
VFFINDER: A Graph-based Approach for
Automated Silent Vulnerability-Fix Identification

Son Nguyen, Thanh Trong Vu, and Hieu Dinh Vo∗
Faculty of Information Technology

University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
{sonnguyen,19020626,hieuvd}@vnu.edu.vn

Abstract—The increasing reliance of software projects on
third-party libraries has raised concerns about the security of
these libraries due to hidden vulnerabilities. Managing these vul-
nerabilities is challenging due to the time gap between fixes and
public disclosures. Moreover, a significant portion of open-source
projects silently fix vulnerabilities without disclosure, impacting
vulnerability management. Existing tools like OWASP heavily
rely on public disclosures, hindering their effectiveness in detect-
ing unknown vulnerabilities. To tackle this problem, automated
identification of vulnerability-fixing commits has emerged. How-
ever, identifying silent vulnerability fixes remains challenging.
This paper presents VFFINDER, a novel graph-based approach
for automated silent vulnerability fix identification. VFFINDER
captures structural changes using Abstract Syntax Trees (ASTs)
and represents them in annotated ASTs. VFFINDER distinguishes
vulnerability-fixing commits from non-fixing ones using attention-
based graph neural network models to extract structural features.
We conducted experiments to evaluate VFFINDER on a dataset
of 36K+ fixing and non-fixing commits in 507 real-world C/C++
projects. Our results show that VFFINDER significantly improves
the state-of-the-art methods by 39–83% in Precision, 19–148%
in Recall, and 30%–109% in F1. Especially, VFFINDER speeds
up the silent fix identification process by up to 47% with the
same review effort of 5% compared to the existing approaches.

Index Terms—silent vulnerability fixes, vulnerability fix iden-
tification, code change representation, graph-based model

I. INTRODUCTION

With the increasing reliance of software projects on third-
party libraries, ensuring their security has become a paramount
concern. Vulnerabilities hidden within these libraries can have
far-reaching consequences, as exemplified by the infamous
Log4Shell1 exploit. One critical challenge in addressing these
vulnerabilities is the time gap between their fixes and public
disclosures [1], [2]. For instance, Log4Shell’s patch was
pushed four days prior to its public revelation. Another
example is that the Apache Struts Remote Code Execution
vulnerability2, which led to the Equifax breach in 2017, was
disclosed to the public in August 2018, but was patched in
June, 20183. Two months is plenty of time for the potential ex-
ploitation of vulnerable software. If the library were monitored
to identify vulnerability patches, the library’s users would have
been aware of the potential exploitation and prevented it by
updating to the latest version of the component.

*Corresponding author.
1https://nvd.nist.gov/vuln/detail/CVE-2021-44228
2https://nvd.nist.gov/vuln/detail/CVE-2018-11776
3https://github.com/apache/struts/commit/6e87474

Despite the importance of the vulnerability fix identification
task in open-source libraries, only a very small portion of
maintainers file for a Common Vulnerability Enumeration
(CVE) ID after releasing a fix, while 25% of open-source
projects silently fix vulnerabilities without disclosing them to
any official repository [3], [4]. This situation raises concerns
about the visibility and proactive management of vulnerabili-
ties within the software ecosystem. The open-source libraries’
users rely on several tools and public vulnerability datasets like
Open Web Application Security Project (OWASP) or National
Vulnerability Database (NVD). However, CVE/NVD and pub-
lic vulnerability databases miss many vulnerabilities [4].

Recognizing the importance of identifying vulnerability-
fixing commits, several security companies such as Huawei,
Veracode, Mend, and Snyk have been monitoring open-source
libraries’ commits and other software artifacts to provide
their users with early warnings of unpublished vulnerabilities.
However, the process of identifying silent vulnerability fixes
is very challenging in practice. For example, constructing a
dataset of 1,282 vulnerability-fixing commits required approx-
imately four years [5]. Thus, automated vulnerability-fixing
commit identification could help researchers maintain and
update vulnerability databases, including NVD.

To address this problem, several vulnerability fix identifi-
cation techniques have been proposed. Following the good
practice of coordinated vulnerability disclosure [1], [2], the re-
lated resources of commits, such as commit messages or issue
reports, should not mention any security-related information
before the public disclosure of the vulnerability. Thus, silent
fix identification methods must not leverage these resources
to classify commits. The state-of-the-art techniques, such as
VulFixMiner [6], CoLeFunDa [7], and Midas [8], represent
changes in the lexical form of code and apply CodeBERT [9]
to capture code changes semantics and determine if they are
vulnerability-fixing commit or not. Meanwhile, the existing
studies have shown that the semantics of code changes could
be captured better in the tree form of code [10].

