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Abstract

Modern superscalar processors often suffer long stalls due to load
misses in on-chip L2 caches. To address this problem, we pro-
pose hiding L2 misses with Checkpoint-Assisted VAlue prediction
(CAVA). On an L2 cache miss, a predicted value is returned to the pro-
cessor. When the missing load finally reaches the head of the ROB,
the processor checkpoints its state, retires the load, and speculatively
continues executing using the predicted value. When the value in
memory arrives at the L2 cache, it is compared to the predicted value.
If the prediction was correct, speculation has succeeded and execution
continues; otherwise, execution is rolled back and restarted from the
checkpoint. CAVA uses fast checkpointing, speculative buffering, and
a modest-sized value prediction structure that has over 50% accuracy.
Compared to an aggressive superscalar processor, CAVA speeds up
execution by up to 1.45 for SPECint applications and 1.58 for SPECfp
applications, with a geometric mean of 1.14 for SPECint and 1.34 for
SPECfp applications. We also evaluate an implementation of Runa-
head execution — a previously-proposed scheme that does not per-
form value prediction and discards all work done between checkpoint
and data reception from memory. Runahead execution speeds up exe-
cution by a geometric mean of 1.07 for SPECint and 1.18 for SPECfp
applications, compared to the same baseline. We also evaluate Runa-
head with value prediction.

1 Introduction

Load misses in on-chip L2 caches are a major cause of pro-
cessor stall in modern superscalars. A missing load can take
hundreds of cycles to be serviced from memory. Meanwhile,
the processor keeps executing and retiring instructions. How-
ever, the missing load instruction eventually reaches the head
of the Reorder Buffer (ROB), dependences clog the ROB, and
the processor stalls.

Performance can be improved if processors find better ways
to overlap L2 misses with useful computation and even with
other L2 misses. Currently implemented techniques to ad-
dress this problem include aggressive out-of-order execution
to support more instructions in flight, hardware prefetching
(e.g., [2, 5, 11, 12]), and software prefetching (e.g., [4, 18]).
Unfortunately, with out-of-order execution, significant further
improvements can only come with high implementation costs.
Moreover, while prefetching typically works well for scientific
applications, it often has a hard time with irregular applica-

tions.
Past research has shown that it is possible to use history to

successfully predict data values [3, 8, 17, 24]. Load value pre-
diction [17] has been proposed to mitigate the effect of mem-
ory latency and bandwidth. However, load value prediction
has been used in the context of traditional superscalar proces-
sors. This means that a very long latency load (such as one that
misses in the L2) will eventually wait at the head of the ROB,
even if its value has been predicted using techniques such as
the one in [17].

We address this problem by using a checkpoint to be able
to speculatively retire the long latency load and unclog the
ROB. This way, when a long latency load reaches the head of
the ROB, the following happens: the processor state is check-
pointed, a predicted value is produced and provided to the
missing load, the missing load is retired and execution pro-
ceeds speculatively. When the processor is executing specula-
tively, the state produced has to be buffered. If the prediction
is later determined to be correct, execution continues normally.
Otherwise, execution is rolled back to the checkpoint. We call
this idea Checkpoint-Assisted VAlue Prediction (CAVA).

Fortunately, there is prior work on both processor check-
pointing and speculative buffering mechanisms. Hardware-
based checkpoint and fast rollback has been used in the context
of branch speculation, recycling resources early [20], aggres-
sively increasing the number of in-flight instructions [1, 6, 26],
or prefetching data and training the branch predictors on an
L2 miss [22]. Speculative state is buffered in the proces-
sor [1, 6, 22, 26] or in the cache [9, 20, 27].

We describe several key design issues in CAVA systems, in-
cluding multiprocessor aspects. Then, we present a microar-
chitectural implementation that is built around aReady Buffer
(RDYB) in the processor’s load functional unit and anOut-
standing Prediction Buffer (OPB)in the L2 MSHR. Our de-
sign includes a confidence estimator to minimize wasted work
on rollbacks due to mispeculations; if the confidence on a pre-
dicted value is low, the processor can stop the current specula-
tive section and start a new one. In our evaluation, we perform
an extensive characterization of the architectural behavior of
CAVA, as well as a sensitivity analysis of different architec-
tural parameters.

CAVA is related to Runahead execution [22] and the
concurrently-developedCLEAR scheme [13]. Specifically,
Runahead also uses checkpointing to allow processors retire
missing loads and continue execution. However, Runahead and



CAVA differ in three major ways. First, in Runahead there is
no prediction: the destination register of the missing load is
marked with an invalid tag, which is propagated by dependent
instructions. Second, in Runahead, when the data arrives from
memory, execution isalwaysrolled back; in CAVA, if the pre-
diction is correct, execution is not rolled back. Finally, while
Runahead buffers (potentially incomplete) speculative state in
a processor structure called Runahead cache, CAVA buffers the
whole speculative state in L1. We evaluate Runahead without
and with value prediction.

Compared to CLEAR, our implementation of CAVA uses
a simpler design. Specifically, the value prediction engine
is located off the critical path, close to the L2 cache (and
is trained only with L2 misses), whereas in CLEAR, predic-
tion and validation mechanisms are located inside the proces-
sor core. Moreover, to simplify the design, CAVA explicitly
chooses to support only one outstanding checkpoint at a time
and terminates the current speculative section when a low-
confidence prediction is found; CLEAR supports multiple con-
current checkpoints. Finally, we discuss how to support CAVA
in multiprocessors, an area not considered by CLEAR.

Our simulations show that, relative to an aggressive conven-
tional superscalar baseline, CAVA speeds up execution by up
to 1.45 for SPECint applications and 1.58 for SPECfp appli-
cations, with a geometric mean of 1.14 for SPECint and 1.34
for SPECfp. Compared to the same baseline, Runahead ob-
tains geometric mean speedups of 1.07 and 1.18 in SPECint
and SPECfp applications, respectively.

This paper is organized as follows: Section 2 presents
background information; Section 3 describes design issues in
CAVA; Section 4 presents our microarchitectural implementa-
tion; Section 5 presents our evaluation methodology; Section 6
evaluates our implementation and variations; and Section 7 dis-
cusses related work.

2 Background

2.1 Miss Status Holding Registers (MSHRs)

Miss Status Holding Registers (MSHRs) [15] hold information
about requests that miss in the cache. Typically, an MSHR is
allocated when a miss occurs and is deallocated when the data
is finally obtained. Multiple concurrent misses on the same line
share the same MSHR — each of them uses a different suben-
try in the MSHR. However, only the first request is propagated
down the memory hierarchy.

There are many possible organizations for MSHRs. In this
paper, we use the Explicitly-Addressed MSHR organization of
Farkas and Jouppi [7]. In such an organization, each suben-
try in the MSHR contains the explicit address of the word re-
quested. This allows multiple outstanding misses to the same
word address, each one allocating a new subentry.

