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Abstract—In the last years, smartphones have be-
come the major device for communication enabling
Telco operators to capture subscribers’ whereabouts.
This location information allows computing geo-
statistics to study transportation systems, traffic
jams, origin-destination matrix, etc. The first task
to accomplish the aforementioned objectives is to
detect routes that people use to go from A to B.
Thus, in the present effort, we propose a method to
extract automatically routes from CDR data relying
on clustering and community detection algorithms.

I. INTRODUCTION

Ubiquitous systems such as smartphones al-
low Telco operators to sense subscribers location
opening new opportunities to analyze urban phe-
nomena. This location information allows com-
puting geostatistics to study transportation sys-
tems, traffic jams, origin-destination matrix, etc.
The first task to accomplish the aforementioned
objectives is to detect routes. Previous works in
the literature do not have the objective to discover
routes. They aim to infer transportation mode, to
model movement behavior or to predict future
locations. Thus, route detection is an intermediary
step, which is the cornerstone for other tasks.
Consequently, in the present effort, we propose
a methodology to detect routes automatically. We
rely on the Vector Field K-Means clustering and
the Infomap community detection algorithms. Our
approach receives as input CDR data to extract the
set of antennas describing or covering a route of
interest. Finally, the present work is organized as
follows: Section II detail the related works in the
state of the art, while Section III introduces some
basic concepts. Then, sections IV and V describe
the datasets used in this work and the methodology
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to extract routes, respectively. Finally, Section VI
presents the results of our experiments and Section
VII concludes the work and comments future
research direction.

II. RELATED WORKS

In the current section, we present some previous
works on route detection using Global Position
System (GPS) and Global System for Mobile
Communications (GSM) data.

The former kind of data is a more reliable
source, since it is both spatially accurate (fine-
grained) and frequently collected , which allows
a better resolution and precision for different in-
ferences, such as route detection, home/work loca-
tion, whereabouts prediction, efc. The drawback of
this source is the scalability. Thus, massive collec-
tion is difficult due to GPS is battery consuming
and users do not always turn it on. Nonetheless,
there are some works like the study of Zheng et al.
[2], where the authors use different models to infer
transportation mode and thus routes. To perform
this task, authors pre-process data by detecting
walking and non-waking segments in trajectories.
Then, they extract features such as speed, traveled
distance, comparison to urban network topogra-
phy and speed acceleration from the non-walking
segments of different trajectories. Once features
are extracted, these are the input of three different
algorithms including Decision Tree, Bayesian Net,
Support Vector Machine (SVM), which classify
the different segments into bus, car and bike
classes. Since segments are labeled, a Conditional
Random Field (CRF) model is used to model and
to predict the change of transportation mode from
bus to bike, for instance. For the experiments,



authors gathered GPS (timestamp, latitude and
longitude) data from 45 users covering 15 different
cities in order to use 70% for training and 30%
for test. The results, in term of accuracy, precision
and recall show that Decision Tree (0.721, 0.867
and 0.197) outperform over Bayesian Net (0.574,
0.867 and 0.206), SVM (0.517, 0.578 and 0.095)
and CRF (0.422, 0.115, 0.072).

Another work using GPS data was done by
Liao et al. [10]. In this research authors rely
on a 3 level hierarchical Markov chain to model
movement behavior. Where the highest level in-
dicates either new places or anomalous behavior.
The second level models the trip segments of
trajectories (motivated by a goal) between point
of interests (POI) and the lowest level estimates
user whereabouts to depict routes. More precisely,
authors use the Rao Blackwellized particle filters
algorithm to estimate people location as well as
routines in the lowest level. In the second layer,
the set of locations (a segment of trajectory) is
enriched with the transportation mode and us-
ing the Expectation Maximization (EM) algo-
rithm, authors compute the transition probabilities
between different transportation modes. Finally,
based on those transitions they are able to monitor
anomalous behavior or people visiting new places.
To validate the model, authors collected 60 days
(the first 30 days for learning and the second 30
days for testing) of GPS data from one person. The
aforementioned model obtained an accuracy score
between 0.66 and 0.98 depending on the amount
of the observations over time.

The latter kind of data (GSM) is more sparse
but with a constant frequency update rate. Thus,
Laasonen et al. [7] build clusters containing a
sequence of cell Ids to model physical routes. In
detail, authors take a sequence (p) of antennas
Ids relaying two POIs A and B. This sequence
of antennas are considered as strings. Then, the
clustering algorithm takes p and a Jaccard based
measure as similarity function. The algorithm
compares p to all known trajectories (i.e., groups).
If the similarity measure is small then the clus-
tering algorithm merges p to complete the know
trajectory relaying A and B; otherwise a new group
is created. This process is part of a system for pre-
dicting future whereabouts. Consequently, authors
did not evaluate the algorithm for detecting routes.

