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Abstract—The problem of non-monotone k-submodular max-
imization under a knapsack constraint (kSMK) over the ground
set size n has been raised in many applications in machine
learning, such as data summarization, information propagation,
etc. However, existing algorithms for the problem are facing
questioning of how to overcome the non-monotone case and how
to fast return a good solution in case of the big size of data. This
paper introduces two deterministic approximation algorithms for
the problem that competitively improve the query complexity
of existing algorithms. Our first algorithm, LAA, returns an
approximation ratio of 1/19 within O(nk) query complexity. The
second one, RLA, improves the approximation ratio to 1/5−ϵ in
O(nk) queries, where ϵ is an input parameter. Our algorithms are
the first ones that provide constant approximation ratios within
only O(nk) query complexity for the non-monotone objective.
They, therefore, need fewer the number of queries than state-of-
the-the-art ones by a factor of Ω(logn).

Besides the theoretical analysis, we have evaluated our pro-
posed ones with several experiments in some instances: Influence
Maximization and Sensor Placement for the problem. The results
confirm that our algorithms ensure theoretical quality as the
cutting-edge techniques and significantly reduce the number of
queries.

Index Terms—Approximation algorithm, k-submodular maxi-
mization, knapsack constraint, non-monotone.

I. INTRODUCTION

k-submodular is a generalized version of submodular in
polyhedra [1] in which some properties of submodularity have
deep theoretical extensions to k-submodularity that challenge
researchers to study [2–4], etc. Maximizing a k-submodular
function subject to some constraints has recently become
crucial in combinatorial optimization and machine learning
such as influence maximization via social networks [5–8],
sensor placement [5–7], feature selection [2] and information
coverage maximization [7], etc. Given a finite ground set V

with |V | = n, and an integer number k, let [k] = {1, 2, . . . , k},
and (k+ 1)V = {(V1, V2, . . . , Vk)|Vi ⊆ V,∀i ∈ [k], Vi ∩ Vj =
∅,∀i ̸= j} be a family of k disjoint sets, called the k-set. We
have the following definition of the k-submodular function:

Definition 1 (k-submodularity [3]). A function f : (k+1)V 7→
R+ is k-submodular iff for any x = (X1, X2, . . . , Xk) and
y = (Y1, Y2, . . . , Yk) ∈ (k + 1)V , we have:

f(x) + f(y) ≥ f(x ⊓ y) + f(x ⊔ y) (1)

where
x ⊓ y = (X1 ∩ Y1, . . . , Xk ∩ Yk)

and

x ⊔ y = (Z1, . . . , Zk), where Zi = Xi ∪ Yi \ (
⋃
j ̸=i

Xj ∪ Yj)

In this paper, we consider the problem of k-Submodular
Maximization under a Knapsack constraint (kSMK) which is
defined as follows:

Definition 2 (The k-Submodular Maximization under a Knap-
sack constraint (kSMK) problem). Under the knapsack con-
straint, each element e is assigned a positive cost c(e).
Given a limited budget B > 0, the problem kSMK asks to
find a k-set x = (X1, X2, . . . , Xk) with total cost c(x) =∑

e∈Xi,i∈[k] c(e) ≤ B so that f(x) is maximized.

The problem kSMK is a general model applied to a lot
of essential instances such as k-topic influence maximization,
k-type sensor placement, k-topic information coverage max-
imization [9–11], etc., with the knapsacks that encode users’
constraints including budget, time or size. For example, k-
topic influence maximization under knapsack constraint
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(kSMK) [3, 6, 10], the problem asks for maximizing the
expected number of users, who are influenced by at least
one of k distinct topics with a limited budget B > 0. The
mathematical nature is k-submodular maximization under a
diffusion model, which Kempe et al.[12] first proposed with
a single type of influence.

The challenge when providing a solution for kSMK is
it has many candidate approximate solutions with different
sizes. We have to select the best nearly optimal one within
polynomial time. Therefore, beyond obtaining a nearly op-
timal solution to kSMK in the aforementioned applications,
designing such a solution must also minimize the query com-
plexity, especially for big data, since the tremendous amount
of input data makes the search space for a solution crazily
soar. Unfortunately, k-submodularity requires an algorithm
to evaluate the objective function whenever observing an
incoming element. Therefore, it is necessary to design efficient
algorithms in reasonable computational time. We refer to
the query complexity as a measure of computational time
since it dominates the time running of an algorithm. Previous
works [11, 13, 14] proposed efficient algorithms for kSMK in
which even some algorithms can provide solutions in linear
query complexity of O(kn). However, these works are just
available for the monotone case. Meanwhile, some works [15–
17] showed that the k-submodular objective function might be
non-monotone in practical applications. Therefore, solving the
non-monotone kSMK problem within linear query complexity
is critical.

Overall, this paper aims to tackle both challenges above for
non-monotone k-submodular maximization and constrained by
a knapsack.

A. Our contribution

In this work, we design novel approximate algorithms
that respond to some requirements about providing consid-
erable solution quality and reducing query complexity. In
particular, our work is the first one that provides a constant
approximation ratio within only O(kn) query complexity
for non-monotone kSMK. The main version, RLA returns an
approximation ratio of 1/5−ϵ which is equivalent to the state-
of-the-art one proposed in [18]. In general, our contributions
are as per the following:

• We first propose the LAA algorithm (Algorithm 1), a
1/19-approximation one that scans a single pass over the
ground set within O(kn) query complexity. It’s the first
simple but vital algorithm of our work since it limits the
range of the optimal value. Besides, it provides a data
division strategy to reduce query complexity to O(nk).