In this paper, we propose VFFINDER, a novel graph-based
approach for automated vulnerability fix identification. Our
idea is to capture the semantic meaning of code changes
better, we explicitly represent the changes in code structure.
Particularly, for a commit c, the structure of the versions
before and after c are represented by the Abstract Syntax
Trees (ASTs). These ASTs are mapped to build an annotated

ar
X

iv
:2

30
9.

01
97

1v
1

 [
cs

.S
E

]
 5

 S
ep

 2
02

3

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2018-11776
https://github.com/apache/struts/commit/6e87474

AST (αAST), a fine-grained graph representing the changes
in the code structure caused by c. In αASTS, all AST nodes
and edges are annotated added, deleted, and unchanged to
explicitly express the changes in the code structure. To learn
the meanings of code changes expressed in αASTS, we de-
velop a graph attention network (GAT) model [11] to extract
semantic features. Then, these features are used to distinguish
from vulnerability-fixing commits to non-fixing ones.

We conducted several experiments to evaluate VFFINDER’s
performance on a dataset of 36K+ fixing and non-fixing
commits in 507 real-world C/C++ projects. Our results show
that VFFINDER significantly improves the state-of-the-art
techniques [6], [8], [12], [13] by 39–83% in Precision, up
to 148% in Recall, and 109% in F1. Especially, VFFINDER
speeds up the silent fix identification process up to 47%
with the same review effort of 5% compared to the existing
approaches.

In brief, this paper makes the following major contributions:
1) VFFINDER: A novel graph-based approach for identify-

ing silent vulnerability-fixes.
2) An extensive experimental evaluation showing the perfor-

mance of VFFINDER over the state-of-the-art methods for
vulnerability-fix identification.

II. CODE CHANGE REPRESENTATION

In this work, we represent the syntactic aspect via the
structure relation using Abstract Syntax Tree (ASTs).

Definition 1 (Annotated AST - αAST). For a commit chang-
ing code from one version to another, the annotated abstract
syntax tree (annotated AST) is an annotated graph constructed
from the ASTs of these two versions. Formally, for ASTo =
⟨No, Eo⟩ and ASTn = ⟨Nn, En⟩ which are the ASTs of
the old version and the new version, respectively, the αAST
T = ⟨N , E , α⟩ is defined as followings:

• N is the set of the AST nodes in the old and new versions,
N = No ∪Nn.

• E is the set of the edges representing the structural
relations between AST nodes in ASTo and ASTn, E =
Eo ∪ En.

• Annotations for nodes and edges in T are either un-
changed, added, or deleted by the change. Formally,
α(g) ∈ {unchanged, added, deleted}, where g is a node
in N or an edge in E:
– α(g) = added if g is a node and g ∈ Nn \No, or g is

an edge and g ∈ En \ Eo

– α(g) = deleted if g is a node and g ∈ No \Nn, or g
is an edge and g ∈ Eo \ En

– Otherwise, α(g) = unchanged

Fig. 1 shows a piece of changed code, the ASTs before
and after the change, and the annotated AST constructed
from these ASTs. The αAST expresses the change in the
structure of the code at line 4. Particularly, the right-hand-
side of the less-than expression (BUF_SIZE) is replaced
by the multiply-expression (i.e., 2*BUF_SIZE).

Fig. 1: Annotated AST: An example

III. APPROACH

Fig. 2 illustrates the overview of our approach, VFFINDER,
for vulnerability-fixing commit identification. First, the given
commits and their repositories are used to construct their
corresponding αASTS (Change representation). Each AST
node in αASTS is embedded in the corresponding vectors
(Embedding). After that, a Graph Neural Network (GNN) is
applied to extract structural features from constructed αASTS
(Feature extraction). Finally, the extracted structural features
are used for learning and predicting vulnerability-fixing com-
mits (Prediction).