2.2 Checkpointing and Buffering for Undo

Low-overhead, hardware-based register checkpointing is
widely used in processors to support branch speculation. Re-

cent work has used it to support speculative execution of long
code sections (which overflow the ROB) in other environ-
ments. Examples of such work include early resource re-
cycling [20], data prefetching and branch prediction training
through runahead execution [22], aggressive support for a large
number of in-flight instructions [1, 6, 26], or in Thread-Level
Speculation (TLS) [10, 14, 25, 27]. We will use such support
in CAVA.

In these checkpointed architectures, where the processor can
run speculatively for a long time, the speculative memory state
generated by the processor has to be buffered. Such state can
be buffered in the store queue (e.g. [1, 6, 26]). Alternatively,
it can be stored in a dedicated speculative buffer (e.g., [22]) or
in the L1 as long as the lines with speculative data are marked
(e.g., [20]). Without loss of generality, in CAVA, we use the L1
cache. In this approach, when the speculative section commits,
such marks are reset and the lines are allowed to remain in
the cache; if the section is squashed, the lines with the mark
are invalidated. While a line has the mark set, it cannot be
displaced from the cache.

3 Hiding L2 Misses with Checkpoint-
Assisted Value Prediction

We propose Checkpoint-Assisted Value Prediction (CAVA) to
hide long-latency L2 misses and minimize processor stalls due
to load misses in on-chip L2 caches. Figure 1 illustrates the
concept. Figure 1(a) shows the timeline of an L2 miss in a
conventional processor. Figures 1(b) and 1(c) show the actions
under CAVA. When an L2 load miss is detected, a prediction
of the requested data’s value is passed on to the CPU. When
the missing load reaches the head of the ROB, the CPU check-
points, uses the predicted value, and continues execution by
speculatively retiring the load. Since the processor may ex-
ecute for a long time before the data is received from mem-
ory, the processor can retire program state to both registers and
L1 cache. When the data is finally received from memory, its
value is compared to the prediction. If the prediction was cor-
rect (Chart (b)), the checkpoint is discarded and no action is
taken. If the prediction was incorrect (Chart (c)), the register
state is restored from the checkpoint and the cache state gen-
erated since the checkpoint is discarded. This rolls back the
processor to the state at the checkpoint. Execution resumes
from there.

We need four components to support CAVA. A first module
predicts the return value for each L2 load miss and passes it to
the processor. It also keeps the predicted value for later com-
parison to the correct data coming from memory. We call this
module Value Predictor and Comparator (VP&C). Second, we
need support for fast register checkpointing. Third, we need an
L1 cache that marks lines with speculative data, and prevents
their displacement until the prediction is proven correct. Fi-
nally, when a prediction is incorrect, we need a rollback mech-
anism that restores the checkpoint and invalidates the specula-
tive cache lines.

In this paper, we support the four components in hardware.

2



������
������
������
������

Execution ExecutionStall

L2
Miss

Time

(a)

Mem Latency

Comparison?
OK

Continue

(b)

Checkpoint
Prediction &

Mem Latency

L2
Miss

Rollback to
Checkpoint

(c)

Mem Latency

NotOK
Comparison?

L2
Miss Checkpoint

Prediction &

������
������
������
������

������������

Figure 1: Example of execution with conventional (a) and
CAVA (b and c) support.

We place the VP&C module close to the L2 cache controller,
where it can easily observe L2 misses.

3.1 Design Issues

Key design issues in a CAVA processor include where to place
the value predictor, when to use the predicted value, when to
checkpoint, the number of outstanding checkpoints, when to
finish speculation, and how to correctly support it in multipro-
cessor systems.

3.1.1 Where to Place the Value Predictor

In CAVA, we predict the value of data for loads that miss in
the L2 cache. Two possible locations for the value predictor
are: the processor core or by the L2 cache controller. The
first location is attractive because all memory requests are visi-
ble, regardless of their hit/miss outcome, and information such
as program counter or branch history is readily available. On
the other hand, the value predictor occupies precious real state
in the core, and may make it harder to design the processor
for high frequency. If the value predictor is placed by the L2
cache controller, not all memory requests and processor infor-
mation are visible to it (see Section 6.3.3). However, it is a
simpler overall design, as it removes the necessary storage and
logic from time-critical core structures. For this reason, CAVA
places the value predictor by the L2 cache controller.

Even though we have placed the value predictor at the L2,
we expose all L1 load misses to the L2 cache to see if they miss
and need a prediction. This includes secondary misses in the
L1, which are requests to L1 lines for which there is already a
pending miss. For this reason, CAVA slightly modifies the L1
MSHR organization to send information about all secondary
misses to the L2. This ensures that the value predictor can
return predictions for all L2 load misses. Note, however, that
the L2 only returns the line with the correct data to L1 once
(Section 4.1.1). Overall, for the predictor CAVA uses, we find
that the accuracy is higher when we train it with only L2 misses
rather than with all processor accesses (Section 6.3.3).

3.1.2 When to Use the Predicted Value

A processor can use the predicted value as soon as it is avail-
able (Immediate use), or it can buffer it and consume it only
when the missing load is at the head of the ROB and memory
has not yet responded (Delayed use). Alternatively, it can use it
only when both the load is at the ROB’s head and the processor
is stalled because the ROB is full.

While the third choice is unattractive because it is likely to
hurt performance, there are trade-offs between Immediate and
Delayed use. Immediate use may enable faster execution and
does not require buffering the predicted value in the processor.
Moreover, as soon as a misprediction is detected, the VP&C
module can trigger a rollback immediately, as the processor
has surely consumed the incorrect prediction. A Delayed use
has the opposite characteristics. In particular, every mispre-
diction requires a check to see if the processor has actually
consumed the incorrect value. However, it has the advantage
that the VP&C module may be able to confirm or reject many
predictions before they are actually used. This can reduce the
number of potentially unnecessary checkpoints and, especially,
the number of rollbacks. Consequently, CAVA uses the De-
layed scheme. We estimate its benefits compared to the Imme-
diate scheme (Section 6.3.1).

3.1.3 When to Checkpoint

There are two choices of when to checkpoint: at the missing
load or at the first instruction that uses the predicted value.
Strictly speaking, the checkpoint can be delayed until the first
use. However, doing so complicates the design. For example,
as the predicted value reaches the processor, the first use may
be unknown, or may be an instruction in a mispredicted branch
path. Consequently, CAVA checkpoints at the load retirement.
We expect little performance difference because the distance
between load and use (typically only a few instructions, as
shown in Section 6.3.2) is much smaller than the latency of
an L2 miss (typically equivalent to hundreds of instructions).

