
Physical Register Reference Counting
Amir Roth

Department of Computer and Information Science, University of Pennsylvania

Abstract—Several recently proposed techniques including
CPR (Checkpoint Processing and Recovery) and NoSQ (No
Store Queue) rely on reference counting to manage physical reg-
isters. However, the register reference counting mechanism itself
has received surprisingly little attention. This paper fills this gap
by describing potential register reference counting schemes for
NoSQ, CPR, and a hypothetical NoSQ/CPR hybrid. Although
previously described in terms of binary counters, we find that
reference counts are actually more naturally represented as
matrices. Binary representations can be used as an optimization
in specific situations.

I. OVERVIEW
ynamically-scheduled processors with unified physical register
files use a simple algorithm to free physical registers: registers

are unconditionally added to a free list at instruction commit and
squash. Several proposed techniques require a more flexible physical
register reclamation mechanism: physical register reference count-
ing. Here, instruction processing stages do not unconditionally free
registers. Instead, they increment and decrement register reference
counts. Registers become free when their reference count reaches
zero. These techniques fall into two general classes: ones that use
reference counting to track register reads [1, 2, 6, 7, 10] and ones that
use it to track register “writes” [3, 8, 9]. Here, we use CPR (Check-
point Processing and Recovery) [1] and NoSQ (No Store Queue) [9]
to represent these two classes, respectively.

Despite acting as an enabling mechanism for a number of tech-
niques, register reference counting itself has received little attention.
The earliest description of a reference counting scheme we found
uses per-physical register multi-input up-down binary counters [6].
Subsequent proposals either point to this design, describe their own
scheme as “a table of reference counts”, or skirt the issue altogether.
Insufficient detail about the requirements and implementation of reg-
ister reference counting has led to confusion and to concern about
the feasibility of proposals that use it. This paper attempts to de-mys-
tify register reference counting by providing a set of design recipes
for reference counting mechansims. As examples, we describe refer-
ence counting mechanism designs for NoSQ, CPR, and a hypotheti-
cal NoSQ/CPR hybrid.

II. REGISTER REFERENCE COUNTING APPLICATIONS
Register management is related to, but separate from, register

renaming. Register renaming is the mapping of source operands and
uses a map table. Register management is the allocation and freeing
of registers and uses a free list. Reference counting is a register man-
agement scheme. This section uses CPR and NoSQ to motivate reg-
ister reference counting and to demonstrate the two basic ways in
which it is used.

Conventional processor. Figure 1 shows register management
for a conventional processor with three logical registers (r1–r3) and
eight physical registers (p1–p8). For each of five dynamic instruc-
tions (A–E), the figure shows the state of the register map table
before renaming (RMap), the renamed instruction itself, and the

instruction’s register management actions. At rename, an instruction
allocates a new physical register for its destination. It also remem-
bers the physical register it over-writes in the map table—it frees this
register at commit. For example, instruction A allocates p4 for its
destination r1. p4 is over-written by instruction D and is freed when
D commits. Figure 1 refers to these actions as “ROB” actions
because they parallel reorder buffer (ROB) management actions.

This simple algorithm is enabled by a one-to-one mapping
between register-writing instructions and registers they manage. At
rename, every register-writing instruction allocates exactly one regis-
ter and every register is allocated by exactly one instruction. At com-
mit, every register-writing instruction frees exactly one register and
each register is freed by exactly one instruction.

NoSQ. NoSQ (No Store Queue) is a microarchitecture that does
not have a conventional store queue, performing all would-be in-
flight store-load communication using speculative memory bypass-
ing (SMB) [5]. When NoSQ renames a load that it predicts will com-
municate with an older in-flight store, it does not dispatch that load
to the execution engine. Instead, it maps the load’s destination to the
physical register that holds the store’s data input. This action effec-
tively connects the load’s consumers directly to the store’s data pro-
ducer, collapsing the DEF-store-load-USE chain into a speculative
DEF-USE chain. Figure 2a uses the same five instruction sequence
to show NoSQ’s register management scheme. Load C communi-
cates with store B and so NoSQ maps its output r3 to B’s data input
p4 rather than to a new register. This action links E (C’s consumer or
USE) to A (B’s producer or DEF), bypassing the store-load pair B-C.

