
CPU Accounting in CMP Processors
Carlos Luque1, Miquel Moreto1, Francisco J. Cazorla2, Roberto Gioiosa3, Alper Buyuktosunoglu3, Mateo Valero1,2

1Universitat Politècnica de Catalunya 2Barcelona Supercomputing Center 3IBM T. J. Watson Research Center

Abstract— Chip-MultiProcessors (CMP) introduce complexities when accounting CPU utilization to processes because the progress done by a
process during an interval of time highly depends on the activity of the other processes it is co-scheduled with. We propose a new hardware
accounting mechanism to improve the accuracy when measuring the CPU utilization in CMPs and compare it with the previous accounting
mechanisms. Our results show that currently known mechanisms could lead to a 12% average error when it comes to CPU utilization accounting.
Our proposal reduces this error to less than 1% in a modeled 4-core processor system.

1. INTRODUCTION

The Operating System (OS) provides the user with an abstraction

of the hardware resources. The user application perceives this ab-

straction as if it is using the complete machine while, in fact, the OS

shares hardware resources among the users. Hardware resources can

be shared in two possible ways: temporarily and spatially. Hardware

resources are time shared between users when each process can make

use of a resource for a limited amount of time (for example, the

exclusive use of a CPU). Orthogonally, hardware resources can be

shared spatially when each process makes use of a limited amount

of resources, like the cache memory or the I/O bandwidth.

Even if the user application perceives to be alone in the system, its

execution time is affected by the amount of hardware resources shared

with the other running applications and for how long. However,

the time accounted to that application should always be the same
regardless of the workload1 in which it is executed, i.e., regardless of
how many processes are sharing the hardware resources at any given
time. Unix-like systems differentiate the real execution time and the

time a process actually is running on a CPU. Commands like time
or top provide three outcomes: real, user and sys. real is

the total elapsed (wall clock) time used by the process; user is the

time the process used directly the CPU; and sys is the time spent in

kernel mode on behalf of the process. In these systems, sys+user
time is the execution time accounted to the process.

Figure 1 shows the total (real) and the accounted execution time

(sys+user) of the 459.GemsFDTD (or simply gems) SPEC CPU

2006 benchmark when it runs in different workloads. The time results

in this figure are normalized to the real execution time of gems
when it runs in isolation (16.52 minutes). For this experiment, we

use Linux 2.6.24 on an Intel Core 2 Duo 1.6 GHz machine, which

has a dual-core chip in which each core is single threaded (though

the general trends drawn from Figure 1 apply to all current CMPs).

We isolate one core to emulate a uniprocessor system (single thread

or ST mode): the OS activity was bound to the first core, leaving

the second core as isolated as possible from noise. When gems runs

together with other processes in the same core, its real execution

time increases up to around 2x due to context switches between all

running processes. Nevertheless, gems is accounted roughly the same

time (grey triangles) which is the time the process actually uses the

CPU. Processes may suffer some delay because they lose part of

the cache and TLB contents on every context switch, but this effect

is small in this case. Hence, even if gems’s total execution time

increases depending on the other application it is co-scheduled with,

the time accounted to gems is always the same. In uniprocessor

systems, each running process uses 100% of the processor’s resources

and its progress can be measured in terms of the time spent on the

CPU. We call this approach the Classical Approach (CA). The CA

has been proved to work well for uniprocessor and SMP2 systems,

Manuscript submitted: 04-Feb-2009. Manuscript accepted: 18-Mar-2009.
Final manuscript received: 25-Mar-2009

1 A workload is a set of processes running, simultaneously, on the CPU
2Symmetric Multi-Processors have single thread, single core chips. SMPs

share off-chip resources like the memory bandwith or the I/O channels. We
consider those resources less critical and only focus on on-chip resources.

1
1.25

1.5
1.75

2
2.25

gems gems+wrf gems+bzip2 gems+libq

N
or

m
al

iz
ed

 T
im

e

real (ST)
sys+user(ST)
real (CMP)
sys+user (CMP)

Fig. 1. Total (real) and accounted (sys+user) time of gems in
different workloads and processor (Intel Core 2 Duo) configurations

as the amount of shared resources is limited and the major task of

the OS scheduler is to time share the CPUs between the runnable

processes.