3.1.4 Number of Outstanding Checkpoints

The issue of how many outstanding checkpoints to support at
a time is one of performance versus complexity. Since several
L2 misses may overlap in time, one approach is to start a new
checkpoint at each missing load. This would enable the pro-
cessor to roll back only up to the first misprediction. However,
multiple checkpoints increases hardware complexity, since the
processors need to keep several register checkpoints at a time
and also record separately in the L1 cache the state generated
after each checkpoint. Consequently, to simplify the hardware,
CAVA supports only one checkpoint at a time. If several misses
overlap, CAVA takes a checkpoint only at the first one, and as-
sociates all misses with the one checkpoint. If any predicted
value happens to be incorrect, CAVA rolls back to the check-
point.
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3.1.5 When to Finish Speculation

Speculation ends with a commit when the last outstand-
ing memory response for a group of overlapping, correctly-
predicted misses arrives at the processor. Assuming an av-
erage prediction accuracya, the probability of rolling back
a checkpoint after consumingn predictions isProllback =
1−an. Sincea is significantly smaller than 1 (a little over 0.5),
Prollback increases very fast withn. Consequently, CAVA uses
a confidence estimator to detect when a possible bad prediction
is produced. When the processor is about to consume a low-
confidence prediction, CAVA stops predicting values and treats
misses conventionally, so that the current speculative section
can eventually commit and decrease the chance of wasting
work. A new speculative section may then be started. In prac-
tice, we observe that good predictions tend to cluster in time
(Section 6.2).

There are three other cases where CAVA also stops value
prediction and starts treating misses conventionally to speed
up eventual commit. One is when the number of outstanding
predictions reaches the limit that can be buffered in the hard-
ware structure that records predicted requests. A second case
is when the amount of speculative state stored in the L1 cache
reaches a certain threshold — if the state were about to over-
flow, the program would need to stall in order to prevent pollut-
ing the lower level of the memory hierarchy with speculative
data1. Finally, the third case is when the number of cycles in
which the program has been running speculatively reaches a
certain thresholdTchk — not stopping prediction would make
the code subject to losing a considerable amount of work.

3.1.6 Multiprocessor Issues

Supporting CAVA in a multiprocessor environment with a re-
laxed consistency model requires three special considerations:
termination of speculation on fences, consistency of value pre-
dictions, and transferring speculative data across threads. We
consider them in turn.

The first consideration is simple: when a thread reaches a
fence, it has to stall until all its previous memory operations
have completed. This includes outstanding loads for which a
prediction has been used. Consequently, executing a fence ef-
fectively implies terminating the current speculative section.
Codes with very frequent synchronization are less likely to
benefit from CAVA.

The second issue was pointed out by Martinet al. [19]: un-
less care is taken, an inconsistency may arise if, between the
use of a value prediction and its confirmation, a second thread
updates the corresponding location. To see the problem, we
slightly change the example suggested by Martinet al.. Con-
sider a two-element arrayA[] and a pointerP. For each element
of the array, a producer thread 1) initializes it and 2) setsP to
point to it. Consider the time when the producer thread has
just initializedA[0] and setP to point to it. A consumer thread
readsP, misses in the cache, and predicts that it points toA[1] .

1In our experiments, we have observed that stall due to overflow almost
never happens because speculative execution tends to be short.

With naive value prediction, it proceeds to accessA[1] and
reads an un-initialized value. Later, the producer thread initial-
izesA[1] and setsP to point to it. At this point, the cache miss
by the consumer completes and finds that the prediction that
it made (P pointing toA[1] ) was correct. Unfortunately, the
consumer does not realize that it read un-initialized data!

To eliminate this problem, CAVA uses a scheme that follows
the guidelines in [19]. Specifically, the hardware needs to de-
termine if, between the use of a prediction on the contents of
addressA, and its confirmation, any other processor updated
A. If another processor did, the hardware can conservatively
squash and roll back the speculative section. This behavior
is supported in CAVA with a buffer in the processor core that
holds the addresses of cache lines for which at least one predic-
tion has been consumed by the processor. This buffer snoops
the L1 bus for invalidations coming from the memory bus. If
an invalidation is received for a line whose address is held in
the buffer, the processor rolls back. The buffer is cleared at
every rollback or checkpoint commit.

The final issue is transferring speculative data from a thread
to another one. If this were allowed, the receiver must become
speculative, and be ready to roll back if and when the supplier
thread rolls back. To reduce complexity, our CAVA implemen-
tation does not allow the coherence protocol to provide specu-
lative data to another cache.

4 Implementation

Based on the previous discussion, we outline CAVA’s imple-
mentation. We first describe the microarchitectural structures
and then the key operations.

4.1 Microarchitectural Structures

4.1.1 Basic Buffers

CAVA is built around two buffers: theOutstanding Prediction
Buffer (OPB), which extends the MSHRs of the L2 cache con-
troller, and theReady Buffer (RDYB), which buffers the predic-
tions inside the processor’s load functional unit.

In conventional processors, the L2 cache controller allocates
an MSHR entry for every L2 miss, to keep a record of its pend-
ing status. In CAVA, the structure (now called OPB) also ob-
tains a predicted data value for the load from a value predictor,
sends the prediction to the processor, and stores it locally. Note
that predictions are made at the granularity requested by the
processor (e.g., word, byte, etc)2. When the requested cache
line arrives from memory, the OPB compares the line’s data
against all the predictions made for words of the line. The
OPB deallocates the corresponding entry and forwards the line
upstream to the L1, including in the message aconfirmationor
rejectiontag for each of the predictions made. These tags and
data will eventually reach the processor.

Figure 2-(c) shows the OPB structure. As a reference, Fig-
ure 2-(b) shows the MSHR in the L1 cache, whose structure

2For simplicity, we use the term word to refer to any fine-granularity data
size.
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is unmodified. For both the L1’s MSHR and the L2’s OPB,
we use an Explicitly-Addressed organization [7] (Section 2.1).
The control logic of the L1’s MSHR is changed slightly, so
that secondary misses in L1 are propagated to the L2 (Sec-
tion 3.1.1).

A conventional MSHR in L2 only keeps line address infor-
mation. The OPB extends it with additional information for
several predicted words in that line. For each such word, the
OPB contains the word offset, the destination register, and the
predicted value sent to the processor.

On the processor side, the purpose of the RDYB is to tem-
porarily buffer the value predictions forwarded by the OPB un-
til they are confirmed or rejected. A new RDYB entry is allo-
cated when a prediction is received; the entry is deallocated
when the processor finally receives the value from memory
with a confirmation or rejection tag.