NoSQ breaks the one-to-one instruction-to-register mapping that
enables conventional register management. Not every renaming
instruction allocates a new physical register—here C reuses p4,
effectively “sharing” it with A. Similarly, not every committing
instruction frees a register—here D doesn’t free p4, p4 is only freed
when both D and E commit. NoSQ’s register management algorithm
can be formulated in a simple way in terms of reference counting.
Allocations and instances of sharing or reuse become increments and
frees become decrements. These actions track references by in-flight
instructions and parallel ROB management. This algorithm is not
specific to NoSQ. It applies to any implementation of SMB on a pro-
cessor that has both a unified physical register file and a ROB.

NoSQ-style physical register sharing is what we mean by regis-
ter “write” tracking. When multiple instructions share a single regis-
ter as their output—here A and C share p4—both logically write that
register. However, because both would write the same value, only
one—here A—executes and physically performs the write. We track
logical writes and over-writes, not physical writes.

Figure 1. Register management for a conventional processor.

raw RMap renamed ROB
insns r1 r2 r3 insns alloc ren free cmt

A r1= r3+1 p1 p2 p3 p4 =p3+1 p4 p1
B m[r2] = r1 p4 p2 p3 m[p2] = p4
C r3 = m[r2] p4 p2 p3 p5 = m[p2] p5 p3
D r1 = r1+1 p4 p2 p5 p6 = p4+1 p6 p4
E r3 = r1+r3 p6 p2 p5 p7 = p6+p5 p7 p6

p6 p2 p7

Manuscript submitted: 21-Aug-2007. Manuscript accepted: 24-Sep-2007.
Final manuscript received: 28-Sep-2007.

D

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 7, NO. 1, JANUARY-JUNE 2008 9

CPR. CPR uses aggressive register reclamation to reduce the
active lifetime of individual registers and improve register file scal-
ability. CPR frees a register after both the last instruction to read it
executes and the instruction that over-writes it renames implying no
future readers. Under conventional instruction-granularity specula-
tion, squash recovery can undo map table over-writes and retroac-
tively render a given register reclamation premature. CPR sidesteps
this problem by supporting speculation and mis-speculation recovery
only at the granularity of checkpoints. A register can be freed only if
it doesn’t appear in either the current map table or in any checkpoint.
Figure 2b illustrates. The current map table—corresponding to state
after instruction E is renamed—contains p6, p2, and p7. Checkpoints
corresponding to instructions A and D map p1, p2 and p3 and p4, p2
and p5, respectively.

CPR also breaks one-to-one instruction-to-register mapping.
Multiple reader instructions are involved in the freeing of a single
register and a single instruction may be involved in the freeing of two
registers. Checkpoint creation and freeing also participate in register
management. CPR’s register management algorithm can be formu-
lated using reference counting. A register’s reference count is incre-
mented when a reading instruction renames and decremented when a
reading instruction executes. Reference counts are also incremented
when a map table checkpoint is created—the reference count of each
register that appears in the checkpoint is incremented—and decre-
mented when a checkpoint is freed. Figure 2b refers to these sets of
actions as IQ and Ckpt actions, respectively, denoting correspon-
dence to instructions entering and leaving the issue queue and to
checkpoint creation and freeing.

NoSQ/CPR. NoSQ and CPR are a potentially attractive combi-
nation. CPR improves register file scalability while NoSQ improves
load and store queue scalability. Merging NoSQ and CPR requires
merging their reference counting schemes. The simplest way of
doing that is to extend CPR’s read-counting scheme to account for
NoSQ. As part of eliminating the store queue, NoSQ moves store
execution from the out-of-order core to the in-order back-end. NoSQ
also (logically although not physically) re-executes all loads in the
back-end for verification. From a reference counting standpoint, this
requires moving the decrements associated with CPR loads and
stores from execute to commit. Decrements associated with other
instructions still take place at execute. Figure 2c shows a register
management diagram for NoSQ/CPR. LSQ actions are reference
count updates for loads and stores.