• We next propose RLA algorithm (Algorithm 2) that
achieves an approximation ratio 1/5 − ϵ, and requires
O(kn/ϵ) query complexity where ϵ > 0 is an accuracy
parameter. Specifically, to the best of our knowledge, our
algorithm is also equivalent to the current best approxi-
mation ratio of a deterministic algorithm for the studied
problem in [18].

• To illustrate the theoretical contributions, we conduct
several comprehensive experiments in two applications of
kSMK including k-topic Influence Maximization and k-
type Sensor Placement. Experimental results have shown
that our algorithms save queries more than state-of-the-
art (mentioned in Table I) and return comparable results
in terms of performance.

Table I compares our algorithms with some state-of-the-art al-
gorithms for non-monotone kSMK on three aspects, including
approximation ratio, query complexity, and deterministic or
not. These fields indicate that our algorithms have both a low
number of queries and valuable deterministic approximation
ratios that are equivalent to or even better than the others.

Organization The rest of the paper is organized as follows:
We provide a literature review and discussions in Section II.
The notations and properties of k-submodular functions are
presented in Section III. Section IV presents our algorithms
and theoretical analysis. The extensive experiments are shown
in Section V. Finally, we conclude this work in Section VI.

II. RELATED WORK

In this section, we review related works and provide some
discussion on existing algorithms.

Studying k-submodular functions appears when considering
the submodularity in polyhedra. Lovász [1] found that it
was a similar but deeper theory than submodularity when
working with intersection matroids. After that, more works
have focused on the issue of k-submodularity with general
k ≥ 2. First, people studied maximizing unconstrained k-
submodular [3, 19, 20]. Due to the practical values when
solving the problem with constraints, some authors focused on
k-submodular maximization under some kinds of constraints
[5, 21, 22], etc. Authors focused on the monotone case such as
Oshaka et al. [5] studied monotone k-submodular maximiza-
tion with two kinds of size constraint: overall size constraint
and singular size constraint, authors in [10] proposed a multi-
objective evolutionary method to provide an approximation
ratio of 1/2 for the monotone k-submodular maximization
problem with the overall size constraint. However, this al-
gorithm took a high query complexity of O(kn log2 B) in
expectation. Authors [23] further proposed an online algorithm
with the same approximation ratio of 1/2 but runs in polyno-
mial time with regret bound. However, these contributions just
work for the monotone case and for size constraints; hence,
it’s hard to adapt to non-monotone kSMK. Moreover, these
algorithms required exponential running time [5] or high query
complexity [10].

Recently, Nguyen et al.[8] first applied streaming to solve
the problem of k-submodular maximization with overall size
constraint. Streaming fashion is an active approach when it re-
quires only a small amount of memory to store data and scans
one or a few times over the ground set V . They devised two
streaming algorithms within O(nk log(k)) query complexity.
Their first one is deterministic and returns an approximation
ratio of 1/3 − ϵ, while the second one is randomized and
returns an approximation ratio of k/(3k − 1) − ϵ. Later



Reference Approximation ratio Query complexity Is deterministic?
LAA (Alg. 1, this paper) 1/19 O(kn) Yes
RLA (Alg. 2, this paper) 1/5− ϵ O(kn/ϵ) Yes
Deterministic Streaming[18] 1/5− ϵ O(kn log(n)/ϵ) Yes
Random Streaming[18] k/(5k − 2)− ϵ O(kn log(n)/ϵ) No

TABLE I: Algorithm comparison for non-monotone kSMK; Note that Desterministic Streaming and Random Streaming in [18]
is the special case when β = 1.

on, Ene and Nguyen [24] developed a single-pass streaming
algorithm based on integer programming formulation for k-
submodular maximization with singular size constraint with
an approximation ratio of 0.5/(1+B(21/B−1)) within O(nk)
queries, where B = mini∈[k] Bi.

Unlike cardinality or matroid, which just enumerates ele-
ments, the knapsack requires maximizing f(·) subject to a
given budget that the total cost of a solution can not exceed.
Hence, there can be multiple maximal cost solutions that are
not the same size. The authors [14] proposed a multi-linear
extension method with an approximation ratio of 1/2 − 2ϵ
in expectation for the kSMK. This work provides the best
approximation ratio in expectation. However, this algorithm is
impractical due to the high query complexity of a continuous
extension [25].

Besides, Wang et al. [13] proposed a (1/2 − 1/(2e))-
approximation algorithm for the kSMK that inspired from the
Greedy algorithm in [26]. This algorithm, however, requires
an expensive query complexity of O(n4k3), and therefore it
is difficult to apply to medium-sized instances even though
one can compute the objective function f in O(1) time. The
authors [14] proposed a multi-linear extension that provided
the approximation ratio of 1/2 − 2ϵ in expectation for the
kSMK. This work provides the best approximation ratio in ex-
pectation, however, it is impractical because of the high query
complexity of a continuous extension [25]. Authors [11] first
proposed a (1/4 − ϵ)-desterministic approximation algorithm
within O(kn/ϵ). Nonetheless, the aforementioned works are
not available for the non-monotone case.