Figure 2-(a) shows the RDYB structure. The first field (OPB
Subentry ID) contains an ID sent by the OPB together with the
data value prediction at the time the RDYB entry is allocated.
It identifies the location in the OPB that holds the prediction.
When the OPB sends the final data to the processor with a con-
firmation or rejection tag, it includes the OPB Subentry ID.
This is used to index the RDYB — the physical register num-
ber cannot be used because the register may have been recycled
and reused (by the time the prediction confirmation/rejection
comes back from memory, the load may have already retired).
The second field (destination register) is checked by missing
loads right before they retire, in order to obtain the predicted
data (third field), which is then copied to the load’s destination
register. At that point the register is guaranteed not to have
been recycled, since the load is still in the ROB.

The RDYB also stores three additional bits: Consumed (C),
LowConfidence (LC), and Stale (S). The Consumed bit is set
when the entry is consumed. The LowConfidence bit is set
when the value prediction received from the OPB is of low
confidence. The Stale bit is set for entries that are still allo-
cated when the processor is rolled back. The reason is that a
RDYB entry is only deallocated on reception of a value predic-
tion confirmation or rejection message, while a rollback can
occur before some entries receive such a message. When an
entry with a Stale bit set finally receives the confirmation or
rejection message, it is silently deallocated.

4.1.2 Value Predictor

The L2 controller contains a Value Prediction module that is
closely associated with the OPB and trained only with L2
cache misses. When an L2 miss occurs, the value predictor
predicts the value of the requested word. The value is stored in
one of the OPB Subentries (Figure 2-(c)) and returned to the
processor, together with a high or low confidence code. The
processor allocates a RDYB entry to store the prediction and
associated information.

CAVA uses a hierarchical value predictor, which contains a
global and a local value predictor, along with a selector (Sec-
tion 5). The value predictor also estimates its confidence in
each prediction.

4.1.3 Additional Processor Support

In addition to the RDYB and the hardware-based register
checkpointing of Section 2.2, a CAVA processor needs three
small modifications. The first one is a Status Register (Fig-
ure 3), which indicates if the processor is currently running
speculatively (Chk-Lowor Chk-Highmode, depending on the
prediction confidence) or not (Non-Chkmode). The Status
Register is used to decide whether a checkpoint is needed when
a retiring load consumes a predicted value.

The second modification involves passing some bits of the
PC and branch history from the processor to the value predictor
in the L2 controller. The value predictor we choose (Section 5)
requires these bits.

The third modification is thePredicted Line Address Buffer
(PLAB). It holds the addresses of cache lines for which at least
one prediction has been consumed by the processor during the
current checkpointed run. As indicated in Section 3.1.6, this
buffer ensures prediction consistency under multiprocessing.

4.1.4 Additional Cache Hierarchy Support

As indicated in Section 2.2, the L1 cache is modified to also
buffer memory state generated by the processor as it runs spec-
ulatively following a checkpoint. If the speculative section suc-
ceeds, such state is merged with the architectural state of the
program; otherwise, it is discarded.

More specifically, when the processor speculatively updates
a location, the corresponding cache line in L1 is updated and
marked with aSpeculative (S)bit in the tag (Figure 3). If the
line was dirty before the update, the line is written back to
memory before accepting the update and setting the S bit. In
any case, the speculatively updated cache line cannot be dis-
placed from L1.

When all value predictions are confirmed and the processor
transitions to Non-Chk mode, the cache commits all the spec-
ulative lines by gang-clearing the S bits. The lines can now be
displaced to L2 and main memory on demand. Instead, if a pre-
diction fails and the processor needs to roll back to the previous
checkpoint, all the lines with a set S bit get their Valid and S
bits gang-cleared. These gang operations have been described
elsewhere [10, 20]. They are typically done with a hardware
signal and can take several cycles, as they occur infrequently.

It is possible that, as the processor executes speculatively,
the L1 runs out of space for speculative lines. In this case, the
L1 signals the processor, which stalls until either it rolls back
due to a misprediction or it terminates speculative execution
due to confirmation of all outstanding predictions. In our sim-
ulations, this stall only occurs very rarely.

4.2 Detailed Operation

To understand the operation of CAVA, we overview a few as-
pects: communication between processor and caches, enter-
ing and committing a speculative section, and handling branch
mispredictions and load replays.
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Figure 3:Overall microarchitectural support in CAVA.

4.2.1 Communication between Processor and Caches

Figure 4 shows the messages exchanged between processor
and caches. When a load misses in L1 (message 1), the re-
quest is forwarded to L2 (message 2), including the fine-grain
address and the destination register number. If the load is for a
word or byte of a line already in the L2’s OPB, the OPB sim-
ply uses a free OPB Subentry in the existing entry. Otherwise,
a new OPB entry is allocated and the line is requested from
memory (message 3). In either case, a prediction is returned to
the processor, together with the register number, OPB Suben-
try ID, and level of confidence (high or low) in the prediction
(message 4). At the processor, the prediction is stored in a
newly-allocated RDYB entry and, if appropriate, the LowCon-
fidence bit is set. When the missing load finally reaches the
head of the ROB, if the destination register has not yet received
the data from memory, the processor checkpoints (unless it is
already speculating), consumes the value in the RDYB entry
and sets the Consumed bit. The load then retires.

(addr, reg) (addr, reg) (addr)

L1CPU L2 Mem

4

1 2 3

5
(addr, data)

67
for each word
requested:

(data,
 reg
 OPB id,
 OK/NOK)

(pred. val, reg, OPB id, confidence)

(addr, data,

 reg,
       OPB id,
       OK/NOK)

per pred:

Figure 4:Messaging between processor and caches in CAVA.

When the requested line arrives from memory (message 5),
the OPB forwards the line to L1 (message 6). For each pre-
diction made on the line’s words, the message includes: a con-
firmation/rejection tag (OK/NOK in Figure 4), the destination
register, and the OPB Subentry ID. As the L1 sends each of
the requested words to the processor separately (messages 7),
it also includes the confirmation/rejection tag, destination reg-

ister, and OPB Subentry ID.
Every time the processor receives one of these messages, it

finds the corresponding RDYB entry. If the Consumed bit is
clear, the incoming data is sent to the destination register. If
the Consumed bit is set and the message contains a rejection
tag, the hardware sets the Stale bit of all the valid RDYB en-
tries, and the processor initiates a rollback. If either the Con-
sumed bit is set and the message contains a confirmation flag,
or the Stale bit is set (the load was canceled in a rollback), no
action is taken. In all cases, the corresponding RDYB entry is
deallocated.

Note that, after a rollback, the OPB continues to send mes-
sages with rejection or confirmation tags that reach the proces-
sor. As a message matches its RDYB entry, it finds the Stale
bit set and, therefore, the RDYB entry is simply deallocated.

4.2.2 Entering and Committing a Speculative Section

As indicated in Section 4.2.1, a processor may enter a spec-
ulative section when a load waiting for memory reaches the
head of the ROB and finds a valid RDYB entry for its desti-
nation register. At this point, three cases are possible. First, if
the processor is in Non-Chk mode, it performs the checkpoint,
consumes the prediction, and enters a speculative section. The
execution mode becomes Chk-Low or Chk-High depending on
the LowConfidence bit in the RDYB entry.