Squash recovery. Physical registers are freed not only at commit
(for NoSQ) or execute (for CPR), but also during mis-speculation
recovery. In a processor with conventional register management,
recovery involves freeing the registers allocated to the destinations of
squashed instructions. This can be done in one cycle for an arbi-
trarily large number of instructions starting at the tail of the window
by exploiting the observation that squash recovery frees registers in

reverse allocation order. The free list is organized as a circular queue
and registers allocated to squashed instructions are reclaimed by
moving the free list’s head pointer.

In a processor with register reference counting, recovery
involves undoing the increments that were performed by squashed
instructions if the corresponding decrements had not already
occurred. Accomplishing this in one cycle is not strictly necessary
because instruction squashing and register freeing are not on the mis-
speculation recovery critical path [1]. If possible, however, support
for single-cycle squash recovery is desirable.

III. BASIC DESIGN: UNARY REFERENCE COUNTS
This section describes the basic structure and mechanics of

unary reference counting using NoSQ as a detailed inline example. It
then describes unary reference counting mechanisms for CPR and a
NoSQ/CPR hybrid. Unary reference counting schemes for all three
applications are shown in Figure 3.

Unary reference counts are two dimensional matrices and are
naturally implemented as RAMs. Following the layout of Figure 3,
the horizontal dimension corresponds to physical registers and so
each column represents the reference count for that register. For reg-
ister allocation purposes, exact reference counts don’t matter; what
matters is whether a given reference count is zero or not. To interface
with register allocation, OR gates reduce each reference count—the
bits in each column—to a single free/allocated bit. Collectively,
these form a bitvector-style free list. Registers are allocated directly
out of this bitvector using encoders. The reference counting mecha-
nisms we describe are identical along their horizontal dimension and
all present this interface to register allocation.

Reference counting schemes for different applications differ
along the vertical dimension of the matrix. Here, rows correspond to
entities that reference (i.e., point to) physical registers. In NoSQ,
physical registers are referenced by (the destinations of) in-flight
instructions and by architected logical registers. Figure 3a shows
NoSQ’s reference count matrix as containing one row for each ROB
entry and one row for each logical register in the commit map table
(CMap). Because matrix rows parallel the rows in some other exist-
ing structure, row management is essentially “free”. If rows corre-
spond to entries in two independently-managed structures then the
matrix is also organized with multiple independently-managed
banks. NoSQ’s matrix is organized as two banks. One bank parallels
the ROB—the reference count information for instruction A is at the
same index as instruction A occupies in the ROB. A second bank
parallels the CMap—the reference count information for logical reg-
ister R is in row R.

Reference counts are updated on a row basis. Incrementing refer-
ence counts for the register(s) corresponding to a given entity means
writing a bitvector into the corresponding matrix row. In NoSQ, the
bitvector written by a renamed instruction into the ROB bank is the
decoded representation of its destination physical register. For exam-

Figure 2. Register management for three processors that use reference counting.

RMap renamed ROB
r1 r2 r3 insns +ren –cmt
p1 p2 p3 p4=p1+1 p4 p1
p4 p2 p3 m[p2]=p4
p4 p2 p3 p4=m[p2] p4 p3
p4 p2 p4 p6=p4+1 p6 p4
p6 p2 p4 p7=p6+p4 p7 p4
p6 p2 p7 (a) NoSQ