To state the non-monotone k-submodularity, Pham et
al. [18] recently have proposed two single-pass streaming
algorithms for the k-submodular maximization under the
budget constraint, a general of knapsack constraint within
O(nk log(n)/ϵ) queries. These algorithms returned the ratios
of 1/5 − ϵ and k/(5k − 2) − ϵ (in expectation) for the non-
monotone case. Our best algorithm version, RLA, gives an
equivalent performance of them (1/5−ϵ) approximation ratio)
yet reduces the query complexity to O(kn/ϵ).

On the whole, the characteristic of our algorithms is de-
terministic, linear query complexity, and available for non-
monotonicity.

III. PRELIMINARIES

Notations. Given a ground set V = {e1, e2, . . . , en} and an
integer k, we define [k] = {1, 2, . . . , k} and let (k + 1)V =
{(V1, V2, . . . , Vn)|Vi ⊆ V ∀i ∈ [k], Vi ∩ Vj = ∅ ∀i ̸= j} be a
family of k disjoint subsets of V , called k-set.

For x = (X1, X2, . . . , Xk) ∈ (k + 1)V , we define
suppi(x) = Xi, supp(x) = ∪i∈[k]Xi, Xi as i-th set of x and
an empty k-set 0 = (∅, . . . , ∅). We set if e ∈ Xi then x(e) = i
and i is called the position of e in x, otherwise x(e) = 0.
Adding an element e /∈ supp(x) into Xi can be represented
by x⊔(e, i). We also write x = {(e1, i1), (e2, i2), . . . , (et, it)}
for ej ∈ supp(x), ij = x(ej),∀1 ≤ j ≤ t. When Xi = {e},
and Xj = ∅,∀j ̸= i, x is denoted by (e, i).

For x = (X1, X2, . . . , Xk), y = (Y1, Y2, . . . , Yk) ∈ (k +
1)V , we denote by x ⊑ y iff Xi ⊆ Yi ∀i ∈ [k].

The objective function. The function f : (k + 1)V 7→ R+

is k-submodular iff for any x = (X1, X2, . . . , Xk) and y =
(Y1, Y2, . . . , Yk) ∈ (k + 1)V , we have:

f(x) + f(y) ≥ f(x ⊓ y) + f(x ⊔ y) (2)

where
x ⊓ y = (X1 ∩ Y1, . . . , Xk ∩ Yk)

and

x ⊔ y = (Z1, . . . , Zk), where Zi = Xi ∪ Yi \ (
⋃
j ̸=i

Xj ∪ Yj)

For any x ∈ (k + 1)V , e /∈ supp(x) and i ∈ [k], we have the
marginal gain when adding an element e to the i-set Xi of x
is:

∆(e,i)f(x) =f(X1, . . . , Xi−1, Xi ∪ {e}, Xi+1, . . . , Xk)

− f(X1, . . . , Xk)

In this work, we consider f to be non-monotone, i.e., the
marginal gain when adding a tuple (e, i) to set x, ∆(e,i)f(x),
may be negative. we also assume that f is normalized, i.e,
f(0) = 0, and there exists an oracle query, which when
queried with the k-set x returns the value f(x). We also recap
some properties of the k-submodular function that will be used
for designing our algorithms.

From [3], a k-submodular function f : (k + 1)V 7→ R+

is k-submodular iff it is pairwise monotone and orthant
submodular. The k-submodularity of f implies the orthant
submodularity, i.e.,

∆(e,i)f(x) ≥ ∆(e,i)f(y) (3)

for any x, y ∈ (k + 1)V with x ⊑ y, e /∈ supp(y) and i ∈ [k],
and the pairwise monotonicity, i.e.,

∆(e,i)f(x) + ∆(e,j)f(x) ≥ 0 (4)

for any x ∈ (k + 1)V with e /∈ supp(x) and i, j ∈ [k] with
i ̸= j.



The problem definition. Assuming that each element e is
assigned a positive cost c(e) and the total cost of a k-set x
c(x) =

∑
e∈supp(x) c(e). Given a limited budget B > 0, we

assume that every item e ∈ V satisfies c(e) ≤ B; otherwise,
we can simply discard it. The k-Submodular Maximization
under Knapsack constraint (kSMK) problem is to determine:

arg max
x∈(k+1)V :c(x)≤B

f(x). (5)

It means the problem finds the solution x so that the total cost
of x is less than or equal to B so that f(x) is maximized.
In this work, we only consider k ≥ 2 because if k = 1, the
k-submodular function becomes the submodular function.

IV. THE ALGORITHMS

In this section, we introduce two deterministic algorithms
for kSMK. The first algorithm, named Linear Approximation
Algorithm (LAA), has an approximation ratio of 1/19 and
takes O(nk) query complexity. Although this approximation
ratio is small, it is the first one that gives a constant approxi-
mation ratio within only O(kn) queries for the non-monotone
case. The approximation ratio is improved by our second
algorithm, named Robust Linear Approximation (RLA),
from 1/19 to 1/5−ϵ by recalling the first algorithm’s solution
to provide a suitable range for bounding the optimal value
opt. Additionally, it scans the ground set O(1/ϵ) times and
integrates the decreasing threshold strategy to get the near-
optimal solution.

A. Linear Approximation Algorithm

Our LAA algorithm adapts the idea of the recent work
[11] that (1) divides the ground set V into two subsets: The
elements with costs greater than B/2 are included in the first
subset, while the remaining is included in the second, and (2)
near-optimal solutions are sought and combined for the two
aforementioned subsets.