However, processors with shared resources, like CMPs, make CPU

accounting more complex because the progress of a process depends

on the activity of the other processes running at the same time.

Current OSs still use the CA for multithreaded processors, which

can lead to inaccuracy for the time accounted to each process. To

show this inaccuracy, in a second experiment, we use both cores of

the Intel Core 2 Duo processor. Next, we execute gems with several

workloads as shown by the x-axis in Figure 1. In this case, given that

the number of processes running is equal or less than the number of

virtual CPUs (cores) in the system, processes suffer no time sharing

and real time is roughly the same as sys+user. In Figure 1, the

grey circles show a variance up to 1.9x in the time gems is accounted

depending on the workload in which it runs. This means that (at least

with current known open source OSs like Linux) a process running
on a CMP processor may be accounted differently according to the
other processes running on the same chip at the same time. From

the user point of view this is an undesirable situation, as the same

application with the same input set is accounted differently depending

on the processes it is co-scheduled with.

CPU accounting affects several key componets of a computing

system: For example, if the OS scheduler is not able to properly

account the CPU utilization of each process, the OS scheduling

algorithm will fail to maintain fairness between processes. As a

consequence the scheduling algorithm cannot guarantee that a process

progresses with its work as expected. In data centers, customers are

charged according to the utilization of the CPU they use. Hence, an

accurate accounting is also critical in this scenario.

In this paper, we make for the first time a comprehensive analysis

of the CPU accounting accuracy of the CA that, as far as we know,

is the only accounting mechanism for CMPs. Next, we propose a

hardware mechanism, Inter-Thread Conflict-Aware (ITCA) account-

ing, that improves the accuracy of the CA for CMPs. In a 2-core

CMP architecture, ITCA reduces the inaccuracy to 1% (20% in the

worst five cases), while the CA presents an inaccuracy of 9% (120%

in the worst five cases). In a 4-core CMP processor, ITCA leads to

an inaccuracy less than 1% (9% in the worst five cases), while the

CA shows an inaccuracy of 12% (124% in the worst five cases).

2. FORMALIZING THE PROBLEM

Currently, the OS perceives the different cores in a CMP as

multiple independent virtual CPUs. With the CA the OS does

not consider the interaction between processes caused by shared

resources. However, the time running on a virtual CPU is not an

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 8, NO. 1, JANUARY-JUNE 2009 17

accurate measure of the amount of CPU resources the process has

received. The time to account to a process in a CMP processor does

not only depend on the time that process is scheduled onto a CPU,

but also on the progress, it makes during that time. In our view, in

CMPs, we have to maintain the same principle that rules today in

SMP and uniprocessor systems: Let’s assume that if a process X

runs for a period of time in a CMP, TRCMP
X,IX

, in which it executes

IX instructions. The actual time to account this process TACMP
X,IX

, is

the time it would take this process to execute in isolation these IX

instructions in the same architecture, denoted TRST
X,IX

. This would

make the CPU accounting independent from the rest of the workload.

With the CA, the time accounted to X in a uniprocessor system,

TACA
X,IX

, can be expressed as TACA
X,IX

= TRST
X,IX

. Next, let’s

assume that we run X in a workload on a multithreaded architecture

for TRCMP
X,IX

units of time3, executing the same IX instructions. The

relative progress that process X has in this interval of time can be

expressed as P CMP
X,IX

= TRST
X,IX

/TRCMP
X,IX

. The relative progress

can also be expressed as P CMP
X,IX

= IPCCMP
X,IX

/IPCST
X,IX

in which

IPCCMP
X,IX

and IPCST
X,IX

are the IPC of process X when executing

the same IX instructions in the CMP and running alone, respectively.

Then, TACMP
X,IX

= TRCMP
X,IX

· P CMP
X,IX

= TRST
X,IX

that fulfills our

principle of workload-independent accounting.