Secondly, if the processor is in Chk-High mode and the
LowConfidence bit in the RDYB entry is set, the processor
waits until all the pending predictions are confirmed and the
current speculative section commits. Then, it performs a new
checkpoint, consumes the prediction, and starts a new specula-
tive section in Chk-Low mode.

Finally, in all other cases, the processor simply consumes
the prediction and remains in the speculative mode it used to
be.

On the other hand, a speculative section commits only when
the last non-Stale RDYB entry is deallocated. At that point,
a hardware signal triggers the changes discussed above on the
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L1 cache and Status Register. This condition can happen natu-
rally. Alternatively, the processor can gently enable it to occur
sooner by stopping the prediction of values for new misses and
treating them conventionally. The processor may choose to do
this for the reasons discussed in Section 3.1.5.

4.2.3 Branch Mispredictions and Load Replays

In conventional processors, there are cases when the proces-
sor issues loads to the cache hierarchy that will not commit.
Examples are loads that follow the wrong path of a branch, or
loads that need to be replayed to satisfy the memory consis-
tency model or other conditions.

Under CAVA, it is possible that some of these loads miss
in L2 and the OPB provides predictions, therefore allocating
RDYB entries. However, correctness is not compromised. Ev-
ery time that the conventional hardware squashes one of these
loads, CAVA indexes the RDYB with the corresponding des-
tination register and sets the corresponding Stale bit. Later,
when the values requested by these loads eventually arrive
from memory, they will find the Stale bit set in their RDYB
entries. At that point, the entries will be silently deallocated.

5 Experimental Setup

We evaluate CAVA using execution-driven simulations with a
detailed model of a state-of-the art processor and memory sub-
system. Due to limited space in this paper, we only evaluate a
uniprocessor system; we leave the evaluation of multiprocessor
issues for future work. The processor modeled is a four-issue
dynamic superscalar with two levels of on-chip caches. Other
parameters are shown in Table 1.

We compare six different architectures: a plain superscalar
(Base), CAVA with a realistic value predictor (CAVA), CAVA
with a 100% accurate value predictor (CAVA Perf VP), Runa-
head modified by storing the speculative state in the L1 cache
rather than in the Runahead cache [22] (Runahead/C), Runa-
head/C that uses predicted values for missing loads rather than
marking their destination register as invalid (Runahead/C w/
VP), and Base with a perfect L2 cache that always hits (Perf
Mem).

In our model of Runahead, we store the speculative state in
L1 rather in the original Runahead cache [22]. We do so to
make the comparison to CAVA more appropriate. Note that we
also use different architectural parameters: a 4-issue proces-
sor and a 1 MB L2, rather than the 3-issue processor and 512
KB L2 used in [22]. Moreover, we use different applications.
However, our results forRunahead/Care in line with those
in [22]: the mean speedup for the six (unspecified) SPECint
applications reported in [22] is 1.12, while the mean speedup
of Runahead/C for our six top-performing SPECint applica-
tions is 1.11.

All architectures includingBase use anaggressive 16-
stream stride prefetcher. This prefetcher is similar to the one
in [23], with support for 16 streams and non-unit stride. The
prefetcher brings data into a buffer that sits between the L2 and
main memory.

Our value predictor is composed of a single-entry global
last value predictor, and a last-value predictor indexed by the
PC hashed with some branch history bits. A 2-bit saturating
counter selector predicts, based on the PC, which prediction to
take. In addition, we have a confidence estimator to estimate
the confidence degree of the prediction. It is a 2-bit saturating
counter indexed by the PC. The last-value predictor, the se-
lector, and the confidence estimator use 2048-entry tables. As
shown in Section 6.3.3, we choose this configuration because
it gives high accuracy for a reasonable area.

Overall, CAVA requires modest additional storage: approxi-
mately 7Kbits for the RDYB, 4Kbits for the confidence estima-
tor, 24Kbits for the OPB, and 68 Kbits for the value predictor,
for a total of 103Kbits. All structures except the RDYB are
placed outside the processor core.

For the evaluation, we use most of the SPECint and some
SPECfp applications. These codes are compiled into MIPS bi-
naries usinggcc 3.4 with -O3 . The only SPECint application
missing iseon, which we do not suppport because it is written
in C++. Some SPECfp applications are not used because they
are written in Fortran 90 (which our compiler cannot handle)
or use system calls unsupported by our simulator. We run the
codes with theref input set. After skipping the initialization
(several billion instructions), we graduate at least 600 million
correct instructions.

6 Evaluation

6.1 Overall Performance

Figure 5 shows the speedups of the different architectures de-
scribed in Section 5 overBase. If we compareCAVAto Base,
we see that CAVA delivers an average speedup of 1.14 for
SPECint applications and 1.34 for SPECfp. In addition, no
application is slowed down by CAVA.

ComparingCAVAandCAVA Perf VP, we see that the per-
formance of CAVA can be significantly improved with better
value prediction. However, even with perfect value prediction
(CAVA Perf VP), the performance is still far off from the case
of a perfect L2 cache (Perf Mem). The reason is thatPerf Mem
does not suffer from off-chip memory latency and its MSHR
structures are much less likely to fill up and stall the processor.

On the other hand, for applications with low L2 miss rates
(bzip2, crafty, gccandgzip), no architecture makes much of a
difference.

If we now compareCAVA and Runahead/C, we see that
CAVA is faster: its average speedups of 1.14 and 1.34 on
SPECint and SPECfp applications, respectively, are higher
thanRunahead/C’s 1.07 and 1.18. The gains come from two
effects, which we can quantify by analyzingRunahead/C w/
VP.

Specifically, the difference betweenRunahead/CandRuna-
head/C w/ VPis the support for value prediction for missing
loads. As a result, inRunahead/C w/ VP, speculative execution
leads to execution more similar to correct execution. This im-
proves data prefetching and branch training. We call this effect
execution effect. It is most prominent in SPECint applications.
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Processor Cache D-L1 L2

Frequency: 5.0 GHz
Branch penalty: 13 cyc (min)
RAS: 32 entries
BTB: 2K entries, 2-way assoc.
Branch predictor (spec. update):

bimodal size: 16K entries
gshare-11 size: 16K entries

Fetch/issue/comm width: 6/4/4
I-window/ROB size: 60/152
Int/FP registers: 104/80
LdSt/Int/FP units: 2/3/2
Ld/St queue entries: 54/46
Checkpoint ovhd(hidden): 5 cycles
Rollback ovhd: 11 cycles

Size: 16KB 1MB
RT: 2 cyc 10 cyc
Assoc: 4-way 8-way
Line size: 64B 64B
Ports: 2 1
L1 and L2 MSHR: 128 entries each
CAVA specific:

OPB: 128 entries
Val. pred. table size: 2048 entries
Max. chkpt. duration (Tchk): 1280 cyc

Hardware Prefetcher:
16-stream stride prefetcher
hit delay: 8 cycles
buffer size: 16 KB

Memory: DDR-2
FSB frequency: 533MHz
FSB width: 128bit
DRAM bandwidth: 8.528GB/s
RT: 98ns
(approx. 490 processor cyc)

Table 1:Architecture modeled. In the table, RAS, FSB and RT, stand for Return Address Stack, Front-Side Bus, and minimum
Round-Trip time from the processor, respectively. Cycle counts refer to processor cycles.