In particular, the algorithm first receives an instance
(V, f, k,B) of kSMK and initiates a candidate solution x as
an empty set and a tuple (em, im) as (∅, 1). The target of
the tuple (em, im) is to update the optimal solution found in
the first subset, while the candidate solution x is to locate
what solution is close to the optimal in the second. For each
incoming element e, the algorithm finds “the best” position
ie in terms of the set i in k sets that returns the highest
value f((e, ie)). If its cost is greater than B/2, the role of
(em, im) is the best solution on the current first subset (line
5). Otherwise, the algorithm adds the tuple (e, ie) into x if
the condition ∆(e,ie)f(x) ≥ c(e)f(x)/B is maintained. After
the main loop completes, the algorithm selects a k-set x′ as
the set of last j tuples adding into x with the maximum total
cost nearest to B (line 11). Finally, the algorithm returns the
final solution s as the best one between (em, im) and x′. The
details of the algorithm are fully presented in Algorithm 1.

To deal with the non-monotonicity of the objective function,
we have to use non-trivial analyzes to give an approximation.
Differing from the monotone case in [11], we use the property

Algorithm 1: An Linear Approximation Algorithm
(LAA)
Input: V , f , k, B > 0.
Output: A solution s

1: x← 0; (em, im)← (∅, 1); x′ ← 0;
2: foreach e ∈ V do
3: ie ← argmaxi∈[k] f((e, i))
4: (em, im)← argmax(e′,i′)∈{(em,im),(e,ie)} f((e

′, i′))
5: if c(e) ≤ B/2 then
6: if ∆(e,ie)f(x) ≥ c(e)f(x)/B then
7: x← x ⊔ (e, ie)
8: end
9: end

10: end
11: x′ ← argmaxxj :j≤tx,c(xj)≤B c(xj), where

tx = |supp(x)| and xj =
{(etx−j+1, itx−j+1), (etx−j+2, itx−j+2), . . . , (etx , itx)}
is the last j tuples added into x.

12: s← argmaxs∈{(em,im),x′} f(s)
13: return sfinal

of pairwise monotonicity as a critical component in our the-
oretical analysis. In the following, we analyze the theoretical
guarantee of the Algorithm 1. We first define the notations as
follows:
• V1 = {e ∈ V : c(e) > B/2}, V2 = {e ∈ V : c(e) ≤

B/2}.
• o is an optimal solution of the problem over V and the

optimal value opt = f(o).
• o′1 = {(e, o(e)) : e ∈ V1}, o′2 = {(e, o(e)) : e ∈ V2}.
• o1 is an optimal solution of the problem over V1.
• o2 is an optimal solution of the problem over V2.
• (ej , ij) as the j-th element added of the main loop of the

Algorithm 1.
• x = {(e1, i1), . . . , (et, it)} the k-set x after ending the

main loop, t = |supp(x|.
• xj = {(e1, i1), . . . , (ej , ij)}: the k-set x (in the main

loop) after adding j elements 1 ≤ j ≤ t, x0 = 0, xt = x.
• xj = {(et−j+1, it−j+1), (et−j+2, it−j+2), . . . , (et, it)} is

the set of last j elements added into x.
• oj2 = (o2 ⊔ xj) ⊔ xj .
• oj−1/2

2 = (o2 ⊔ xj) ⊔ xj−1.
• xj−1/2: If ej ∈ supp(o2), then xj−1/2 = xj−1 ⊔

(ej , o2(ej)). If ej /∈ supp(o2), xj−1/2 = xj−1.
• ut = {(u1, i1), (u2, i2), . . . , (ur, ir)} is a set of elements

that are in ot2 but not in xt, r = |supp(ut)|.
• ut

l = xt ⊔ {(u1, i1), (u2, i2), . . . , (ul, il)}, 1 ≤ l ≤ r and
ut
0 = xt.

Supposing that x′ gets T last tuples in x, i.e., x′ = xT . Denote
Q = t − T , we have x = xQ ⊔ x′. The following Lemmas
connect the candidate solution x with o2.

Lemma 1. f(o2)− f(oj2) ≤ 2f(xj) for all 0 ≤ j ≤ t.

Proof. See the Appendix, section VI-A



Lemma 2. f(x′) ≥ f(xt)/3.

Proof. See the Appendix, section VI-A

Lemma 3. f(ot2) ≤ 4f(xt).

Proof. See the Appendix, section VI-A

From these above lemmas, we imply the following lemma:

Lemma 4. f(x′) ≥ f(o2)/18.

Proof. See the Appendix, section VI-A

Theorem 1. Algorithm 1 is a single-pass streaming algorithm
that returns an approximation ratio of 1/19 and takes nk
queries.

Proof. See the Appendix, section VI-A

B. A Robust Linear Approximation Algorithm

We next introduce the RLA algorithm, which improves the
approximation ratio to 1/5 − ϵ and takes O(kn/ϵ) query
complexity. RLA keeps the key idea of LAA by reusing
the LAA’s solution to bounding the opt’s range and adapts
a greedy threshold to improve the approximation ratio by
conducting O(1/ϵ) times scanning over the ground set. The
details of the algorithm are fully presented in Algorithm 2.