The main issue to address is how to determine dynamically (while

a process X is simultaneously running with other processes) at the end

of each context switch, the time (or IPC) it would take X to execute

the same instructions if it had been alone in the system. An intuitive

solution is to provide hardware mechanisms to determine the IPC in

isolation of each process in a workload by periodically running each

process in isolation [3], [6]. However, as the number of processes

simultaneously executing in a multithreaded processor increases to

dozens or even hundreds, this solution will not scale, as the number

of isolation phases increases linearly with the number of processes

in the workload. As a consequence, the time the processor runs in

multithreaded mode is reduced, affecting the system performance.

3. INTER-THREAD CONFLICT-AWARE (ITCA) ACCOUNTING

In this paper, we refer to inter-thread resource conflicts to those

resource conflicts that a thread4 suffers due to the interference of the

other threads running at the same time. For example, a given thread

X suffers an inter-thread L2 cache miss when it accesses a line that

was evicted by another thread, but would have been in cache, if X

had run in isolation. Likewise, intra-thread resource conflicts denote

those resource conflicts that a thread suffers even if it runs in isolation.

The CA leads to over estimation in CMPs (meaning that they are

accounted more time than the time they require to make the same

progress when running in isolation), since for a process X, we have

TACA
X,IX

= TRCMP
X,IX

≥ TRST
X,IX

. In our baseline processor setup

(see Figure 2(a)). The data and instruction caches are private to each

core and the L2 is shared. The main source of over estimation are

inter-thread conflicts and, in particular, inter-thread L2 misses, which

delay the threads with respect to their isolated execution.

The idea of our proposal is to account a thread for only those

cycles in which the thread is not stalled due to an inter-thread L2

cache miss. That is, we want to account a thread only when it is

progressing or it is stalled because of an intra-thread L2 miss.

L2 data misses: In order to do so, we consider a thread is in one

of the following states: (s1) It has no L2 cache misses or it has only

intra-thread L2 misses in flight; (s2) It has only inter-thread L2 misses

in flight; and (s3) It has both inter-thread and intra-thread L2 misses

in flight simultaneously. We consider that a thread is not progressing

3In Unix-like systems, we have TRCMP
X,IX

= user+sys.
4In the paper, we interchangeably use the terms of process and thread

L1
MSHR

L2 cache

L1
MSHR Data cache

miss

Inter-thread
miss

...

ATD ATD

Core 1
I$ D$

Core n
I$ D$

(a) Baseline processor arch. (b) Logic to determine the accounting

Fig. 2. Hardware required for the ITCA accounting approach

and hence should not be accounted in state (s2). That is, we stop

accounting that thread when the thread experiences an inter-thread

miss and it cannot overlap its delay with any other intra-thread miss.

We resume accounting for the thread when the inter-thread miss is

resolved or the thread experiences an intra-thread miss, in which case

the thread is able to overlap the memory latency of the inter-thread

miss with at least one intra-thread miss.

In the state (s3), we do a normal accounting because the inter-

thread miss overlaps with another intra-thread miss. However, when

the inter-thread miss becomes the oldest instruction in the Reorder

Buffer (ROB) and the ROB is full, the thread loses an opportunity to

extract more Memory Level Parallelism (MLP). That is, let’s assume

that there are Y instructions between the inter-thread L2 miss in the

top of the ROB and the next intra-thread L2 miss in the ROB. In this

situation, if the thread had not experienced the inter-thread L2 miss

it would have executed the Y instructions after the last instruction

currently in the ROB. Any L2 miss in these Y instructions would

have been sent to memory, increasing the MLP. We take care of this

lost opportunity of extracting MLP by stopping the accounting of a

thread while the instruction in the top of the ROB is an inter-thread

L2 miss and the ROB is full. We call this situation (s4).

L2 instruction misses: Another situation in which we stop the

accounting of a thread, is when the ROB is empty because of an

inter-thread L2 cache instruction miss (s5). In our processor setup

instruction cache misses do not overlap with other instruction cache

misses. That is, at every instant, we have only 1 in flight instruction

miss per thread. Hence, on an inter-thread instruction L2 miss we

consider that the thread is not progressing because of an inter-thread

conflict, and hence, we stop its accounting.