There is also the work of Eagle er al [9] where the
authors extract frequent trajectory patterns from
GSM events.The authors consider trajectories as
a set of antennas Ids. It is possible to see the set
of frequent trajectories as representation of routes.
However, the works on the state of the art do not
evaluate directly the route extraction. From the
state of the art, it is possible to observe the lack
of methods applied to GSM generated data due
to the spatio-temporal sparseness of the generated
data. Therefore, in the next sections we explain
our method to resolve this problem.

III. BASIC CONCEPTS

In the present section, we will introduce two
key concepts for our methodology: clustering
and community detection. The former algorithm
groups trajectories (c.f., Subsection III-A). While
the latter discovers frequent antennas Ids, repre-
senting routes, in the clustered trajectories (c.f,
Subsection III-B ).

A. Vector-Field K-Means (VFKM)

The clustering algorithm works in two phases
[1]. The first phase computes the characteristic
vector fields of a set of trajectories like the com-
putation of the centroid in classic k-means (c.f.,
algorithm in Figure 1).

ty
B0, X)) = [ 1100 - adlPde )
to

Equation 1 describes the similarity function
used in the second phase to measure the minimal
distance between a trajectory «; and the charac-
teristic vector fields x;. Then trajectory is added
to the closest group X; as shown in algorithm in
Figure 1. The algorithm repeats these phases until
no trajectory could be assigned to a different group
i.e., convergence.

B. Community detection

A community is a group of vertices in a graph,
which are densely linked one to each other and
sparsely connected to other communities. We will
use community detection algorithm to outline
some connected sets of cells representing routes.
In the current effort we use the Infomap algorithm
[5]. The idea behind this algorithm is to reduce
the Map equation [6] by computing the fraction



Require: k: number of clusters,
a={ay,...,an}: set of trajectories
Ensure: V = {X,..., Xx}: Group of trajecto-
ries, CVF = {cvfi,...cvfi}: Characteristic
vector fields
CVF < Initialize(T, k)
repeat
/IChoose k trajectories randomly
CVF < Initialize(V,k)
//Fit characteristic into the vector field
for i=1 to k do
X, < fitVectorField(cvfi)
end for
//Processes trajectories
for i=1ton do
v argminger g E'(a;, X;)
X;.add(v)
end for
until convergence
return V

Fig. 1. Vector-Field K-Means algorithm.

TABLE I
DATASETS SUMMARY

Attribute Subscribers Events days
Small level 17 500 1 700 000 1
Medium level 48 000 69 000 000 15

of times a random walker visits a node. Based on
those visits, a Greedy search algorithm is used to
find a partition [16]. Once the partition is found,
the results is refined using a simulated Annealing
approach [15].

IV. DATASET DESCRIPTION

The present section introduces the two datasets
we use for our experiments. The Call Detail
Record (CDR) was provided by a Telco operator
in 2014. All events were gathered within in Paris.

a) Small dataset. This dataset contains the
country level CDR of mobile phones users in of a
weekday day, which represents about 1.7 millions
events of 17 500 subscribers.

b) Medium dataset. The second dataset has
around 69 millions of events of 48 000 subscribers
that registered at least one in Paris. This data set
was collected for 15 days.

TABLE II
DATASETS SUMMARY

timestamp | msisdn imsi mcc mnc
13701045 | 915463 | 208103 | 1326403 | 210
lac ci latitude longitude
11 | 48000 | 48.8534100000 | 2.3488000000

In both cases events are recorded each time
a user cross a set of cells called IRIS. The
datasets are summarized in Table 1. They have
events containing a timestamp, msisdn and imsi
corresponding to subscriber identity and antenna
identifiers (mcc,mnc,lac,ci) in addition of antennas
location (i.e., latitude and longitude) as illustrated
in Table II. It is worth noting that datasets are
anonymized for preserving subscriber privacy.