S
pe

ed
up

 o
ve

r 
B

as
e

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7 Base

Runahead/C

Runahead/C w/ VP

CAVA

CAVA Perf VP

Perf Mem

bz
ip2

cr
af

ty ga
p

2

gc
c

gz
ip m

cf

3 11

pa
rs

er

pe
rlb

m
k

tw
olf

2 2

vo
rte

x
vp

r

ap
plu ar

t

5

eq
ua

ke

2 4

m
es

a
m

gr
id

2

wup
wise

2 3

In
t G

.M
ea

n

FP G
.M

ea
n

2

Figure 5:Speedups of the different architectures described in Section 5 overBase. All architectures use a 128-entry MSHR in
the L1 cache.

The difference betweenRunahead/C w/ VPandCAVAis that
the former rolls back even on a correct value prediction. This
wastes some useful work. We call this effectcommit effect. It
is most prominent in SPECfp applications.

We observe some cases where the bars have unusual behav-
ior. For example,CAVA is slower thanRunahead/Cin twolf
and slower thanRunahead/C w/ VPin gap. These effects occur
because the speculative sections are typically longer inCAVA.
Runahead/CandRunahead/C w/ VProll back immediately af-
ter the first long latency load is serviced. On the other hand,
CAVArolls back only after the first value misprediction is de-
tected, which may happen much later, resulting in more wasted
work. In addition, the cache may get more polluted.

A second unusual behavior is when the use of value predic-
tion hurts performance. This occurs intwolf, equake, mgrid,
andwupwise, whereRunahead/C w/ VPis slower thanRuna-
head/C. For these runs, we observe worse branch prediction
accuracies and L1 miss rates inRunahead/C w/ VP. The pre-
dicted values unexpectedly train the branch prediction worse
and pollute the cache more.

6.2 Characterization of CAVA

Table 2 characterizes the execution underCAVA. As a refer-
ence, Columns 2 to 4 show some characteristics of execution
underBase: the IPC, L2 miss rate, and the percentage of L2
misses that find the requested data in the prefetch buffer, re-

spectively. Note that the prefetcher is also present inCAVA.
Column 5 showsCAVA’s IPC. Compared toBase(Column

2), CAVAtypically has a higher IPC. In applications with very
low L2 miss rate such asbzip2, crafty, gcc, gzipand vortex
(Column 3), the two IPCs are very similar.

Columns 6 and 7 show the majorCAVAoverheads. Specif-
ically, Column 6 shows the fraction of instructions wasted in
rollbacks. Such a fraction is on average 18% and 26% for
SPECint and SPECfp, respectively. Since these instructions
are executed in the shadow of a miss, discarding them does not
affect performance much. Furthermore, they may train branch
predictors and prefetch data. Column 7 shows the total roll-
back overhead in percentage of program cycles. This number
is only 0.6% and 1.5% of the program cycles for SPECint and
SPECfp, respectively. This number can be computed by mul-
tiplying the 11 cycles of rollback overhead (Table 1) times the
number of rollbacks. During this time, the processor stalls.
There is also the overhead of checkpointing (5 cycles per in-
stance as shown in Table 1). However, such overhead is not
visible to the application.

The value predictor used forCAVAhas reasonable accuracy
(Column 8). On average, its accuracy is 48% for SPECint and
52% for SPECfp. Similarly, the confidence estimation mecha-
nism performs well (Column 9). Its average accuracy is 85%
and 90% for SPECint and SPECfp, respectively.

The last four columns of Table 2 (Columns 10-13) char-
acterize the average behavior of a speculative section. Such

8



Base CAVA
App. L2 miss Prefetch Instrs Rollback Val. pred. Conf. est. Checkpointed Run

IPC rate coverage IPC wasted overhead accuracy accuracy Separation Duration Number Failures
(%) (%) (%) (% cycles) (%) (%) (instrs) (instrs) preds (%)

bzip2 2.24 0.0 47.0 2.24 0.0 0.0 58.4 96.0 48702 167 1.7 94
crafty 2.19 0.0 0.1 2.24 2.0 0.0 61.6 81.9 27877 1054 2.3 48
gap 0.91 1.4 65.7 1.31 23.0 2.2 50.1 85.4 645 215 6.4 87
gcc 1.72 0.0 56.9 1.73 0.0 0.0 48.4 76.7 26939 178 1.2 56
gzip 1.56 0.1 97.3 1.57 1.0 0.0 3.9 97.1 25559 270 52.7 97
mcf 0.11 14.8 28.7 0.15 78.0 1.6 59.8 80.5 211 182 9.2 67

parser 1.12 0.4 51.5 1.34 16.0 0.6 51.2 81.0 1557 326 3.3 61
perlbmk 2.15 0.2 26.1 2.44 3.0 0.4 74.1 90.1 4583 162 3.0 73

twolf 0.55 0.9 0.7 0.75 45.0 1.3 39.1 73.1 646 395 4.3 64
vortex 2.42 0.1 36.6 2.46 8.0 0.2 61.8 85.0 6730 633 13.1 72

vpr 1.28 0.2 1.0 1.43 24.0 0.5 21.3 88.4 2295 708 3.9 71

applu 2.09 0.2 29.7 2.58 3.0 0.0 59.0 99.4 16985 1043 45.6 55
art 0.43 30.4 94.6 0.66 38.0 1.4 54.7 92.6 412 308 30.6 56

equake 0.64 3.5 80.5 0.86 55.0 3.9 47.1 76.6 250 191 13.1 53
mesa 2.44 0.2 78.7 2.51 3.0 0.1 31.5 81.1 11147 445 3.1 69
mgrid 1.37 1.2 93.4 1.89 27.0 2.2 75.1 99.2 695 464 15.1 62

wupwise 1.30 1.2 77.2 2.05 28.0 1.3 46.1 88.7 1580 778 33.2 76

Int Avg 1.48 1.6 37.4 1.61 18.2 0.6 48.2 85.0 13249 390 9.2 72
FP Avg 1.38 6.1 75.7 1.76 25.7 1.5 52.3 89.6 5178 538 23.4 62

Table 2:CharacterizingCAVAexecution.

a section, which we call aCheckpointed Run, starts when a
checkpoint is created and finishes when a commit or a rollback
occurs. Column 10 shows that the separation between consec-
utive checkpointed runs (from checkpoint creation to the next
checkpoint creation) is on average slightly over 13K instruc-
tions for SPECint and 5K for SPECfp. SPECfp applications
have more frequent checkpoints than SPECint applications be-
cause they have higher L2 miss rates.