RMap renamed IQ Ckpt
r1 r2 r3 insns +ren –exc +ren –cmt
p1 p2 p3 p4=p1+1 p1 p1 p1,2,3 p1,2,3
p4 p2 p3 m[p2]=p4 p2,4 p2,4
p4 p2 p3 p5=m[p2] p2 p2
p4 p2 p5 p6=p4+1 p4 p4 p4,2,5 p4,2,5
p6 p2 p5 p7=p6+p5 p6,5 p6,5
p6 p2 p7 (b) CPR

RMap renamed IQ LSQ Ckpt
r1 r2 r3 insns +ren –exc +ren –cmt +ren –cmt
p1 p2 p3 p4=p1+1 p1 p1 p1,2,3 p1,2,3
p4 p2 p3 m[p2]=p4 p2,4 p2,4
p4 p2 p3 p4=m[p2] p2,4 p2,4
p4 p2 p4 p6=p4+1 p4 p4 p4,2,4 p4,2,4
p6 p2 p4 p7=p6+p4 p6,4 p6,4
p6 p2 p7 (c) NoSQ/CPR

raw
insns

A r1=r3+1
Bm[r2]=r1
C r3=m[r2]
D r1=r1+1
E r3=r1+r3

10 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 7, NO. 1, JANUARY-JUNE 2008

ple, instruction A writes a bitvector in which only p4’s bit is set. At
commit, an instruction writes this same bitvector into the appropriate
row in the CMap bank. Each reference count matrix bank needs
write bandwidth that matches that of the structure it parallels. In
NoSQ, ROB bank write bandwidth matches rename bandwidth and
CMap bank write bandwidth matches commit bandwidth.

Whereas unary matrix increments use write ports, decrements
are even simpler, requiring only that the corresponding row be
cleared or reset. Because resets don’t require full ports—they require
only wordlines, not bitlines—a reference count bank can support an
arbitrary number of logical decrements per cycle using a bitmask.
Unary reference counts can support single-cycle squash recovery this
way. During normal NoSQ operation, the ROB bank’s reset bitmask
corresponds to committing instructions. On a squash, the reset mask
corresponds to squashed instructions. The CMap bank does not sup-
port resets because every architectural register must be mapped to a
physical register at all times.

Notice, unary reference count matrices do not need to support
reads. Only row writes and resets and column ORs are needed.

CPR. Figure 2b shows CPR’s unary reference counting scheme.
In CPR, physical registers are referenced by (the sources of) un-exe-
cuted in-flight instructions, by the rename map table, and by map
table checkpoints. To track which registers appear in the rename map
table (RMap), CPR maintains an auxiliary per-physical register
bitvector of the same name. The RMap bitvector is updated at
rename—bits corresponding to newly allocated physical registers
that are mapped to instruction destinations are set, bits corresponding
to over-written physical registers are cleared.

CPR’s reference count matrix consists of two banks. The IQ
bank parallels the issue queue. A renamed instruction writes a bit-
vector that encodes its source physical registers into its row. For
example, instruction E’s bitvector has the p5 and p6 bits set. An exe-
cuted or squashed instruction clears its row. The Ckpt bank parallels
the RMap checkpointing structure. Checkpoint creation—which
happens at rename—writes the current RMap bitvector into the cor-
responding row. For example, the checkpoint corresponding to
instruction D includes physical registers p2, p4, and p5. Checkpoint
release—which happens at commit or squash—resets the row.

The reader may wonder why CPR can represent the physical reg-
ister contents of a map table using a single bitvector (RMap) while
NoSQ must represent the same information using per-logical register
bitvectors (CMap). In NoSQ, the sparse representation is necessary
because a physical register may appear in a map table multiple times.
For example, in Figure 2a, the map table corresponding to instruction
D maps both r1 and r3 to p4. Representing map table membership as
a single bitvector is challenging in this scenario as bits for over-writ-
ten registers can only be reset if those registers are not named else-
where in the map table. In CPR, a given physical register appears at
most once in any map table.