3.1. Implementation
Detecting inter-thread misses: We keep an Auxiliary Tag Direc-

tory (ATD) [10] for each core (see Figure 2(a)). The ATD has the

same associativity and size as the tag directory of the shared L2

cache and uses the same replacement policy. It stores the behavior

of memory accesses per thread in isolation (ST mode). While the

tag directory of the L2 cache is accessed by all threads, the ATD

of a given thread is only accessed by the memory operations of that

particular thread. If the thread misses in the L2 cache and hits in its

ATD, we know that memory access would hit in cache if the thread

was running in isolation. Thus, it is identified as an inter-thread miss.

Tracking inter-thread misses: We also add one bit (inter-thread

bit or IT bit) in each entry of the Miss Status Hold Register (MSHR),

which is set to 0 when the entry is allocated. Each entry of the MSHR

keeps track of an in-flight memory access from the moment it misses

in the data L1 cache until it is resolved.

On a data cache miss, we have to access the L2 cache. We access

the tag directory and the ATD of the thread in parallel. If we have a

hit in the ATD and a miss in the L2 tag directory, we know that this is

an inter-thread L2 cache conflict and the IT bit of the corresponding

entry in the MSHR is set to 1. Once the memory access is resolved

we free its entry in the MSHR.

When the ROB is empty due to an inter-thread instruction cache

miss, we stop accounting cycles to this thread. For our purpose, we

18 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 8, NO. 1, JANUARY-JUNE 2009

use a bit, ITinstruction, that indicates whether the thread has an inter-

thread L2 cache instruction miss or not.

Accounting CPU time: We stop the accounting of a given thread

when: First, the ROB is empty because of a L2 cache instruction miss

(gate (1) in Figure 2(b) that implements situation (s5)). RobEmpty is a

signal that is already present in most architectures, while ITinstruction
indicates whether or not a thread has an L2 cache instruction miss.

Second, the ROB is full (signal already present in most architectures)

and the oldest instruction in the ROB is a data inter-thread L2 miss,

which can be implementing adding 1 bit per ROB entry (gate (2)

in Figure 2(b) that implements situation (s4)). Third, when all the

occupied MSHR entries belong to inter-thread misses. To compute

this, we check for every entry k of the MSHR if an entry is not

empty (mshr entry emptyi = 0) and contains an inter-thread miss

(InterThreadMissi) (gates (3.1) and (3.2) in Figure 2(b) that

implement situation (s2)). By making an AND operation with the

output for each MSHR entry and a signal showing whether the entire

MSHR is empty, EmptyMSHR (3.1), we determine if we have to

stop the accounting of the thread. Finally, if any of the gates (1), (2)

or (3.1) returns 1, we stop the accounting.

To summarize, in a 2-core CMP, ITCA accounts every spent cycle

in three possible ways: (1) Each thread is accounted for the cycle

when both threads progress (the cycle is accounted twice, one for each

thread). (2) Only one thread is progressing and the cycle is accounted

only to it. (3) The cycle is not accounted to any thread when none

is progressing. In our processor setup, the memory bandwidth is not

identified as a main source of interaction between threads. Otherwise,

we should consider it as an other resource to be tracked by ITCA.

The CPU accounting done to each thread in each core can be

communicated to the OS by a special purpose register that counts

cycles, like the Time Stamp Counter in Intel architectures.