Column 11 shows that the average checkpointed run lasts for
390 instructions for SPECint and 538 for SPECfp. Moreover,
according to Column 12, a run contains on average 9.2 predic-
tions for SPECint and 23.4 for SPECfp. In addition, Column
13 shows that the fraction of runs that terminate with a rollback
is on average 72% for SPECint and 62% for SPECfp. It is in-
teresting to note that, although SPECfp applications have more
predictions per checkpointed run than SPECint codes, check-
pointed runs fail less often. In both SPECfp and SPECint,
however, it is clear that correct predictions are clustered in
time: given the many predictions needed per run and the aver-
age value prediction accuracy (around 50%), if each prediction
had the same probability of failure, practically all checkpointed
runs would fail.

Finally, Figure 6 gives the intuition as to whyCAVAdelivers
better performance thanBase. The figure shows histograms of
outstanding L2 misses during program execution formcf and
art, both underBaseand CAVA. Comparing the histograms,
we observe that, underCAVA, the case of a high number of
simultaneous outstanding L2 cache misses occurs more often.
This shows thatCAVAenables more memory level parallelism.

6.3 Sensitivity Analysis

6.3.1 Immediate vs Delayed Value Consumption

As described in Section 3.1.2, there is a choice between con-
suming a value prediction as soon as the prediction arrives at
the processor (Immediate use) or waiting until the missing load

reaches the head of the ROB (Delayed use).CAVAemploys
Delayed use. The rationale is that a prediction may be rejected
before its value is actually used, effectively avoiding a rollback.

To assess the impact of supporting the Delayed use inCAVA,
we measure the percentage of predictions that have not been
consumed by the time the value is confirmed or rejected. This
is shown in Column 2 of Table 3. On average, over 5% of the
predictions for SPECint and 11% of the predictions for SPECfp
were not consumed before they were confirmed or rejected.
Note that, in Immediate use, it takes only one of these predic-
tions to be incorrect to cause a processor rollback. Since the
hardware to implement Delayed use is simple,CAVAemploys
Delayed use.

Pred. not Ld-to-use Imp. of confidence estimation (relative)
App. Consumed distance Chkpt # Success # Failed

(%) (instrs) duration chkpts chkpts
(instrs)

bzip2 13.8 2.1 0.96 1.22 0.99
crafty 0.7 3.9 0.89 1.25 1.00
gap 3.7 3.0 0.77 3.62 1.01
gcc 2.6 4.5 0.83 1.49 1.00
gzip 4.1 9.5 0.97 2.93 1.00
mcf 1.5 1.9 0.51 10.07 1.05

parser 2.4 3.5 0.72 2.87 1.02
perlbmk 3.0 1.5 0.54 12.63 0.85

twolf 6.0 2.5 0.44 4.87 1.12
vortex 22.2 5.9 0.84 1.64 1.01

vpr 2.7 1.8 0.76 2.47 0.98

applu 1.2 8.0 0.76 25.53 1.00
art 12.3 1.8 0.53 9.79 1.01

equake 7.8 5.4 0.61 3.30 1.00
mesa 22.1 3.0 0.72 3.03 1.02
mgrid 13.0 8.8 0.80 3.05 0.98

wupwise 10.0 3.9 0.69 4.24 1.13

Int Avg 5.7 3.6 0.75 4.10 1.00
FP Avg 11.1 5.2 0.69 8.16 1.02

Table 3:CAVAsensitivity analyses. The impact of the Confidence
Estimator (CE) is shown as the ratio between measurements with
CE and measurements without CE.
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Figure 6:Distribution of outstanding L2 misses forBaseandCAVA, for the memory-bound applicationsmcfandart.

6.3.2 Checkpoint at Load vs at Use

Section 3.1.3 discusses whether to create a checkpoint at a
missing load (as inCAVA) or at the first use of the correspond-
ing predicted value. We have measured the average distance
between a missing load and its first use forBase. The results
presented in Column 3 of Table 3 show that the distance is
small: there are no more than a few intervening instructions
between load and use — typically 4-6. Consequently, we con-
clude that checkpointing at a missing load is good enough.

6.3.3 L2 Value Prediction Accuracy

We examine the prediction accuracy of several value predic-
tors. The predictors analyzed are: zero predictor (Z, always
predict the value zero); single-entry global last-value predictor
(GLV); last value predictor indexed by a hash of the PC (LV);
last value predictor indexed by a hash of the PC and the branch
history (BHLV); stride predictor (S); and finite context method
predictor (FCM) [8]. We also analyze combinations of any two
of them, where the prediction is selected by a 2-bit saturating
counter selector indexed by a hash of the PC.

Figure 7 shows the prediction accuracy across all the appli-
cations for each predictor. There are two bars for each predic-
tor: the first one is the accuracy when trained exclusively with
L2 misses; the second one is the accuracy when trained with
all memory accesses. In both cases, predictions are only gen-
erated on L2 misses. The labels on top of the bars show the
total size of the corresponding predictor in bits. All predictors
have 2048 entries, except forZ andGLV, and the selectors.
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Figure 7: Value prediction accuracy and size for various
predictors. The accuracy across applications is computed by
weighing the accuracy in each application by the number of
predictions in the application. The bar with an asterisk corre-
sponds to the predictor used in this paper.

The predictor that exhibits the best size/accuracy tradeoff is
GLV+BHLV. This is the predictor that we use in this paper. It
has a size of about 8KB and an accuracy close to 50%. Its ac-
curacy is higher when it is trained exclusively with L2 misses.

Therefore, there is no need to place it close to the processor;
it can be placed in the L2 cache, where it can be more easily
accommodated.

6.3.4 Confidence Estimation

The last three columns of Table 3 (Columns 4-6) show the im-
pact of our Confidence Estimator (CE) for value prediction.
The impact is shown as the ratio between measurements with
CE and measurements without CE. Column 4 shows the ratio
of the number of instructions per checkpointed run. The effect
of the CE is to reduce the size of the checkpointed runs to 75%
(SPECint) and 69% (SPECfp) of their original size. The rea-
son is that the confidence estimator stops speculation on low
confidence predictions.

Columns 5 and 6 show the ratio of the number of success-
ful and failed checkpointed runs, respectively. We see that,
with CE, the number of successful checkpointed runs is much
higher: 4 times for SPECint and 8 times for SPECfp. We also
see that the number of failed checkpointed runs stays approxi-
mately the same. The reason for this effect is that the CE breaks
long checkpointed runs that used to fail into shorter ones that
succeed and shorter ones that still fail. Therefore, we conclude
that the employment of CE is useful.