Algorithm 2: Robust Linear Approximation (RLA)
Algorithm

Input: V , f , k, B > 0, ϵ > 0.
Output: A solution s

1: sb ← result of Algorithm 1; Γ← f(sb)
2: A← {(1 + ϵ)i : i ∈ N,Γ ≤ (1 + ϵ)i ≤ 19Γ}
3: for e ∈ V do
4: foreach v ∈ A do
5: iv ← argmaxi∈[k] ∆(e,i)f(sv)
6: τv = 2v/(5B)
7: if

c(sv) + c(e) ≤ B and ∆(e,iv)f(sv)/c(e)) ≥ τv
then

8: sv ← sv ⊔ (e, iv)
9: end

10: end
11: end
12: sfinal ← argmaxs′∈{smax,s1,s2,...,s|S|} f(s

′) return
sfinal

Specifically, RLA takes an instance (V, f, k,B) of kSMK
and an accuracy parameter ϵ > 0 as inputs. RLA first calls
LAA as a subroutine and uses LAA’s solution, sb, to obtain a
bound range of the optimal solution (line 1). From Theorem
1, we have Γ ≤ opt ≤ 19Γ.

The major part of the algorithm consists of two loops: the
outer to scan each element e in the ground set V and the inner
to consider each candidate solution sv for each v filtered out
from the set A. On the basis of Theorem 1, we construct
the set A to bound the number of candidate solutions sv . We

define (e, iv) as the tuple that gives the largest marginal gain
when added into sv . When an element e arrives, the algorithm
handles these works: (1) choose the position iv with maximal
marginal gain with respect to sv and e (line (5)); (2) use
threshold τv = 2v/(5B) to add the element e into sv if it
has the high density gain that is defined as the ratio of the
marginal gain of that element over its cost without violating
the budget constraint (line (7)).

We still keep the notations o as an optimal solution of the
problem over V and the optimal value opt = f(o). We add
some notations regarding to Algorithm 2 as follows:
• sv = {(e1, i1), (e2, i2), . . . , (eq, iq)} is the candidate

solution with respect to some elements v ∈ A after ending
the outer loop.

• sjv = {(e1, i1), (e2, i2), . . . , (ej , ij)}, 1 ≤ j ≤ q and s0v =
0.

• s<e
v as sv right before e is processed.

• u = {(u1, i1), (u2, i2), . . . , (ur, ir)} as a set of elements
belongs to o yet doesn’t belong to sv , r = |supp(u)|.

• ul = sv ⊔{(u1, i1), (u2, i2), . . . , (ul, il)},∀1 ≤ l ≤ r and
u0 = sv .

• oj = (o ⊔ sj) ⊔ sj .
• oj−1/2 = (o ⊔ sj) ⊔ sj−1.
• sj−1/2: If ej ∈ supp(o), then sj−1/2 = sj−1⊔(ej , o(ej)).

If ej /∈ supp(o), sj−1/2 = sj−1.

Lemma 5. For any v ∈ A, if there is no element o ∈ supp(o)\
supp(sv) so that ∆(o,o(o))f(s<o

v ) ≥ τv and c(s<o
v )+c(o) > B,

we have: f(o) ≤ 3f(sv) + c(o)τv .

Proof. See the Appendix, section VI-A

Theorem 2. For 0 < ϵ < 1/5, the Algorithm 2 returns an
approximation ratio of 1/5− ϵ, within O(nk/ϵ) queries.

Proof. See the Appendix, section VI-A

V. EXPERIMENTS

In this section, we compare the performance between our
algorithms and state-of-the-art algorithms for the kSMK prob-
lem listed below:

• Deterministic Streaming (DS)1: A streaming algorithm
in [18] which returns an approximation ratio of 1/5− ϵ,
requires 1-pass and O(kn log(n)/ϵ) queries.

• Random Streaming (RS): Another streaming algo-
rithm in [18] which returns an approximation ratio of
k/(5k − 2) − ϵ in expectation, requires one pass and
O(kn log(n)/ϵ) queries.

Although Greedy proposed by [13] gives the best approxi-
mation ratio yet it is only available for the monotone case.
Besides, in [11], authors also showed that the running time of
Greedy was so long that they had to limit the time to cut off
the experiment. Therefore, in the experiment, we eliminated
the Greedy. Also, we conduct experiments on specific appli-
cations, which are k-topic Influence Maximization under

1The kSMK problem is a special case of the k-submodular maximization
under the budget constraint in [18] with β = 1.



knapsack constraint (kIMK) and k-type Sensor Placement
under Knapsack constraint (kSPK) on three important
measurements: the oracle value of the objective function, the
number of queries, and running time. We further show the
trade-off between the solution quality and the number of
queries of algorithms with various settings of budget B.

We also use the dataset as mentioned in [8] to illus-
trate the performance of compared algorithms (Table II). To
demonstrate the performance of algorithms via the above
three measurements, we show some figures numbered and
captioned, in which the terms Fig, K, and M stand for Figure,
thousands, and millions, respectively.

All the implementations are on a Linux machine with con-
figurations of 2× Intel Xeon Silver 4216 Processor @2.10GHz
and 16 threads x256GB DIMM ECC DDR4 @2666MHz.