Particularly, in the Embedding step, for each αAST , T =
⟨N , E , α⟩, every node in N is embedded into d-dimensional
hidden features ni produced by embedding the content of
the nodes. To build the vectors for nodes’ content, we use
Word2vec [14], one of the most popular code embedding
techniques for code [15]. The reason is that the number of
AST nodes in αASTS could be huge. Thus, for a practical
embedding step for αASTS, we apply Word2vec, which is
known as an efficient embedding technique [15]. Then, to
form the node feature vectors, the node embedding vectors
are annotated with the change operators (added, deleted, and
unchanged) by concatenating corresponding one-hot vector
of the operators to the embedded vectors, h0

i = [ni||α(ni)],
where || is the concatenation operation and α returns the one-
hot vector corresponding the annotation of node i.

In the Feature Extraction step, from each αAST , T =
⟨N , E , α⟩, we develop a Graph Attention Network (GAT) [11]
model to extract the structural features H . Particularly, the
embedded vectors of the nodes from the Embedding step are
fed to a GAT model. Each GAT layer computes the represen-
tations for the graph’s nodes through message passing [11],
[16], where each node gathers features from its neighbors to
represent the local graph structure. Stacking L layers allows
the network to build node representations from each node’s

Fig. 2: VFFINDER: A Graph-based Approach for Vulnerability-fixing Commit Identification

L-hop neighborhood. From the feature vector hi of node i at
the current layer, the feature vector h′

i at the next layer is:

h′
i = σ

∑
j∈Ni

αijWhj


where W is a learnable weight matrix for feature transforma-
tion, Ni is the set of neighbor indices of node i including node
i itself via self-connection, which is a single special relation
from node i to itself. σ is a non-linear activation function
such as ReLU. Meanwhile, αij specifies the weighting factor
(importance) of node j’s features to node i. αij could be ex-
plicitly defined based on the structural properties of the graph
or learnable weight [16], [17]. In this work, we implicitly
define αij based on node features [11] by employing the self-
attention mechanism, where unnormalized coefficients Eij for
pairs of nodes i, j are computed based on their features:

Eij = LeakyReLu(aT · [Whi||Whj]),

where || is the concatenation operation and a is a parametrizing
weight vector implemented by a single-layer feed-forward
neural network. Eij indicates the importance of node j’s
features to node i. The coefficients are normalized across all
choices of j using the softmax function:

αij = softmaxj(Eij) =
exp(Eij)∑

k∈Ni
exp(Eik)

After L GAT layers, a d-dimensional graph-level vector rep-
resentation H for the whole αAST T = ⟨N , E , α⟩ is built
by averaging over all node features in the final GAT layer,
H = 1

|N |
∑

i∈[1,|N |] h
L
i . Finally, in the Prediction step, the

graph features are then passed to a Multilayer perceptron
(MLP) to classify if αAST T is a fixing commit or not.

IV. EVALUATION METHODOLOGY

To evaluate our vulnerability-fixing commit identification
approach, we seek to answer the following research questions:
RQ1: Accuracy and Comparison. How accurate is
VFFINDER in identifying vulnerability-fixing commits? And
how is it compared to the state-of-the-art approaches [6], [8]?
RQ2: Sensitivity Analysis. How do various factors of the in-
put, including training data size and changed code complexity,
affect VFFINDER’s performance?
RQ3: Time Complexity. What is VFFINDER’s running time?

TABLE I: Dataset statistics

#Projects #Fixes #Non-fixes #Changed LOC

Training 402 9,176 21,193 3,807,967
Testing 105 2,123 3,878 992,938

Total 507 11,299 25,071 4,800,905

A. Dataset

In this work, we collect the vulnerability-fixing commits
from various public vulnerability datasets [18]–[20]. In total,
we collected the fixing commits for the vulnerabilities reported
from 1990 to 2022 in real-world 507 C/C++ projects. For a
pragmatic evaluation, we collected the (remaining) non-fixing
commits in the popular projects among these projects, such
as FFmpeg, Qemu, Linux, and Tensorflow. The total numbers
of collected fixing commits and non-fixing commits are about
11K and 25K, respectively. Table I shows the overview of
our dataset. The details of our dataset can be found at: https:
//github.com/ thanhtlx/VFFinder.

B. Procedure

For RQ1. Accuracy and Comparison, we compared
VFFINDER against the state-of-the-art vulnerability fix iden-
tification approaches:

1) MiDas [8] constructs different neural networks for each
level of code change granularity, corresponding to commit-
level, file-level, hunk-level, and line-level, following their
natural organization. It then utilizes an ensemble model that
combines all base models to generate the final prediction.