6.3.5 Number of MSHR and OPB Entries

We now vary the number of entries in the L1 MSHR. Figure 8
shows the execution time of the applications for L1 MSHRs
where the number of entries ranges from 16 to 8K. In all ex-
periments, the number of entries in the L2 MSHR (inBase) and
in the OPB (inCAVA) are the same as the number of entries in
the L1 MSHR. For each size, we show four bars, correspond-
ing to BaseandCAVA, and for SPECint and SPECfp. Under
each set of four bars, we show the number of L1 MSHR en-
tries. All bars are normalized to the performance for the same
application set inBasefor a 128-entry L1 MSHR.

We observe that the bars forCAVA level off at many more
MSHR entries than forBase. The reason is thatCAVA can
exploit a higher memory-level parallelism and, therefore, can
use more MSHR entries. WithinCAVA, the saturation occurs
at 128 entries for SPECint and at 512 entries for SPECfp.
The reason is that SPECfp applications have a higher poten-
tial memory-level parallelism. Overall, ourCAVAdesign with
128 entries in the L1 MSHR and OPB (Table 1) has as many
entries as needed for SPECint, but not for SPECfp.

10



S
pe

ed
up

 o
ve

r 
B

as
e 

w
ith

 1
28

 e
nt

rie
s

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

Base Int

CAVA Int

Base FP

CAVA FP

16 32 64 128 256 512 8k

Figure 8: Impact of the number of L1 MSHR entries. In all
experiments, the number of entries in the L2 MSHR (inBase)
and in the OPB (inCAVA) are the same as the number of entries
in the L1 MSHR. All bars are normalized toBasefor a 128-
entry L1 MSHR.

7 Related Work

Runahead execution [22] checkpoints the processor and pre-
maturely retires a long-latency load before it completes, so
that the processor can continue execution (speculatively). The
goal of Runahead is to train branch predictors and to prefetch
data into caches. Runahead and CAVA have three major dif-
ferences. First, in Runahead there is no prediction: the desti-
nation register of the missing load is marked with an invalid
tag, which is propagated by dependent instructions. Such in-
structions do not warm up branch predictor or caches. Second,
in Runahead, when the data arrives from memory, execution is
alwaysrolled back; in CAVA, if the prediction is correct, exe-
cution is not rolled back. Finally, while Runahead buffers (po-
tentially incomplete) speculative state in a processor structure
called Runahead cache, CAVA buffers the whole speculative
state in L1.

CLEAR [13] wasdeveloped concurrentlywith CAVA. Com-
pared to CLEAR, CAVA presents a more simplified design. For
example, the value prediction and validation engine in CAVA
is located off the critical path, in the L2 MSHR structure (and
is trained only with L2 misses), whereas in CLEAR, predic-
tion and validation mechanisms are located inside the proces-
sor core. Moreover, to simplify the design, CAVA explic-
itly chooses to support only one outstanding checkpoint at a
time, and forces the termination of a high-confidence specu-
lative section when a low-confidence prediction needs to be
made; CLEAR supports multiple outstanding checkpoints. We
found that supporting multiple checkpoints increases the per-
formance insufficiently compared to the complexity it requires.
Finally, we described how to support CAVA in multiproces-
sors, an area not considered by CLEAR.

In addition to these issues, our paper compares CAVA to
Runahead with value prediction — an important design point
left out by CLEAR. Moreover, our paper has a very detailed
evaluation, including the effect of the number of MSHR regis-
ters — a fundamental structure to support memory-level paral-
lelism.

There are several other techniques to hide the latency of
long-latency operations. For example, CPR [1] and Out-of-
order Commit processors [6] remove the ROB and support
many instructions in flight, which allows them to hide long-
latency operations. They take frequent checkpoints so that on
exceptions, branch mispredictions, or similar events, the pro-

cessor can roll back to a checkpoint.
Lebeck et al [16] propose a design for the instruction win-

dow where instructions dependent on a long latency operation
are moved from the conventional issue queue to another struc-
ture while the long latency operations is executed. Once the
long latency operation completes, those instructions are moved
back into the conventional issue queue and are executed. In the
meantime, instructions not dependent on the long latency op-
eration can be executed.

CFP [26] removes long latency loads and their dependent in-
structions (slice) from the execution window and places them
in an off-critical path structure until the missing load is ser-
viced. In the meantime, independent instructions execute, hid-
ing the load latency. When the load is serviced, the slice is
reintroduced in the execution window and is finally executed.
Like CAVA, CFP uses checkpointing and is subject to failed
speculation. However, the cause is different: on slice construc-
tion, some instructions are speculatively predicted by CFP to
be dependent on other instructions already in the slice. A major
difference between CAVA and CFP is that CFP hides the load
latency with the execution ofindependentinstructions, while
CAVA hides it with bothdependent(risking mispredictions)
and independentinstructions. There is some evidence that, at
least some times, there may not be enough independent instruc-
tions to hide the latency of loads [21].

Zhou and Conte [28] use value prediction on missing loads
to continue executing (speculatively). Speculative instructions
remain in the issue queue, since no checkpointing is made.
When the actual data is received from memory, the specula-
tive instructions are always discarded and re-executed. As in
Runahead, speculative execution is employed for prefetching.

Several related schemes use register checkpointing and roll-
back to support the speculative execution of long code sections.
For example, Cherry [20] checkpoints and then speculatively
recycles resources early. TLS [10, 14, 25, 27] checkpoints and
spawns a thread to run speculatively.

Finally, several authors have studied the prediction of regis-
ter values [3, 8, 17, 24]. In our paper, we have reused some of
their algorithms.

8 Conclusion

This paper presented a design and implementation of
Checkpoint-Assisted VAlue Prediction (CAVA), a new tech-
nique that hides L2 cache misses by predicting their data val-
ues, checkpointing the state, and continuing execution. When
the response with the value comes back from memory, the pre-
diction is verified. If the prediction is correct, execution con-
tinues normally; if it is not, the hardware rolls back execution
to the checkpoint. In either case, CAVA can increase perfor-
mance. Specifically, if the prediction is correct, the proces-
sor has performed useful work. If the prediction is incorrect,
CAVA has potentially prefetched good data into the caches and
trained the branch predictor like Runahead.

CAVA delivers significant speedups for a variety of codes.
Specifically, compared to a baseline aggressive superscalar
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processor, CAVA speeds up execution by up to 1.45 for
SPECint applications and 1.58 for SPECfp applications, with
a geometric mean of 1.14 for SPECint and 1.34 for SPECfp
applications. These results outperform Runahead, which does
not use value prediction, and rolls back execution after every
speculative section.
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