TABLE II: The dataset

Database #Nodes #Edges Types Instances
Facebook [27] 4039 88234 directed kIMK
Intel Lab sensors[28] 56 - - kSPK

A. k-topic Influence Maximization under Knapsack constraint
(kIMK)

The information diffusion model, called Linear Threshold
(LT) model [8, 12] was briefed, and the k-topic Influence
Maximization under Knapsack constraint (kIMK) problem
using this model was defined as follows:

a) LT model: A social network is modeled by a directed
graph G = (V,E), where V,E represent sets of users and
links, respectively. Each edge (u, v) ∈ E is assigned weights
{wi(u, v)}i∈[k], where each wi(u, v) represents how powerful
u influences to v on the i-th topic. Each node u ∈ V has a
influence threshold with topic i, denoted by θi(u), which is
chosen uniformly at random in [0, 1]. Given a seed set s =
(S1, S2, . . . , Sk) ∈ (k + 1)V , the information propagation for
topic i happens in discrete steps t = 0, 1, . . . as follows. At
step t = 0, all nodes in Si become active by topic i. At step
t ≥ 1, a node u becomes active if

∑
activedv w

i(v, u) ≥ θi(u).
The information diffusion process on topic i ends at step t

if there is no new active node and the diffusion process of a
topic is independent of the others. Denote by σ(s) the number
of nodes that become active in at least one of k topics after
the diffusion process of a seed k-set s, i.e.,

σ(s) = E[| ∪i∈[k] σi(Si)|] (6)

where σi(Si) is a random variable representing the set of active
users for topic i with the seed Si.

b) The kIMK problem: The problem is formally defined
as follows:

Definition 3 (kIMK problem). Assuming that each user e has
a cost c(e) > 0 for every i-th topic, which illustrates how
difficult it is to initially influence the appropriate individual
about that topic. Given a budget B > 0, the problem asks to
find a seed set s with c(s) =

∑
e∈Si,i∈k c(e) ≤ B so that σ(s)

maximal.

B. k-type Sensor Placement under Knapsack constraint

We further study the performance of algorithms for k-type
Sensor Placement under Knapsack constraint (kSPK) problem
which is formally defined as follows:

Definition 4 (kSPK problem). Given k kinds of sensors for
different measures and a set V of n locations, each of which
is assigned with only one sensor. Assuming that each sensor
e has a cost c(e) > 0 for every i-th type. Given a budget
B > 0, the problem aims to locate these sensors to maximize
the information gained with the total cost at most B.

Denote by Ri
e a random variable representing the observa-

tion collected from a i-type sensor and the information gained
of a k-set s is

f(s) = H(∪e∈supp(s){Ri
e}) (7)

where H is an entropy function.

C. Results and discussion

1) Experiment settings: For kIMK. We use the dataset
Facebook and set up the model as the recent work [8].

Since the computation of σ(·) is #P-hard [29], we adapt the
sampling method in [8, 30] to give an estimation σ̂(·) with a
(λ, δ)-approximation that is:

Pr[(1 + λ)σ(s) ≥ σ̂(s) ≥ (1− λ)σ(s)] ≥ 1− δ (8)

It’s said that σ̂(·) is ϵ-estimation of σ(·) with probability at
least λ. As [8, 18], in the experiment, we set parameters λ =
0.8, δ = 0.2, k = 3 and ϵ = 0.1 to show a trade-off between
solution quality and quantities of queries.

We set B in {0.5K, 1K, 1.5K, 2K} to illustrate the expense
to influence k topics via social networks is not a small number
and set the cost of each element from 1 to 10 according to the
Normalized Linear model [18].

For kSPK. We use the dataset Intel Lab [28] to illustrate
the kSPK problem. The data were preprocessed to remove
missing fields. Moreover, we set k = 3, ϵ = 0.1 as in the
experiment of kIMK, and the cost range from 1 to 10 for the
Intel Lab dataset whereas the values of B are fixed at several
points from 10 to 50. This setting was due to the number of
sensors and the similarity among algorithms.

2) Experiment results: To provide a comprehensive experi-
ment, we ran the above algorithms several times and collected
results about objective values, the number of queries, and
the running time according to the B milestones. For each
milestone, the average values were calculated. Figures 1, and
2 illustrate the results.

Regarding kIMK. First, Figure 1(a) represents the perfor-
mance of algorithms via values of the objective function σ(·).
RLA is equivalent to DS, followed RS, while LAA’s line hits
the lowest points. In Figure (a) the gaps between groups RLA-
DS, RS, and LAA seem bigger when B ≥ 1.5K.

Second, Figure 1(b)(c) displays the amounts of queries
called and the time needed to run these algorithms. LAA shows
an advantage over others in terms of query complexity. It is
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Fig. 1: Algorithm results for kIMK on Facebook: (a) The objec-
tive values, (b) The number of queries, (c) Time consumption

sharply from several to dozens of times lower than the remain-
ing. Besides, the number of queries of RLA is equivalent to
DS and lower than RS, respectively. Significantly, these lines
explicitly determine and linear over B milestones. Overall, the
number of queries of RS is the highest, followed by the group
of RLA-DS and LAA, respectively. The experiment indicates
the quantities of queries of our algorithms outperform the
others.

As the query complexity directly influences the running
time, the representation of the time graph in Figure 1(c)

looks quite similar to the representation of the query graph
in Figure 1(b) in which LAA line was drawn typically lowest.
It shows the running time of LAA is several to dozens of times
faster than the others. RLA runs considerably faster than RS
and equivalently to DS.

The above figures show the trade-off between our proposed
algorithms’ solution qualities and the query complexities. LAA
tries to target the near-optimal value by dividing the ground
into two subsets according to the cost values of elements
and reduces query complexity by the filtering condition of
the algorithm 1. Hence, the query complexity is significantly
low. Nevertheless, the performance of LAA regarding solution
quality is not high. RLA enhance LAA by using LAA as an
input and the decreasing constant threshold. As a result, the
objective of RLA is better than LAA while the number of
queries is higher but still deterministic. RLA use the threshold
τv to upgrade the performance. It leads to the objective value
increasing, yet the number of queries also increases. Moreover,
when the ground set and B value grow, the solution quality
improves while running time and query complexity are linear.
This is extremely important when working with big data.