2) VulFixMiner [6] and CoLeFunDa [7] utilize CodeBERT
to automatically represent code changes and extract features
for identifying vulnerability-fixing commits. However, as the
implementation of CoLeFunDa has not been available, we
cannot compare VFFINDER with CoLeFunDa. This is also
the reason that Zhou et al. was not able to compare MiDas
with CoLeFunDa in their study [8].

Additionally, we applied the same procedure adapting the
state-of-the-art just-in-time defect detection techniques for
vulnerability fix identification as in the work of Zhou et al.
[8]. The additional baselines include:

3) JITLine [13]: A simple but effective method utilizing
changed code and expert features to detect buggy commits.

https://github.com/thanhtlx/VFFinder
https://github.com/thanhtlx/VFFinder

4) JITFine [12]: A DL-based approach extracting features
of commits from changed code and commit message using
CodeBERT as well as expert features.

Note that we did not utilize commit messages when adapting
JITLine and JITFine for silent vulnerability fix identification
in our experiments. For VFFINDER, we set the number of
GAT layers L = 2 for a practical evaluation.

In this comparative study, we follow the same cross-project
evaluation procedure to construct the training data and testing
data from the dataset as in the prior work [6], [8]. Particularly,
the whole set of projects is randomly split into 80% (402
projects) for training and 20% (105 projects) for testing. The
details of the training set and testing set are shown in Table I.

For RQ2. Sensitivity Analysis, we studied the impacts of
the following factors on VFFINDER’s performance: training
size and change size in the number of changed lines of code
(LOCs). To systematically vary these factors, we gradually
added more training data and varied the change size.

C. Metrics

To evaluate the vulnerability fix identification approaches,
we measure the classification accuracy, precision, and recall,
as well as F1, which is a harmonic mean of precision and
recall. Particularly, the classification accuracy (accuracy for
short) is the fraction of the (fixing and non-fixing) commits
which are correctly classified among all the tested commits.
For detecting fixing commits, precision is the fraction of
correctly detected fixing commits among the detected fix-
ing commits, while recall is the fraction of correctly de-
tected fixing commits among the fixing commits. Formally
precision = TP

TP+FP and recall = TP
TP+FN , where TP is the

number of true positives, FP and FN are the numbers of false
positives and false negatives, respectively. F1 is calculated
as F1 = 2×precision×recall

precision+recall . Additionally, we also applied a
cost-aware performance metric, CostEffort@L (CE@L), which
is used in [6], [8]. CE@L counts the number of detected
vulnerability-fixing commits, starting from commit with high
to low predicted probabilities until the number of lines of code
changes reaches L% of total lines of code (LOC).

V. EXPERIMENTAL RESULTS

A. Performance Comparison (RQ1)

Table II shows the performance of VFFINDER and the
state-of-the-art vulnerability fix identification approaches. As
seen, VFFINDER significantly outperforms the state-of-the-
art vulnerability fix identification approaches. Particularly, the
VFFINDER achieves a recall of 0.57, which is more than 19–
148% the recall rates of VulFixMiner and MiDas, respectively.
Additionally, VFFINDER is still much more precise than the
existing approaches with about 39–83% improvement in the
precision rate. These show that VFFINDER can not only find
more vulnerability-fixing commits but also provide much more
precise predictions. Furthermore, the CE@5% of VFFINDER
is 0.50, which is 19–47% better than the corresponding figures
of MiDas and VulFixMiner. This means that given 5% effort
(in LOC), the number of the fixing commits found by using

TABLE II: Comparison Results

Pre. Rec. F1 Acc. AUC CE@5%

JITLine 0.62 0.23 0.33 0.68 0.65 0.23
JITFine 0.58 0.48 0.53 0.69 0.69 0.45
VulFixMiner 0.47 0.42 0.44 0.63 0.64 0.34
MiDas 0.53 0.25 0.34 0.66 0.58 0.42

VFFINDER 0.86 0.57 0.69 0.82 0.79 0.50

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

Precision Recall F1-score

Fig. 3: Impact of training data size on VFFINDER’s performance

VFFINDER is much larger compared to those found by using
MiDas and VulFixMiner.

Answer to RQ1: VFFINDER is more effective than the
state-of-the-art approaches in identifying vulnerability fixes.
This confirms our strategy explicitly representing the code
structure changes and using graph-based models to extract
features for vulnerability fix identification.

