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Abstract— Cache Partitioning has been proposed as an inter-
esting alternative to traditional eviction policies of shared cache
levels in modern CMP architectures: throughput is improved at
the expense of a reasonable cost. However, these new policies
present different behaviors depending on the applications that
are running in the architecture. In this paper, we introduce some
metrics that characterize applications and allow us to give a clear
and simple model to explain final throughput speed ups.

I. INTRODUCTION

Recent technology advances have increased the number

of available transistors for processor designers. However, the

performance achievable by traditional superscalar processor

designs has almost saturated due to the limitation imposed

by instruction-level parallelism. As a consequence, thread-

level parallelism has become a common strategy for improving

processor performance. This strategy has led to a wide range

of multithreaded processor architectures, such as simultaneous

multithreading (SMT) and chip multiprocessing (CMP).

These architecture paradigms offer the opportunity to obtain

higher throughputs, but they also have to face the challenge

of sharing resources of the architecture. Simply avoiding any

resource control can lead to undesired situations where one

thread is monopolizing all the resources and harming the

other threads performance. Some studies deal with the resource

sharing problem in SMTs at core level resources [1] like issue

queues, registers, etc. In CMPs, resource sharing is lower than

in SMT, focusing in the cache hierarchy.

Some applications present low reuse of their data and

pollute caches with data streams, such as multimedia, commu-

nications or streaming applications, or have many compulsory

misses that cannot be solved by assigning more cache space

to the application. Traditional eviction policies such as Least

Recently Used (LRU), pseudo LRU or random are demand-

driven, that is, they tend to give more space to the application

that has more accesses to the cache hierarchy. Some previous

work propose static and dynamic partitioning algorithms that

monitor the L2 cache accesses and decide a partition for a

fixed amount of cycles in order to maximize throughput [3],

[5], [8] or fairness [4].

In [3], [4], [5], [8] the main tool used to decide cache

partitions is Stack Distance Profiling. Each set in a cache can

be seen as a LRU stack, where lines are sorted by their last

access cycle. In that way, the first line of the LRU stack is the

most recently used (MRU) line while the last line is the LRU

line. For a K-way associative cache with LRU replacement

algorithm, we need K+1 counters: C1, C2, . . . , CK , C>K . On

each cache access, one of the counters is incremented. If it is

a cache access to a line in the ith position in the LRU stack of

the set, Ci is incremented. If it is a cache miss, the line is not

found in the LRU stack and, as a result, we increment the miss

counter C>K . Stack distance profile can be obtained during

execution. A characteristic of these profiles is that the number

of cache misses for a smaller cache with the same number of

sets can be easily computed using the stack distance profile.

For example, for a K ′-way associative cache, where K ′ < K,

the new number of misses can be computed as:

misses = C>K +
K∑

i=K′+1

Ci

Using the stack distance histogram of two applications, we

can derive the optimal L2 cache partition that would minimize

the total number of misses, as this last number corresponds to

the sum of misses of each thread with the assigned number

of ways. This mechanism is used in [3], [5], [8] in order to

minimize the total number of misses and try to maximize

throughput. Throughout this paper, we will call this policy

as MinMisses.

These studies demonstrate that MinMisses is really useful

in some cases and, in average, gives interesting speed ups.

However, they are mainly interested in the practical implemen-

tation of these techniques, which is necessary and challenging,

but do not give a clear model to explain in which situations

these algorithms are more profitable. Obtaining such a model

provides a powerful tool to predict performance benefits of

these proposals for any application, without the restriction of

using a particular set of benchmarks. Hence, in a scenario

where the set of applications is known, computer designers are

interested in analyzing if the extra cost that cache partitioning

supposes is worthwhile. Our main contribution is a clear

guideline that explains the performance benefits of MinMisses
over LRU. With this objective, we introduce a reduced number

of metrics that characterize the behavior of benchmarks and

that are obtained by individual simulation of each benchmark.

II. EXPERIMENTAL SETUP

We have targeted this study to the case of a CMP with two

cores with their respective own data and instruction L1 caches
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and unified L2 cache shared among threads as in [4], [5], [8].

In this situation, the effects of the partitioning algorithm can be

analyzed easier as there is no collision with effects concerning

other shared resources as in the case of a SMT. Each core is

single threaded and can fetch up to 8 instructions each cycle.