4. EXPERIMENTAL RESULTS

4.1. Experimental Environment
We use MPsim [1], a trace driven CMP simulator to model two

processor setups: a dual-core and a quad-core CMP. Each core is

single threaded, has a 12-stage-deep pipeline and can fetch up to 8

instructions each cycle (ICOUNT 1.8). Each core has 6 integer (I), 3

floating point (FP), and 4 load/store functional units; 64-entry integer,

load/store, and FP instruction queues; 512-entry reorder buffer and

196 I/FP physical registers. We use a two-level cache hierarchy with

128B lines with a separate 16KB, 4-way instruction cache and a

64KB, 4-way data cache and a unified 2MB, 16-way L2 cache that

is shared among all cores. The latency from L1 to L2 is 12 cycles, and

from L2 to memory 300 cycles. We feed our simulator with traces

collected from the whole SPEC CPU 2000 benchmark suite using

the reference input set. Each trace contains 300 million instructions,

selected using SimPoint [11]. From these benchmarks, we generate

2- and 4-thread workloads. In each workload, the first thread in

the tuple is the Principal Thread (PTh) and the remaining threads

are considered Secondary Threads (SThs). In every workload, we

execute the PTh until completion. The other threads are re-executed

until PTh completes. We characterize the results of our proposal

based on the type of the PTh and SThs. We generate all possible

2-thread combinations, leading to a total number of 676 workloads.

Running all 4-thread combinations is infeasible as the number of

combinations is too high. Hence, we classify benchmarks in two

groups depending on their memory behavior. Benchmarks in the

memory group (denoted M) are those presenting a bad L2 cache

behavior (mainly art, equake, lucas, mcf and swim), while

benchmarks in the ILP group (denoted I) have a low L2 cache miss

rate (mainly bzip2, crafty, eon, gcc and gzip). From these

two groups, we generate 8 workload types denoted V WY Z, where

0%
25%
50%
75%

100%
125%
150%
175%

0 10 20 30 40 50 60 70 80 90 100

O
ff

Es
tim

at
io

n CA
ITCA

(a) 100 highest Off estimations (2-core CMP)

0%
5%

10%
15%
20%
25%
30%

I_M
M

M

I_M
M

I

I_M
II

I_III

M
_M

M
M

M
_M

M
I

M
_M

II

M
_III

avg

O
ff

E
st

im
at

io
n

CA ITCA

(b) Off estimation in the 4-core CMP configuration
Fig. 3. Off estimation of each approach for 2- and 4-core configurations.

V is the type of the PTh and WY Z the type of the three SThs, e.g.

M MMI indicates that the PTh and two of the SThs are memory

bound, while one STh is ILP.

As the main metric, we measure how off is the estimation

done by an accounting approach for the PTh (TACMP
PTh,IP T h

),

which allows us to break down the results according to the

type of PTh (ILP/MEM) and type of the SThs, from the actual

time it should be accounted (TRST
PTh,IP T h

). We call off estima-
tion to the ratio

˛
˛1− (TACMP

PTh,IP T h
/TRST

PTh,IP T h
)
˛
˛. This ratio is

˛
˛1− (TRCMP

PTh,IP T h
/TRST

PTh,IP T h
)
˛
˛ for the CA. For each accounting

policy, we also report the average off estimation of the five workloads

with the worst off estimation, denoted Avg5WOE.

4.2. Accuracy Results in a CMP processor
Our results show that for the 2-core CMP configuration, when

ITCA takes into account only the conflicts in the L2 cache (gates

(1), (3.1) and (3.2) in Figure 2(b)), it provides a good measure of the

progress each process makes with respect to its execution in isolation.

While on average, the CA has an off estimation of 9%, ITCA reduces

it to 3%. More importantly, ITCA reduces the inaccuracy in the worst

five cases: the Avg5WOE metric is 120% for the CA and only 34%

for ITCA. If in addition to inter-thread conflicts in the L2, ITCA is

also aware of when a thread loses opportunities of exploiting MLP

(gate (2) in Figure 2(b)), the off estimation reduces down to 1% and

the Avg5WOE reduces to 20%.

Figure 3(a) breaks down the results of ITCA and CA and shows the

100 workloads with the highest off estimation sorted in descending

order. We observe that the CA has higher dispersion than ITCA in the

first 50 workloads. This high variability in the CPU accounting may

neglect the work of the OS of providing fairness among running

processes. ITCA instead provides more stable results: the worst

observed off estimation is 25% and this value rapidly converges.

Figure 3(b) shows the off estimation of ITCA and the CA proposal

for the 4-core setup. In this case, we show the average results of each

group as we presented in the experimental environment section. The

CA obtains the worst results when the PTh thread has high ILP and

any of the SThs is memory bound. In this case, the PTh suffers a lot

of inter-thread conflicts that are not taken into account by the CA.