B. Sensitivity Analysis (RQ2)

To measure the impact of training data size on VFFINDER’s
performance. In this experiment, the training set is randomly
separated into five folds. We gradually increased the training
data size by adding one fold at a time until all five folds
were added for training. As shown in Fig. 3, VFFINDER’s
performance is improved when expanding the training dataset.
The precision increases by 72% when the training data ex-
pands. Especially, the recall and F1-score grow much more
significantly when increasing the training size from 1 fold
to 5 folds. The reason is that with larger training datasets,
VFFINDER has observed more and then performs better.
However, training with a larger dataset costs more time. The
training time of VFFINDER with five folds is about 3X more
than that with a fold.

Additionally, we investigate the sensitivity of VFFINDER’s
performance on the input size in the number of changed (i.e.,
added and deleted) lines of code (LOC) (Fig. 4). As seen, there
are fewer commits with a larger number of changed LOC. The
precision of VFFINDER is quite stable when handling commits
in different change sizes. Meanwhile, the recall significantly
grows from 24% to 93% when increasing the change size.
The reason could be that fixing commits tend to have less
changed code [12], [21]. Thus, in the set of commit having a
smaller number of changes, the vulnerability fix identification
techniques could achieve a lower recall due to a larger number
of fixing commits being identified.

#Changed LOC

0.00

25.00

50.00

75.00

100.00

0

500

1000

1500

2000

1-10 10-50 51-200 201-500 501+

Precison Recall #Commits

Fig. 4: Impact of change size (left axis: Precision and Recall; right axis: No. of commits)

Answer for RQ2: VFFINDER performs better when being
trained on a larger dataset. Additionally, VFFINDER’s preci-
sion is quite stable with different change sizes, while the recall
is better with larger code changes.

C. Time Complexity (RQ3)

In this work, all our experiments were run on a server
running Ubuntu 18.04 with an NVIDIA Tesla P100 GPU. In
VFFINDER, training the model took about 4–6 hours for 50
epochs. Additionally, VFFINDER spent 1–2 seconds to classify
whether a commit is a fixing commit or not.

D. Threats to Validity

The main threats to the validity of our work consist of
internal, construct, and external threats.

Threats to internal validity include the influence of the
method used to construct AST. To reduce this threat, we
use the widely-used code analyzer Joern [22]. Another threat
mainly lies in the correctness of the implementation of our
approach. To reduce such a threat, we carefully reviewed our
code and made it public [23] so that other researchers can
double-check and reproduce our experiments.

Threats to construct validity relate to the suitability of
our evaluation procedure. We used precision, recall, F1, AUC,
accuracy, and CostEffort@L. They are the widely-used eval-
uation measures for vulnerability fix identification and just-
in-time defect detection [6], [8], [12], [13]. Besides, a threat
may come from the adaptation of the baselines. To mitigate
this threat, we directly obtain the original source code from
their GitHub repositories or replicate exactly their description
in the paper [6]. Also, we use the same hyperparameters as in
the original papers [8], [12], [13], [24].

Threats to external validity mainly lie in the selection
of graph neural network models used in our experiments. To
mitigate this threat, we select the representative models which
are well-known for NLP and SE tasks [11], [16]. Moreover,
our experiments are conducted on only the code changes of
C/C++ projects. Thus, the results could not be generalized for
other languages. In our future work, we plan to conduct more
experiments to validate our results in other languages.

VI. RELATED WORK

VFFINDER relates to the vulnerability fix identification
work. VulFixMiner [6] and CoLeFunDa [7] utilize CodeBERT
to automatically represent code changes and extract features
for identifying vulnerability-fixing commits. Midas [8] con-
structs different neural networks for each level of code change
granularity, corresponding to commit-level, file-level, hunk-
level, and line-level, following their natural organization. It
then utilizes an ensemble model that combines all base models
to generate the final prediction.

VFFINDER also relates to the work on just-in-time vulner-
ability detection. DeepJIT [24] automatically extracts features
from commit messages and changed code and uses them to
identify defects. Pornprasit et al. propose JITLine, a simple
but effective just-in-time defect prediction approach. JITLine
utilizes the expert features and token features using bag-of-
words from commit messages and changed code to build
a defect prediction model with a random forest classifier.
LAPredict [21] is a defect prediction model by leveraging
the information of “lines of code added” expert feature with
the traditional logistic regression classifier. Recently, Ni et al.
introduced JITFine [12], combining the expert features and the
semantic features which are extracted by CodeBERT [9] from
changed code and commit messages.