The reader may also recognize the RMap bitvector and its check-
points as components of the Alpha 21264’s CAM-style register
renaming and map table checkpointing mechanisms, respectively
[4]. Here, we use them for reference counting. Renaming and map
table checkpointing are separate from reference counting. Our refer-
ence counting mechanisms can be used together with any renaming
scheme. In fact, techniques like NoSQ which can map different logi-
cal registers to the same physical register cannot use the 21264’s
CAM-style renaming scheme, requiring the more traditional RAM-
style scheme instead.

NoSQ/CPR. Figure 2c shows a unary reference counting
scheme for NoSQ/CPR. There are three banks. The LSQ bank tracks
reads by loads and stores and resembles NoSQ’s ROB bank. The IQ
bank tracks reads by un-executed non-memory instructions and
resembles CPR’s IQ bank. The Ckpt bank tracks physical registers
named in map table checkpoints and resembles CPR’s Ckpt bank.
However, because a NoSQ/CPR hybrid allows map tables to name
the same physical register multiple times, the contents of each map
table are represented as they are in NoSQ—not as one bitvector, but
as a bitvector per logical register. When a checkpoint is created, all
RMap bitvectors are copied en masse to a block in the Ckpt bank.
This inefficiency motivates the use of binary reference count repre-
sentations.

IV. OPTIMIZATION: BINARY REFERENCE COUNTS
A binary reference count is implemented as an n-bit register.

Attached to the register is a tree of n-bit adders that processes incre-
ments and decrements. Aside from the contents of the counter regis-
ter, the adder tree has one input for each instruction that can
increment or decrement a reference count per cycle. For instance, if
reference counts are incremented at rename and decremented at
commit and the processor can both rename and commit two instruc-
tions per cycle, then a given reference count adder tree has five
inputs. Figures 4a and 4b each show binary counters with two incre-
ment inputs (i0, i1) and two decrement inputs (d0, d1). Carry-save
adders (cs+ blocks in the figure) can be used to reduce the height of
this tree. As with unary reference counts, an OR gate reduces the
register to a single free/allocated bit. A processor has one register-
adder block for each physical register.

The same bitvectors that are written into the matrix in a unary
representation are used as the inputs to the adder trees in a binary
representation. In NoSQ, the bitvector each renamed instruction
writes into the unary ROB matrix is the decoded form of its destina-
tion physical register. In a binary counter implementation, each bit in
this bitvector is an input to the adder tree of the corresponding regis-
ter. In a two-way superscalar processor, the first renamed instruc-
tion’s bitvector supplies the i0 inputs; the second renamed
instruction’s bitvector provides the i1 inputs. The counters corre-
sponding to these instructions’ destination registers are incremented

Figure 3. Unary reference counting mechanisms.

p1 p2 p3 p4 p5 p6 p7 p8

R
O

B

A 0 0 0 1 0 0 0 0
B 0 0 0 0 0 0 0 0
C 0 0 0 1 0 0 0 0
D 0 0 0 0 0 1 0 0
E 0 0 0 0 0 0 1 0

C
M

ap

r1 1 0 0 0 0 0 0 0
r2 0 1 0 0 0 0 0 0
r3 0 0 1 0 0 0 0 0

FreeList 1 1 1 1 1 0 1 0
(a) NoSQ

p1 p2 p3 p4 p5 p6 p7 p8

IQ

D 0 0 0 1 0 0 0 0
E 0 0 0 0 1 1 0 0

C
kp

t A 1 1 1 0 0 0 0 0
D 0 1 0 1 1 0 0 0

RMap 0 1 0 0 0 1 1 0

FreeList 1 1 1 1 1 1 1 0
(b) CPR

p1 p2 p3 p4 p5 p6 p7 p8

L
SQ

B 0 1 0 1 0 0 0 0
C 0 1 0 1 0 0 0 0

IQ
D 0 0 0 1 0 0 0 0
E 0 0 0 0 1 1 0 0

C
kp

t

A.r1 1 0 0 0 0 0 0 0
A.r2 0 1 0 0 0 0 0 0
A.r3 0 0 1 0 0 0 0 0
D.r1 0 0 0 1 0 0 0 0
D.r2 0 1 0 0 0 0 0 0
D.r3 0 0 0 1 0 0 0 0