Regarding kSPK. As can be seen in 2(a) the discrimination
between objective values of experimented algorithms is not
large. LAA and RLA seem to overlap while DS and RS
fluctuate a bit. When B increases, the gap between these lines
becomes larger in which RS states the highest, followed by
DS and the group of LAA-RLA, respectively. However, due to
the number of nodes being small, on the whole, information
gained from these algorithms is almost no different.

Second, the gap between the number of queries of LAA
and the others in Figure 2(b) is significantly large. With the
large number of B, lines of RLA, DS, and RS tend convergent
in which RLA lies on the remaining, followed by RS and
DS, respectively. Regarding Figure 2(c), these lines seem to
overlap. Moreover, query lines and timelines of the above
algorithms are almost horizontal over B’s milestones. This
result illustrates the query complexity of our algorithms is
linear and equivalent to other ones.

From two actual uses of kIMK, and kSPK, our solutions
are better or equivalent to existing ones while the number of
queries reduces, especially when n and B grow. The steady of
the proposed linear deterministic ones becomes vital when the
data increases. The experiment showed was consistent with the
theory. It also indicated the trade-off between our proposed
algorithms’ solution qualities and the query complexities.
Overall, our proposed algorithms are described to outperform
or be comparable to the state-of-the-art.

VI. CONCLUSION

This paper works with the problem of maximizing a k-
submodular function under a knapsack constraint for the non-
monotone case. We propose two deterministic algorithms that
take just O(kn) query complexity. The core of our algorithms
is to keep which elements are over a given appropriate
threshold and then choose among them the last elements so
that the total cost does not exceed a given budget, B > 0.
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Fig. 2: Algorithm results for kSPK on Intel Lab: (a) The
information gained, (b) the number of queries, (c) the running
time

To investigate the performance of our algorithms in prac-
tice, we conducted some experiments on two applications of
Influence Maximization and Sensor Placement. Experimental
results have shown that our algorithms not only return ac-
ceptably reasonable solutions regarding quality requirements
but also take a smaller number of queries than state-of-the-
art algorithms. However, there are still some open questions,
such as how to improve the approximate ratio or the linear
query complexity for the non-monotone kSMK problem, that

will motivate us in the future.
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APPENDIX

A. The proofs of Lemmas and Theorems

Proof of Lemma 1. Due to f might be non-monotone, recap that (ej , ij) is the j-tuple added into the candidate set x after the
loop of Algorithm 1. We have 2 sub-cases:

• If ej /∈ supp(o2), define an integer number l ∈ [k] that l ̸= ij and ojl a k-set such that ojl (e) = oj2(e),∀e ∈ V2 \ {ej} and
ojl (ej) = l, we have:

f(oj−1
2 )− f(oj2) = f(oj

l )− f(oj−1
2 )

− (f(oj2) + f(ojl )− 2f(oj−1
2 )) (9)

≤ f(oj
l )− f(oj−1

2 ) (10)

≤ f(xj
l )− f(xj−1) (11)

≤ f(xj)− f(xj−1) (12)

where the inequality (10) is due to the pairwise-monotoncity of f , the inequality (11) is due to the k-submodularity of
f , and the inequality (12) is due to the selection rule of the algorithm. The proof is completed.

• If ej ∈ supp(o2). In this case, if oj−1
2 (ej) = ij . Due to the pairwise-monotone property of f , there exists i′ ∈ [k] that

f(xj−1 ⊔ (ej , i
′)) ≥ 0. Therefore,

f(oj
2)− f(oj−1

2 ) = 0 ≤ f(xj)− f(xj−1)

If oj−1
2 (ej) ̸= ij , we obtain:

f(oj−1)− f(oj) = 2f(oj−1)− 2f(oj−1/2)

− (f(oj−1) + f(oj)− 2f(oj−1/2))

≤ 2f(oj−1)− 2f(oj−1/2)

≤ 2f(xj)− 2f(xj−1)

The last inequality is due to the k-submodularity. Overall, we have f(oj−1
2 )− f(oj2) ≤ 2f(xj)− 2f(xj−1). Therefore,

f(o2)− f(ot2) =
t∑

j=1

(f(oj−1)− f(oj))

≤ 2

t∑
j=1

(f(xj)− f(xj−1)) ≤ 2f(xt)

The proof is completed.

Proof of Lemma 2. Recap x = xt. If c(xt) ≤ B, x′ = xt and the Lemma holds. Therefore, we must consider the case
c(xt) > B. We get:

f(xt)− f(xQ) =
T∑

j=Q+1

∆(ej ,ij)f(x
j−1) (13)

≥
T∑

j=Q+1

c(ej)
f(xj−1)

B
(14)

≥
T∑

j=Q+1

c(ej)
f(xQ)
B

(15)

≥ c(x′)
f(xQ)
B

(16)

where the inequality (14) is due to the selection rule of a tuple (e, ij) into x according to the condition at Line 6 of Algorithm 1.
The inequality (15) is due to f(·) ≥ 0.

Since x′ is chosen from x so that its total cost is closest to B and each element e ∈ supp(x) has the cost at most B/2, thus:

c(x′) > B − B

2
≥ B

2



It implies that f(xt) − f(xQ) ≥ f(xQ)/2. Hence f(xQ) ≤ 2f(xt)/3. In the other hand, due to the k-submodularity of f we
have f(xt) ≤ f(xQ) + f(x′). Thus,

f(x′) ≥ f(xt)− f(xQ) ≥ f(xt)
3

(17)

The proof is completed.