Different from all prior studies in vulnerability fix iden-
tification and just-in-time bug detection, our work presents
VFFINDER which explicitly represents code changes in code
structure and applies a graph-based model to extract the
features distinguishing fixing commits from non-fixing ones.

Several studies have been proposed for specific SE tasks,
including code suggestion/completion [25]–[27], program syn-
thesis [28], pull request description generation [29], [30], code
summarization [31]–[33], code clones [34], fuzz testing [35],
code-text translation [36], bug/vulnerability detection [37]–
[39], and program repair [40], [41].

VII. CONCLUSION

In this paper, we have introduced VFFINDER, an novel
graph-based approach designed for the automated identifica-
tion of vulnerability-fixing commits. By leveraging ASTs to
capture structural changes and representing them as annotated
ASTs, VFFINDER enables the extraction of essential structural
features. These features are then utilized by graph-based neural
network models to differentiate vulnerability-fixing commits
from non-fixing ones. Our experimental results show that
VFFINDER improves the state-of-the-art methods by 30–60%
in Precision, 2.0X–4.0X in Recall, and 62%–160% in F1.
Especially, VFFINDER speeds up the silent fix identification
process up to 2.6X with the same review effort of 5%. These
findings highlight the superiority of VFFINDER in accurately
identifying vulnerability fixes and its ability to expedite the
review process. The performance of VFFINDER contributes
to enhancing software security by empowering developers
and security auditors with a reliable and efficient tool for
identifying and addressing vulnerabilities in a timely manner.

REFERENCES

[1] 14:00-17:00, “ISO/IEC 29147:2018.” [Online]. Available: https://www.
iso.org/standard/72311.html

[2] A. D. Householder, G. Wassermann, A. Manion, and C. King, “The
cert guide to coordinated vulnerability disclosure,” Software Engineering
Institute, Pittsburgh, PA, 2017.

[3] A. D. Sawadogo, T. F. Bissyandé, N. Moha, K. Allix, J. Klein, L. Li, and
Y. Le Traon, “Sspcatcher: Learning to catch security patches,” Empirical
Software Engineering, vol. 27, no. 6, p. 151, 2022.

[4] L. Tal, “The state of open source security report,” Snyk, Tech. Rep.,
2019.

[5] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont,
“A manually-curated dataset of fixes to vulnerabilities of open-source
software,” in 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 2019, pp. 383–387.

[6] J. Zhou, M. Pacheco, Z. Wan, X. Xia, D. Lo, Y. Wang, and A. E.
Hassan, “Finding a needle in a haystack: Automated mining of silent
vulnerability fixes,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2021, pp. 705–716.

[7] J. Zhou, M. Pacheco, J. Chen, X. Hu, X. Xia, D. Lo, and A. E. Hassan,
“Colefunda: Explainable silent vulnerability fix identification,” 2023.

[8] T. G. Nguyen, T. Le-Cong, H. J. Kang, R. Widyasari, C. Yang, Z. Zhao,
B. Xu, J. Zhou, X. Xia, A. E. Hassan et al., “Multi-granularity detector
for vulnerability fixes,” IEEE Transactions on Software Engineering,
2023.

[9] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained model for
programming and natural languages,” in Findings of the Association
for Computational Linguistics: EMNLP 2020. Online: Association for
Computational Linguistics, Nov. 2020, pp. 1536–1547.

[10] J. Dong, Y. Lou, Q. Zhu, Z. Sun, Z. Li, W. Zhang, and D. Hao, “Fira:
fine-grained graph-based code change representation for automated
commit message generation,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 970–981.

[11] P. V. G. C. A. Casanova, A. R. P. Lio, and Y. Bengio, “Graph attention
networks,” ICLR. Petar Velickovic Guillem Cucurull Arantxa Casanova
Adriana Romero Pietro Liò and Yoshua Bengio, 2018.

[12] C. Ni, W. Wang, K. Yang, X. Xia, K. Liu, and D. Lo, “The best
of both worlds: integrating semantic features with expert features for
defect prediction and localization,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2022, pp. 672–683.

[13] C. Pornprasit and C. K. Tantithamthavorn, “Jitline: A simpler, better,
faster, finer-grained just-in-time defect prediction,” in 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR).
IEEE, 2021, pp. 369–379.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Y. Bengio and Y. LeCun, Eds., 2013.