R
M

ap

r1 0 0 0 0 1 0 0 0
r2 0 1 0 0 0 0 0 0
r3 0 0 0 0 0 0 1 0

FreeList 1 1 1 1 1 0 1 0
(c) NoSQ/CPR

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 7, NO. 1, JANUARY-JUNE 2008 11

by one along the i0 and i1 inputs, respectively. Counters correspond-
ing to other registers are not incremented. The bitvectors for the two
committing instructions act as the d0 and d1 inputs. For decrements,
each bit in the bitvector is sign-extended to match adder width.

Binary counters can support resets, but this is not sufficient to
support single-cycle squashing which requires decrementing each
counter by some arbitrary amount. Because computing the arbitrary
decrement amounts is difficult, squash-related decrements are pro-
cessed by walking the squashed instructions. This generally has little
performance impact [1].

Even ignoring non-support for single-cycle squashing, binary
counters are at a disadvantage relative to unary matrices because reg-
ister storage is larger per-bit than RAM storage and because of adder
overhead. In practice then, binary counters provide an advantage
over unary matrices only under certain conditions.

One such condition is that the maximum practical value of any
reference count is much smaller than the theoretical maximum,
allowing counters and adders to be made narrow. In NoSQ, the theo-
retical maximum value of a reference count is equal to the number of
logical registers plus the number of in-flight loads. In practice, how-
ever, most NoSQ counter values are either zero or one and values
over three—corresponding to at least three in-flight loads communi-
cating with one store—are rare. And so NoSQ’s binary counters can
be implemented with only two bits. ANDing the bits in a counter (the
Max output in Figures 4a and 4b) detects whether that counter has
reached its maximum value and can no longer accept increments.

A second condition that favors binary representations is when
the number of individual increments and decrements to a given refer-
ence counter can be restricted to one (of each) per cycle in a way that
is both easy to implement and doesn’t degrade performance. For
example, in a two-way superscalar NoSQ processor the reference
count of a single register could theoretically be incremented by both
renamed instructions. However, instruction sequences that would
bring this about—e.g., consecutive loads communicating with the
same store—are both rare and easy to detect. Once detected, multiple
same-cycle increments to the same register are avoided by forcing
the loads to rename in consecutive cycles. With only one increment
and one decrement per cycle, the adder tree collapses to a single
three-input carry-save adder. The increment input to the adder is
formed by bitwise ORing the bitvectors of the renaming instructions.
The decrement input is formed similarly by ORing the bitvectors of
the committed instructions. Figure 4b illustrates this optimization.
The adder tree in Figure 4a can process up to two increments and
two decrements per cycle—it has a separate input for each increment
and decrement. In Figure 4b, increments and decrements are limited

to one each per cycle and the adder tree has one increment input (i0
OR i1) and one decrement input (d0 OR d1).

Figure 4c shows a binary reference counting scheme for NoSQ.
A single 2-bit binary counter replaces an entire column bitvector that
spans both ROB and CMap banks.

CPR. Figure 4 doesn’t include a binary reference counting
design for CPR because CPR does not benefit from such a design.
For IQ reference counts, which track register reads, increments and
decrements are not naturally limited to one per cycle—multiple
instructions in a rename group commonly read the same register.
Meanwhile, Ckpt reference counts are quite dense even in a unary
representation. With 16 checkpoints, it doesn’t pay to replace a 16-
bit vector with a 4-bit counter and an adder tree.

NoSQ/CPR. Binary reference counters can dramatically reduce
the cost of reference counting for NoSQ/CPR. Most of the cost of the
unary scheme comes from the RMap and Ckpt banks which repre-
sent registers named in map tables. Because of NoSQ’s use of physi-
cal register sharing, each logical map table must be represented as a
collection of bitvectors, one per logical register.