In those cases, the ITCA approach reduces the off estimation of the

CA from 12% to 1%. In the five worst cases, the CA has an off

estimation of 124% while ITCA has an off estimation of 12%.

ATD: Our baseline ATD has a size of 30KB (15-bit tag, 1024 sets,

16 ways per set). In order to reduce the area requirements, we also

implement two simplified versions of the ATD. In the first proposal,

in the ATD, we save a subset of the address’ tag bits for each memory

operation. This proposal introduces false hits when the subset of the

tag of the memory operation coincide with the bits of the ATD, but the

other bits of the tag (not saved in the ATD) are different. The second

version is the sampled ATD, that monitors a subset of the cache

sets and has been shown to provide similar results to the ATD [10].

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 8, NO. 1, JANUARY-JUNE 2009 19

8K
B

6K
B

4K
B

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

8bitTag-SD2 6bitTag-SD2 8bitTag-SD4

N
or

m
al

iz
ed

 v
al

ue
 w

.r.
t

th
e

ba
se

lin
e

A
TD

Off Estimation increment
Avg5WOE increment
ATD area

0.93

1.00

0.93 0.93

0.70
0.75
0.80
0.85
0.90
0.95
1.00

galgel ammp - ammp art

applu ammp - art bzip2
Pr

og
re

ss
 P

th

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Fa
irn

es
s

Progress Pth
Fairness

Fig.4 Effect on accuracy of Fig 5. Progress of the PTh and

different ATD configurations fairness of four pairs of benchmarks

Figure 4 shows the area reduction and accuracy degradation of the

simplified versions of the ATD with respect to our baseline ATD. A

good tradeoff is when we sample every 2 sets and the ATD has 6 bits

of tags (6bitTag-SD2). In this case, we reduce the size of the ATD to

6KB, and increase the average off estimation and the Avg5WOE to

4% and 37%, respectively. Recall that in this configuration, the CA

leads to an average off estimation and Avg5WOE of 9% and 120%,

respectively. Depending on the hardware budget available, different

tradeoffs are possible. For example, if 8KB of area can be afforded

by core, we can reduce the average off estimation and Avg5WOE to

1% and 9%, respectively. For the 4-core setup the results are similar.

Cache partitioning algorithms: ATDs are also used in cache
partitioning algorithms (CPA). CPAs dynamically partition the shared

L2 cache among running threads and significantly improve metrics

like throughput [10] and fairness [8]. An accounting mechanism

is required in the presence of a CPA as running processes suffer

slowdowns in their progress since the CPA assigns them only a part

of the L2 cache. The cache partition a process receives changes

dynamically, so the progress of the process (and hence the CPU time

to account to it) also changes. Our ITCA proposal can be applied to

systems with a CPA with no changes. The only conceptual difference

is that the running processes do not suffer inter-thread conflicts as

each process has a separate partition of the cache. However, we

consider that a process is not progressing due to the CPA when it

suffers a miss in the L2 cache and a hit in its ATD. Notice that, in

systems with CPAs, the ATD is already present and our accounting

algorithm can make use of it. In such case the only hardware cost

of ITCA is the logic shown in Figure 2(b). Moreover, due to the

wide use of the ATD, some authors have already proposed versions

of the ATD that require dozens of bytes per thread [7], rather than

thousands as it is the case in our baseline architecture. We plan to

use this new ATD scheme as a part of the ITCA proposal.

Hardware proposals to provide fairness: Several hardware ap-

proaches deal with the problem of fairness in multithreaded archi-

tectures. However, even if fairness is a desirable characteristic for

a system, it cannot be used to provide accurate CPU accounting.