It has 6 integer (I), 3 floating point (FP), and 4 load/store

functional units and 32-entry I, load/store, and FP instruction

queues. Each thread has its own 256-entry reorder buffer and

256 physical registers. We use a two-level cache hierarchy

with 64B lines with separate 16KB, 4-way associative data

and instruction caches, and a unified 1MB, 16-way L2 cache

that is shared among all cores. Latency from L1 to L2 is 15

cycles, and from L2 to memory 300 cycles.

We extended the SMTSim simulator [9] to make it CMP.

We collected traces of the most representative 300 million

instruction segment of each program, following the SimPoint

methodology [7]. We use the FAME simulation methodology

proposed in [10] with a Maximum Allowable IPC Variance of

5%. This evaluation methodology measures the performance of

multithreaded processors by reexecuting all threads in a mul-

tithreaded workload until all of them are fairly represented in

the final IPC taken from the workload. As performance metrics

we have used IPC throughput and the sum of individual IPCs

to represent pairings final throughput. Average throughput is

computed using the harmonic mean of final throughputs.

III. EXPLAINING SPEED UPS

In [5] authors qualitatively classify the benchmarks based

on the shape of the stack histogram, which determines the be-

havior of the application as more ways are assigned to it. This

classification extends previous classifications in [3], [8]. In

order to reproduce this experiment, we simulate each SPEC2K

benchmark in isolation in our baseline CMP architecture. We

observed that the performance of each benchmark varies as we

increase the number of ways given to it. As shown in Figure 1,

there are three different cases. Low utility (L) benchmarks are

not affected by L2 cache space because nearly all L2 accesses

are misses. Other benchmarks just need some ways to have

maximum throughput as they fit in the L2 cache, that we call

Small Working Set (S). Finally, High utility (H) benchmarks

always improve their performance as we increase the number

of ways given to them. Clear representatives of these three

groups are applu (L), gzip (S) and ammp (H) in Figure 1.

Thus, each 2-thread workloads can be classified into one of

these 6 groups: HH, HL, HS, LL, LS, and SS.

We composed a total of 48 workloads, 8 in each group,

in which every benchmark appears between 3 and 5 times,

which means that results are not biased by the behavior of

any benchmark. The performance improvement of MinMisses
over LRU is different for each group of workloads. For the

workload types HH, HS and SS MinMisses has moderate

losses, lower than 3% 1. In contrast, MinMisses improves

LRU for LL and LS groups, presenting moderate gains lower

1We consider that simulations inside this 3% threshold have similar
performance to the LRU policy.
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Fig. 1. Performance of benchmarks as we vary the number of ways.

than 3%. HL is the group with the best results, with average

improvements of 27.3%. This performance results are consis-

tent with results obtained by other authors. Although in [4], [5]

signinficant performance benefits were presented (MinMisses
harmonic mean had a 16.8% and 14% improvement over

LRU, respectively), here we obtain an average improvement of

5.01%. The explanation for this significant difference is that

the criterion to select pairings in these papers is different and

many of their combinations belong to the HL group.

The main motivation for this paper is that there is a high

variability in the improvement that MinMisses obtains over

LRU inside each group. Hence, it is necessary to find a new

classification for the workloads so that the performance im-

provement of MinMisses over LRU in each group is consistent

with some rules. With that purpose we introduce two metrics.

Metric 1. The wP%(B) metric measures the number of

ways needed by a benchmark B to obtain at least a given

percentage P% of its maximum IPC (when it uses all L2

ways). We have found that using a value of P = 90% as

threashold gives a metric that accurately corresponds to the

intuitive classification that we have previously introduced.

In that way, we have the following benchmark classification

depending on the value of w90%. In Table I we can see w90%

for all SPEC2K benchmarks. Just note that H benchmarks have

w90% > 8, S benchmarks have 2 < w90% ≤ 8 and L have

1 ≤ w90% ≤ 2.

• High Utility: ammp, apsi, art, facerec, galgel, mgrid,

parser, twolf and vpr.

• Small Working Set: crafty, eon, gcc, gzip, perl and vortex.

• Low Utility: applu, bzip2, equake, gap, lucas, mcf, mesa,

sixtrac, swim and wupwise.

