84.

This model took about 24 hours of training on a
machine which has 8 CPUs, 12GBs RAM, 1 GPU Tesla
K80 12GB. The final loss value is approximately equal
to the published research. Particularly, the MS-SSIM
value is 0.1075 while the MSE is 0.138, combined loss
is 0.0925.

Available in approximately 1000 bounding boxes, we
evaluated heatmaps of 346 images from the BSE and
the original version of ChestX-ray14 dataset. These
images are cropped to bounding box areas, then cal-
culating mean CAM values from these regions. There
are 181/346 BSE images has higher value in bounding
box region than original ones.

Figure 4 shows that the CheXNet model can detect in-
jured regions in bone suppression better than the original
images. Blue-border rectangles are the groundtruth pro-
vided by radiologists in ChestX-ray14, in BSE image,

the rectangle contains more red color than in the original
one. Bottom right crops indicate that bone shadows in
this region hide underneath injuries.

Fig. 4. Heatmap of bone suppression (left) and origin (right) images

Fig. 5. From left to right: Origin X-ray with brightness and color
enhancement; BSE image; BSE-CLAHE image



TABLE I
COMPARING AUROC OF DIFFERENT MODELS

Pathology CheXNet(2017) Our Implement BSE BSE-CLAHE BXF

Atelectasis 0.8094 0.8250 0.8063 0.8107 0.8322
Cardiomegaly 0.9248 0.9079 0.9062 0.9065 0.9114
Effusion 0.8638 0.8846 0.8750 0.8749 0.8883
Infiltration 0.7345 0.7142 0.6961 0.7000 0.7243
Mass 0.8676 0.8592 0.8349 0.8229 0.8566
Nodule 0.7802 0.7872 0.7672 0.7646 0.7891
Pneumonia 0.7680 0.7590 0.7466 0.7605 0.7573
Pneumothorax 0.8887 0.8832 0.8705 0.8775 0.8877
Consolidation 0.7901 0.8170 0.8080 0.8015 0.8170
Edema 0.8878 0.8932 0.8971 0.8959 0.8995
Emphysema 0.9371 0.9280 0.9013 0.8972 0.9210
Fibrosis 0.8047 0.8410 0.8243 0.8313 0.8417
Pleural Thickening 0.8062 0.7908 0.7804 0.7698 0.7867
Hernia 0.9164 0.9161 0.9254 0.9305 0.9103
Average 0.8414 0.8438 0.8301 0.8325 0.8445

B. Contrast enhancement

With contrast limitation is 3.0 and window size of
8x8, we use CLAHE for contrast enhancement on all
BSE images. Figure 5 shows different versions of a
chest X-ray image. Contrast enhancement improved the
quality of BSE image by highlighting the lung region
without bone shadow like the original image.

To evaluate the performance of this task, we trained
the BSE and BSE-CLAHE images with CheXNet mod-
els, got the result in Table I. There are 7 of 14 diseases
that have better AUROC after contrast enhancement,
boosting the average AUROC by 0.0024.

C. CheXNet

We trained two models with different versions of
dataset: the original and the BSE. There are three sub-
sets for each version: train (78,468 images), validation
(11,219 images), and test (22,433 images). These sets
are randomly splitting and be ensured that there is no
patient overlap between the splits.

We used a machine with 16 CPUs, 60 GBs RAM
and 1 GPU Tesla P100. These trained models are used
for choosing strategies in the whole workflow and the
results of them are shown in Table I.

Parameters for every model are set following the pub-
lished research. The weights of ImageNet are also used
as initialization. Adam with standard β1, β2 optimizes
the model with the initial learning rate of 0.001. This
learning rate is decayed by the factor of 10 after 10
epochs not decreasing validation loss. We use a batch
size of 16 and it takes 22 hours for 100 epochs.

D. BXF

To label the ChestX-ray14 dataset for training BXF
model, we get the sigmoid value of two models: one
is trained with original data, and the other is trained

with preprocessing images. Sigmoid value is a 14-
dimensional vector, whose each element is the proba-
bility of a disease. We use Euclidean distance function
to calculate the difference between the trained models
u and the groundtruth v, which is produced by ChestX-
ray14. The lower of this value, the better of the model:

||u− v||2 =

√√√√ 14∑
i=1

(ui − vi)2

Using this formula on each individual image of each
trained model, we choose the best strategy for each piece
of input data based on the lower value. The lower value
between two models is labeled as 1, and the other get
0 as a label.

Before putting the images into the network, we down-
scale them to 224x224 and normalize based on the mean
and standard deviation of images in the ImageNet train-
ing set. The weights of the network are also initialized
with weights from a model pretrained on ImageNet. The
network is trained end-to-end using Adam with standard
parameter (β1 = 0.9 and β2 = 0.999) [17]. We train
the model using mini-batches of size 16. We use an
initial learning rate of 0.001 that is decayed by a factor
of 10 each time the validation loss plateaus after an
epoch, and pick the model with the lowest validation
loss. Using the train, validation and test splits in Table
II, the machine with 8 CPUs, 12 GBs RAM, and 1
GPU Tesla K80 was executed. We also configure the
Adam with standard parameters and initial learning rate
is 0.0001 and is decreased by 30% after 2 unimproved-
loss-value epochs. We got the accuracy of 84.2 % and
F1-score of 78.9% with the examined threshold of 0.46
(value > 0.46 will be labeled as 1) in test set after 30
training epochs.

In Table I, the BXF model has better result than
the CheXNet’s AUROC published. There are 6 of 14



diseases that have better AUROC value than previous
work.

TABLE II
THE EVALUATION RESULTS IN 3 SUBSETS. (1): GET BETTER

RESULT WITH PREPROCESSING; (2): GET BETTER RESULT
WITHOUT PREPROCESSING; (3): PROPORTION OF (2) IN THE

WHOLE SUBSET

Result Train Validation Test

(1) 31,310 4,718 8,685
(2) 47,158 6,501 13,748
(3) 60.1% 57.9% 61.3%

V. CONCLUSION

Lung diseases account for a significant of patient of
morbidity and mortality. Early diagnosis normal lung
diseases and treatment is very important to prevent
complications, especially cause of cancer. Chest X-rays
are the most effective examination used in diagnosis
because of its cost and time. However, only one third of
the global population can access radiology diagnostics
[18]. Besides that, to interpret X-ray images, experts
are required with several years of experience. With the
development of deep neural networks, computers can
easily support doctors in imaging tests, and CheXNet is
one of those.

We develop additional steps to CheXNet for improv-
ing the current accuracy of that model. Bone shadow is
excluded from the original X-ray images with contrast
enhancement. However, this strategy does not always
work well because of the lack of data in the bone
suppression model. We also build a model to predict the
accuracy of a raw image whether the preprocessing is
applied. Our flow helps improve the heatmap of disease
localization as well as increase average AUROC from
0.8414 to 0.8445.

However, there are existed points that can improve
in our system. In the following works, we will train 2
CheXNet models with new split dataset: one contains
only BSE images that really have good result and one
includes original images which have high accuracy with
released CheXNet model. However, we can improve the
bone suppression model by training more data related
to ChestX-ray14.
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