In Figure 4d, RMap is implemented as an array of 2-bit binary
counters with associated three-input adders as in NoSQ. In contrast
with NoSQ, NoSQ/CPR’s RMap counter vector is both incremented
and decremented at rename—decrements correspond to over-written
registers. Each Ckpt bank entry is also an array of 2-bit counters.
However, these do not have associated adders because they are never
incrementally modified, only written and restored. As in CPR, the
Ckpt bank is organized as a high-density RAM. Assuming 64 logical
registers, the use of binary counters reduces the cost of the Ckpt bank
by a factor of 32—from 64 bits per checkpoint per register to 2. The
LSQ and IQ banks are left as unary matrices. Overall, NoSQ/CPR’s
reference counting scheme is a unary/binary hybrid in which every
free/allocated bit is computed by ORing multiple unary bitvectors
and 2-bit counters.

ACKNOWLEDGMENTS
The author thanks Adam Butts, Milo Martin, Vlad Petric, and

Tingting Sha for discussions about physical register reference count-
ing and for comments on this manuscript. This work was supported
by NSF grants CCR-0238203 and CCF-0541292.

REFERENCES
[1] H. Akkary, R. Rajwar, and S. Srinivasan. “Checkpoint Processing and

Recovery: Towards Scalable Large Instruction Window Processors.” In
MICRO-36, pages 423–434, Dec. 2003.

[2] A. Al-Zawawi, V. Reddy, E. Rotenberg, and H. Akkary. “Transparent
Control Independence (TCI).” In ISCA-34, pages 448–459, Jun. 2007.

[3] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz. “A Novel
Renaming Scheme to Exploit Value Temporal Locality Through Physi-
cal Register Reuse and Unification.” In MICRO-31, pages 216–225, Dec.
1998.

[4] J. Keller. “The 21264: An alpha processor with out-of-order execution.”
In 9th Annual Microprocessor Forum, Oct. 1996.

[5] A. Moshovos and G. Sohi. “Streamlining Inter-Operation Communica-
tion via Data Dependence Prediction.” In MICRO-30, pages 235–245,
Dec. 1997.

[6] M. Moudgill, K. Pingali, and S. Vassiliadis. “Register Renaming and
Dynamic Speculation: An Alternative Approach.” In MICRO-26, pages
202–213, Dec. 1993.

[7] D. Oehmke, N. Binkert, T. Mudge, and S. Reinhardt. “How To Fake
1000 Registers.” In MICRO-38, pages 7–18, Nov. 2005.

[8] V. Petric, T. Sha, and A. Roth. “RENO: A Rename-Based Instruction
Optimizer.” In ISCA-32, pages 98–109, Jun. 2005.

[9] T. Sha, M. Martin, and A. Roth. “NoSQ: Store-Load Communication
without a Store Queue.” In MICRO-39, pages 285–296, Dec. 2006.

[10] S. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. “Con-
tinual Flow Pipelines.” In ASPLOS-11, pages 107–119, Oct. 2004.

Figure 4. Binary and hybrid reference counting mechanisms.

p1 p2 p3 p4 p5 p6 p7 p8

L
SQ

B 0 1 0 1 0 0 0 0
D 0 1 0 1 0 0 0 0

IQ

C 0 0 0 1 0 0 0 0
E 0 0 0 0 1 1 0 0

C
kp

t A 01 01 01 00 00 00 00 00
C 00 01 00 10 00 00 00 00

RMap 00 01 00 00 01 00 01 01

FreeList 1 1 1 1 1 0 1 0
(d)NoSQ/CPR

p1 p2 p3 p4 p5 p6 p7 p8
All 01 01 01 10 01 00 01 00

FreeList 1 1 1 1 1 0 1 0
(c) NoSQ

cs+

i0 i1 d0 d1 i0 i1 d0 d1

cs+

cs+

+

cs+

+

(a) (b)

ctr

Max

FreeList

ctr

FreeList

Max

12 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 7, NO. 1, JANUARY-JUNE 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