There are two main flavors of fairness. First, it is assumed that an

architecture is fair when it gives the same amount of resources to

each running thread. However, ensuring a fixed amount of resources

to a thread, does not translate into a CPU utilization that can be

computed to that thread because the relation between the amount

of resources assigned to a thread and its performance is different

for each thread [2], [6], [9]. Second, some proposals consider that an

architecture is fair when all threads running on that architecture make

the same progress. For example, assume a 2-core CMP with processes

A and B. The system is said to be fair if in a given period of time,

PA = PB . However, this approach does not provide a quantitative

value that can be given to the OS to account CPU time to each

process. That is, knowing that PA = PB does not provide any

information about CPU accounting as PA can be any value lower

than 1. Figure 5 shows the progress of the PTh and the fairness

(1− (|PA−PAV G|+ |PB−PAV G|)/2), where PAV G is the average

progress made by A and B, of four different pairs of benchmarks. We

observe that, in the two workloads in the left (galgel+applu and

ammp+ammp), the PTh does the same progress while the fairness

is different. In the two workloads on the right (ammp+art and

art+bzip2), both workloads present the same fairness while the

progress done by the PTh is different.

5. RELATED WORK

In [5], whenever the OS detects that a process does not make the

progress it is supposed to do, the OS increases its time quantum,

giving more temporal resources to it and, thus, allowing it to catch

its expected performance. The proposed solution is divided in two

components: During a sample phase the OS runs a process with all

the possible co-runners and uses a model to estimate the process’

Fair IPC. During the scheduling phase, the OS scheduler adapts the

time quantum of the application in order to provide good performance

isolation. In our proposal instead we do not use a model to estimate

the isolated performance of a process but we provide hardware

support to the OS in order to accurately account each process for

the progress it makes. Once the accurate accounting is available, the

OS scheduler proposed in [5] can be used on top of our mechanism

to compensate the quantum.

Other accounting approaches have been proposed for SMTs [4].

Combining our proposal with these solutions is left for future work.

6. CONCLUSIONS

CMPs complicate the CPU accounting because the execution

progress done by a process during a given interval of time varies

depending on the activity of the other co-scheduled processes. The

current accounting mechanism, the CA, introduces inaccuracies when

applied in CMP processors. This accounting inaccuracy may affect

several key elements of the system like the OS task scheduling or the

charging mechanism in data centers. We presented a hardware support

for a new accounting mechanism called Inter-Thread Conflict Aware
(ITCA) accounting that improves the accuracy of the CA. In a 2- and

4-core CMP architecture, ITCA reduces the off estimation down to

1% while the CA presents a 9% and 12%, respectively.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Science and

Technology of Spain under contract TIN-2007-60625 and grants

BES-2008-003683 and AP-2005-3318, by the HiPEAC Network of

Excellence (IST-004408) and a Collaboration Agreement between

IBM and BSC with funds from IBM Research and IBM Deep

Computing organizations. The authors would like to thank Pradip

Bose and Chen-Yong Cher from IBM for their technical support.

REFERENCES

[1] Acosta et al. The MPsim simulation tool. Technical Report UPC-DAC-
RR-2009-7, 2009.

[2] Cazorla et al. Architectural support for real-time task scheduling in SMT
systems. In CASES, 2005.

[3] Cazorla et al. Predictable performance in SMT processors: Synergy
between the OS and SMTs. IEEE Trans. Computers, 2006.

[4] Eyerman et al. Per-thread cycle accounting in SMT processors. In
ASPLOS, 2009.

[5] Fedorova et al. Improving performance isolation on chip multiprocessors
via an operating system scheduler. In PACT, 2007.

[6] Iyer et al. QoS policies and architecture for cache/memory in CMP
platforms. In SIGMETRICS, 2007.

[7] Jaleel et al. Adaptive insertion policies for managing shared caches. In
PACT, 2008.

[8] Kim et al. Fair cache sharing and partitioning in a chip multiprocessor
architecture. In PACT, 2004.

[9] Nesbit et al. Virtual private caches. In ISCA, 2007.
[10] Qureshi et al. Utility-based cache partitioning: A low-overhead, high-

performance, runtime mechanism to partition shared caches. In MICRO,
2006.

[11] Sherwood et al. Basic block distribution analysis to find periodic
behavior and simulation points in applications. In PACT, 2001.

20 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 8, NO. 1, JANUARY-JUNE 2009