Metric 2. The wLRU (thi) metric measures the number of

ways given by LRU to each thread thi both benchmarks run

together. This can be done simulating all benchmarks alone

and using the total number of L2 accesses in a fixed period of

cycles for each benchmark. We denote the number of Accesses

in a Period of 100 Thousand Cycles for thread i to the L2

cache as APTCi (see Table I). Other authors have used this

approximation and proved its accuracy [2].

wLRU (thi) = Associativity · APTCi

APTC0 + APTC1
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TABLE I

BENCHMARK CHARACTERIZATION

Bench w90% APTC IPC Bench w90% APTC IPC
ammp 14 23.63 1.27 applu 1 16.83 1.03
apsi 10 21.14 2.17 art 10 46.04 0.52
bzip2 1 1.18 2.62 crafty 4 7.66 1.71
eon 3 7.09 2.31 equake 1 18.6 0.27
facerec 11 10.96 1.16 fma3d 9 15.1 0.11
galgel 15 18.9 1.14 gap 1 2.68 0.96
gcc 3 6.97 1.64 gzip 4 21.5 2.20
lucas 1 7.60 0.35 mcf 1 9.12 0.06
mesa 2 3.98 3.04 mgrid 11 9.52 0.71
parser 11 9.09 0.89 perl 5 3.82 2.68
sixtrack 1 1.34 2.02 swim 1 28.0 0.40
twolf 15 12.0 0.81 vortex 7 9.65 1.35
vpr 14 11.9 0.97 wupw 1 5.99 1.32

Next, we explain the classification of the 48 pairings of

benchmarks using these two metrics as well as the rationale

behind this classification.

• We study the cases where w90%(th0) + w90%(th1) ≤
Associativity. In this case, we can assure that with an

optimal static partitioning of the L2 cache we can obtain

at least 90% of each benchmark throughput. To better

understand our results, we have split this case in two

possible situations.

– When w90%(thi) < wLRU (thi) for bothe treads. We

call this situation Case 1.

– When w90%(thA) > wLRU (thA) and w90%(thB) <
wLRU (thB). We call this situation Case 2.

• When w90%(th0)+w90%(th1) > Associativity. We call

this situation Case 3.

Case 1. When w90%(thi) < wLRU (thi) for both threads.

Theoretically, in this situation LRU attains at least 90% of each

benchmark IPC. Thus, it is intuitive that MinMisses should

obtain similar results to LRU policy. We have seen that 16

out of the 19 benchmarks belonging to this subgroup present

performance improvement between +3% and −3%. In the

case of gzip+mesa and swim+eon, MinMisses obtains a

slightly better result as LRU assigns too few ways to mesa and

eon, respectively. The case of apsi+crafty shows worse

results, as it looses 5, 4% in comparison to LRU. For this

pairing, MinMisses is unable to assign 4 ways to crafty
and, as a consequence, performance drops.

Case 2. When w90%(thA) > wLRU (thA) and

w90%(thB) < wLRU (thB). In this situation, LRU is

harming the performance of thread A, because it gives more

ways than necessary to thread B. Thus, in this situation LRU

is assigning some shared resources to a thread that does

not need them, while the other thread could benefit from

these resources. This is confirmed by simulations, as in this

situation we obtain an average improvement of 11, 7%.

Analyzing all the 15 pairings belonging to this group,

we have noticed that normally the higher the difference

w90%(thA) − wLRU (thA), the higher performance benefits.

This behavior can be seen in Figure 3, where we represent

values of speed up depending on the value of w90%(thA) −
wLRU (thA). Just to illustrate that these values have a linear

relationship, we have estimated the corresponding linear re-
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Fig. 2. IPC speed up when w90%(thi) < wLRU (thi).
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Fig. 3. IPC speed up when w90%(thA) > wLRU (thA) and w90%(thB) <
wLRU (thB).

gression. We can see that this estimation fits well the cloud of

points. In fact, we have observed that when the harmed thread

is the thread with higher IPC, then performance speed ups are

higher than expected. Conversely, if the harmed threads are

the ones with lower IPC, then performance gains are lower

than expected. This reasoning explains the behavior of points

that are far away from the linear regression. The clearest one

is twolf+mcf, as the speed up attains 1.59 because LRU

harmed twolf, which has an IPC 12 times higher than mcf.