[15] Z. Ding, H. Li, W. Shang, and T.-H. P. Chen, “Can pre-trained code
embeddings improve model performance? revisiting the use of code
embeddings in software engineering tasks,” Empirical Software Engi-
neering, vol. 27, no. 3, pp. 1–38, 2022.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2016.

[17] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

[18] G. Bhandari, A. Naseer, and L. Moonen, “Cvefixes: automated collec-
tion of vulnerabilities and their fixes from open-source software,” in
Proceedings of the 17th International Conference on Predictive Models
and Data Analytics in Software Engineering, 2021, pp. 30–39.

[19] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A c/c++ code vulnerability
dataset with code changes and cve summaries,” in Proceedings of the
17th International Conference on Mining Software Repositories, 2020,
pp. 508–512.

[20] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[21] Z. Zeng, Y. Zhang, H. Zhang, and L. Zhang, “Deep just-in-time defect
prediction: how far are we?” in Proceedings of the 30th International
Symposium on Software Testing and Analysis, 2021, pp. 427–438.

[22] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 590–604.

[23] [Online]. Available: https://github.com/UETISE/VFFinder
[24] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an

end-to-end deep learning framework for just-in-time defect prediction,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 2019, pp. 34–45.

[25] S. Nguyen, H. Phan, T. Le, and T. N. Nguyen, “Suggesting natural
method names to check name consistencies,” in 2020 42nd International
Conference on Software Engineering. IEEE, 2020, pp. 1372–1384.

[26] S. Nguyen, T. Nguyen, Y. Li, and S. Wang, “Combining program anal-
ysis and statistical language model for code statement completion,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 710–721.

[27] S. Nguyen, C. T. Manh, K. T. Tran, T. M. Nguyen, T.-T. Nguyen, K.-T.
Ngo, and H. D. Vo, “Arist: An effective api argument recommendation
approach,” Journal of Systems and Software, p. 111786, 2023.

[28] T. Gvero and V. Kuncak, “Synthesizing java expressions from free-
form queries,” in Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2015, pp. 416–432.

[29] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gener-
ation,” in 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC). IEEE, 2018, pp. 200–20 010.

[30] Z. Liu, X. Xia, C. Treude, D. Lo, and S. Li, “Automatic generation of
pull request descriptions,” in 34th IEEE/ACM International Conference
on Automated Software Engineering. IEEE, 2019, pp. 176–188.

[31] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 2073–2083.

[32] A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Palacio, D. Poshy-
vanyk, R. Oliveto, and G. Bavota, “Studying the usage of text-to-text
transfer transformer to support code-related tasks,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 336–347.

[33] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu,
“Improving automatic source code summarization via deep reinforce-
ment learning,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 397–407.

[34] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “Cclearner: A deep
learning-based clone detection approach,” in International Conference
on Software Maintenance and Evolution. IEEE, 2017, pp. 249–260.

[35] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning
for input fuzzing,” in 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2017, pp. 50–59.

[36] H. A. Nguyen, H. D. Phan, S. S. Khairunnesa, S. Nguyen, A. Yadavally,
S. Wang, H. Rajan, and T. Nguyen, “A hybrid approach for inference
between behavioral exception api documentation and implementations,
and its applications,” in 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1–13.

[37] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug
detection via context-based code representation learning and attention-
based neural networks,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–30, 2019.

[38] S. Nguyen, T.-T. Nguyen, T. T. Vu, T.-D. Do, K.-T. Ngo, and H. D. Vo,
“Code-centric learning-based just-in-time vulnerability detection,” arXiv
preprint arXiv:2304.08396, 2023.

[39] H. D. Vo and S. Nguyen, “Can an old fashioned feature extraction and
a light-weight model improve vulnerability type identification perfor-
mance?” Information and Software Technology, vol. 164, p. 107304,
2023.

[40] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1161–1173.

[41] Y. Ding, B. Ray, P. Devanbu, and V. J. Hellendoorn, “Patching as
translation: the data and the metaphor,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering. IEEE,
2020, pp. 275–286.

https://www.iso.org/standard/72311.html
https://www.iso.org/standard/72311.html
https://github.com/UETISE/VFFinder

	Introduction
	Code Change Representation
	Approach
	Evaluation Methodology
	Dataset
	Procedure
	Metrics

	Experimental Results
	Performance Comparison (RQ1)
	Sensitivity Analysis (RQ2)
	Time Complexity (RQ3)
	Threats to Validity

	Related Work
	Conclusion
	References