Proof of Lemma 3. We have:

f(o2)− f(xt) = f(o2)− f(ot2) + f(ot2)− f(xt) (18)
≤ 2f(xt) + f(ot2)− f(xt) (Due to Lemma 1) (19)

≤ 2f(xt) +
∑

e∈supp(ot2)\supp(xt)

∆(e,ij),∀i∈[k]f(xt) (20)

≤ 2f(xt) +
∑

e∈supp(ot2)\supp(xt)

c(e)f(xt)
B

(21)

≤ 2f(xt) +
Bf(xt)

B
= 3f(xt) (22)

where the inequality (20) is due to the k-submodularity of f , the inequality (21) is due to the selection of the algorithm. Thus,
we have: f(ot2) ≤ 4f(xt) or f(ot2) ≤ 4f(x). The proof is completed.

Proof of Lemma 4. Applying the Lemmas 1 and 3, with j = t, we have:

f(o2)− f(xt) = f(o2)− f(ot2) + f(ot2)− f(xt)
≤ 2f(xt) + f(ot2)− f(xt)
≤ 5f(xt)

Thus f(xt) ≥ f(o2)/6. Combine the above implication with the Lemma 2, we have f(x′) ≥ f(xt)/3 ≥ f(o2)/18.

Proof of Theorem 1. The algorithm scans only once over the ground set, and each element e has k queries to find the position
ie. Therefore the number of queries is nk. We now prove the approximation ratio of the algorithm. By the selection of (em, im)
and the o1 contains at most one element so f(o1) ≤ f((em, im)). By the definition of o′

1, o′2 and the k-submodularity of f ,
we obtain:

f(o) ≤ f(o′1) + f(o′2) (23)
≤ f(o1) + f(o2) (24)
≤ f((em, im)) + 18f(x′) ≤ 19f(s) (25)

The proof was completed.

Proof of Lemma 5. Due to the same selection rule between (e, iv) of Algorithm 2 and (e, ie) of Algorithm 1, we have the
same result with Lemma 1, i.e., f(o)− f(oq) ≤ 2f(sv). Thus:

f(o)− f(sv) = f(o)− f(oq) + f(oq)− f(sv) (26)

≤ 2f(sv) +
r∑

j=1

(f(uj)− f(uj−1)) (27)

≤ 2f(sv) +
r∑

j=1

∆(uj ,ij)f(s
<uj
v ) (28)

≤ 2f(sv) +
r∑

j=1

c(uj)τv (29)

≤ 2f(sv) + c(o)τv (30)

where the inequality (28) is due to the k-submodularity, the inequality (29) is due to the definition of s<o
v , and the inequality

(30) is due to the definition of u and o. Thus, the proof is completed.



Proof of Theorem 2. The algorithm needs nk queries to call LAA and uses only 1-pass over the ground set for finishing the
outer loop (Line 3-11). For each incoming element, it takes at most k · ⌈log(1+ϵ)(19)⌉ queries for updating sv, v ∈ A. Combine
all tasks, the required number of queries at most:

nk + nk⌈log(1+ϵ)(19)⌉ ≤ nk + nk(1 + log(1+ϵ)(19))

= 2nk + nk
ln(19)

ln(1 + ϵ)

≤ 2nk + nk
ln(19)

ln 1
1− ϵ

2

= 2nk − nk
ln(19)

ln(1− ϵ
2 )

≤ 2nk +
2

ϵ
nk ln(19) = O(

nk

ϵ
)

We now show the approximation ratio of the algorithm. By Theorem 1, we have Γ ≤ opt ≤ 19.Γ. Therefore, there exists an
integer number v ∈ A so that opt/(1 + ϵ) ≤ v ≤ opt. We have:

f(sjv) =
j∑

i=1

(f(siv)− f(si−1
v )) ≥

j∑
i=1

c(ei)θv = c(sjv)θv (31)

We consider the following cases:
Case 1. There exists an element o ∈ supp(o) \ supp(sv) so that ∆(o,o(o))f(s<o

v ) ≥ τv and c(s<o
v ) + c(o) > B. Recall

(em, im) = argmaxe∈V,i∈[k] f((e, i)), we have:

f(sfinal) ≥ max{f(sv), f((em, im))} (32)
≥ max{f(s<o

v ), f((o, o(o)))} (33)

≥ f(s<o
v ) + f((o, o(o)))

2
(34)

≥ f(s<o
v ⊔ (o, o(o))

2
(35)

=
∆(o,o(o))f(s<o

v ) + f(s<o
v )

2
(36)

≥ τvc(o) + τvc(sov)
2

≥ Bτv
2

=
v

5
(37)

≥ opt

5(1 + ϵ)
(38)

≥ (
1

5
− ϵ)opt (39)

Case 2. There is no such an element o like Case 1. By the Lemma 5, c(o) ≤ B, τv = 2v/(5B), and f(o) = opt ≥ v we
have:

f(o) ≤ 3f(sv) +Bτv ≤ 3f(sv) + 2Bv/(5B) (40)
≤ 3f(sv) + 2opt/5 (41)

It implies: opt ≤ 3f(sv)+2opt/5, thus opt ≤ 5f(sv). Finally, f(sfinal) ≥ f(sv) ≥ opt/5. By combining the two above cases,
we obtain the proof.
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