Using the linear regression, we can estimate a threshold

of w90%(thA) −wLRU (thA) to obtain performance improve-

ments higher than 3%. In fact, this point corresponds to

w90%(thA) − wLRU (thA) = 1.57. Thus, in situations where

this threshold is exceeded, performance gains are expected to

be high enough to consider this method. An other interesting

point is to note that the correlation factor r of this linear regres-

sion is 0.54. Values near 1 mean that the linear approximation

is accurate, while values near 0 mean that the approximation is

erroneous. In this case, we can apply an independence test [6]

to know the probability that the observed relation is generated

at random with a confidence factor of 95% and we obtain that

this hypothesis has really low probability (≈ 0.0004).

It is also remarkable to note that points near to the

boundary between the first and second cases show similar
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Fig. 4. IPC speed up when w90%(th0) + w90%(th1) > Associativity.

results. Finally, note that no other situations can occur when

w90%(th0) + w90%(th1) ≤ Associativity.

Case 3. When w90%(th0) + w90%(th1) > Associativity.

In this situation, our L2 cache configuration is not big enough

to assure that both benchmarks will have at least a 90% of

their peak performance. Here, simulation results present higher

variability. Five out of the 14 pairings belonging to this group

present performance improvements higher than 3%, while just

one pairing has improvement between +3% and −3% and,

finally, eight benchmarks present improvements lower than

−3%, with an average loss of 7.1%. We have observed that

pairings belonging to this group show worse results when the

value of |w90%(th0) − w90%(th1)| grows. In fact, we have

shown in Figure 4 the relation between speed ups and the

value of
|w90%(th0)−w90%(th1)|
w90%(th0)+w90%(th1)

. Higher values of asymmetry

lead to higher performance losses. In this case, we have a

thread that requires much less L2 cache space than the other

to attain 90% of its peak IPC. LRU treats threads equally

and manages to satisfy the less demanding thread necessities.

In case of MinMisses, it assumes that all misses are equally

important for throughput and tends to give more space to the

thread with higher L2 cache necessity, while harming the less

demanding thread.

It is interesting to note that when both benchmarks need a

great part of the L2 cache to attain their peak IPC (w90% ≈
Associativity), MinMisses presents higher speed ups. In these

situations, LRU policy suffers from high inter-thread cache

misses as both benchmarks have many accesses with high

stack distance. MinMisses prevents a percentage of these inter-

thread misses and, as a consequence, presents performance

benefits higher than 3%. This intuition is consistent with

Figure 4 as the asymmetry value is near to zero.

In this case, correlation between the cloud of points and the

linear regression is not as accurate as in case 2, as we obtain

a correlation factor of 0.46, but it continues to denote a clear

trend. We have also applied an independence test, obtaining

as in the previous case a very low probability (≈ 0.007).

Example: Just to illustrate how to use the explained model,

we can analyze the case of vpr+equake, which is not

in the selected 48 pairings. We have w90%(vpr) = 14,

w90%(equake) = 1, APTCvpr = 11.9 and APTCequake =

18.6. Thus, we have wLRU (vpr) = 16 · 11.9
11.9+18.6 = 6.24,

wLRU (equake) = 9.76. Here equake has 8.76 more ways

than necessary, while vpr is lacking of 7.76 ways. Then, using

the linear regression of case 2, we obtain

Predicted Speed Up = 0.044 · 8.76 + 0.96 = 1.35

which is very close to the simulated speed up of 1.38.

IV. CONCLUSIONS

Throughout this paper we have characterized the behavior

of final IPC speed ups when a dynamic partitioning algorithm

such as MinMisses is used in a shared L2 cache. To succeed in

that goal, we have used two metrics, w90% and wLRU , together

with individual IPCs. In that way, we have detected one

situation where this policy shows similar results to traditional

LRU (Case 1), one situation where significant speed ups are

obtained (Case 2) and a third situation where MinMisses
obtains performance losses (Case 3).

Thus, it is really important to know exactly which kind

of applications will be run in the architecture in order to

correctly decide if such a dynamic partitioning mechanism

is appropriate. In order to avoid the situation where losses

are obtained, we have two possible options. First, we could

let the Operating System decide between LRU and MinMisses
depending on which applications are being run or, second, try

to improve the MinMisses decision algorithm by giving weight

to misses. These options should be explored in future work.
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