V. METHODOLOGY

The dataset described in Section IV contains
a huge amount of low quality events due to
the sparseness and incompleteness of the CDR.
Indeed, there is no a constant sampling rate for
collecting events in the Telco network and there
are spatio-temporal gaps in the data. These factors
makes complicate to extract reliable and relevant
trajectory. Thus, our methodology is composed of
three steps: pre-process, trajectory patterns extrac-
tion and routes detection.

a) Pre-process. The first step of our methodol-
ogy is to delimit the zone where we want to detect
routes by placing a bounding box (BB). Then,
the algorithm works only with all events within
the box. Once events within the BB are kept and
order chronologically, we have to deal with the
Ping-Pong effect. This phenomenon occurs when
a subscriber is between two or more antennas and
his cell phone connect to them in short times sim-
ulating movements from one antenna to another
randomly. To deal with this problem, we rely on
the filter proposed by Lovan et al. [12]. Thus, the
Ping-Pong filter discards all events with a speed
higher than V., or all events describing and
angle between 180+6,,,,, We found empirically a
suitable threshold of 45Km/h and 20° for V,,a.
and 60,,,,,, respectively.

Since events are less noisy after the pre-process
phase, we apply an algorithm to extract trajecto-
ries. The idea behind this algorithm is that stops



mark off subscribers’ trajectories. Consequently,
the algorithm takes as input a time threshold At
to verify if a subscriber has left a given antenna
after At to end a trajectory and to begin a new
one (i.e., tous — tin < At). To refine trajectories
for the VFKM clustering algorithm, we discard all
trajectories containing few sequence of antennas
(i.e., small trajectories). Finally, we compute the
average speed of the remaining trajectories.

b) Trajectory patterns extraction. We use
VFKM to find global trajectory patterns directions
such as north to south. The VFKM algorithm takes
as input: the number of k clusters, the weight
of the eigenvectors, A\;, and the resolution R of
the algorithm. Then, we perform two consecutive
clustering. The first one is executed over all the
trajectories within the bounding box. The second
one is carried out over the trajectories belonging
to the first group of the previous clustering phase.
Consequently, at the end of the second VFKM
clustering algorithm, we have a set of vectors
representing movements within the bounding box.

c) Routes detection. After the clustering
phase, trajectories representing routes are still
coarse. In order to obtain a fine representation of
the routes, we build a transition matrix 7', using
the obtained vectors from the present phase, where
T;; is equal to the number of trajectories that
have a segment going from antenna i to antenna
j- Once T is built, we can weight the values in
T by the number of trajectories, the number of
users or the logarithm of the number of unique
users passing from ¢ to j. Then, to reduce the
size of the matrix and computation time, we filter
all antennas having a transition value less than
an activity threshold minActivity. Finally, we
use 7' to build a graph representing flows from
one antenna to another for applying the Infomap
community detection algorithm. As a result of
this process, we are able to extract the set of
trajectories describing different routes.

VI. RESULTS

In the present section, we apply the method-
ology introduced in Section V to the datasets
in Section IV. More precisely, we fine tune the
parameters for the VFKM algorithm and test the
proposed methodology.

In order to find the most suitable parameters,
k,R, and Ap for the VFKM algorithm. We use
the small dataset introduced in Section IV. First,
we fix the Ay, to 0.05 as indicated in [1]. Next, we
test different configurations varying k from 2 to 7,
where k is the number of routes we are interest
in and R from 4 to 10. Thus, using visualization
of the trajectories over a cartography, we observed
that the best parameters for our datasets are k = 4
and R = 6. Consequently, we use this configura-
tion for the rest of the experiments.

a) Initial trajectories

b) Cluster 0

l

=

c) Cluster 0-0

e) Cluster 0-2

d) Cluster 0-1
Fig. 2. VFKM iterative clustering process

Regarding the methodology, Figure 2a shows
the raw trajectories after the pre-processing, which
is the input of the VFKM algorithm. Each trajec-
tory is represented by a line, and the color fades
from blue at the beginning to orange at the end.
This allows observing whether trajectories follow
global trends. We note the initial dataset contain-
ing trajectories without a common patterns. They
are among both the main routes as well as the resi-
dential areas near to the airport. In order to extract
patterns, we apply VFMK clustering algorithm,
with the parameters £ = 4, R = 6 and A\, = 0.05,
obtaining four cluster k& = {cg,c1,c2,c3} with
6 914, 63 509, 9 567 and 352 243 trajectories,
respectively. Thus, when examining clusters in
detail, we discover that c¢g, the smallest cluster
represents smooth and homogeneous vector fields
from the north-east to the south-east trend within
the bounding box (c.f., Figure 2b). On the contrary,
the other groups c1, co and c3 do not present clear
patterns. We can also observe that c3 contains 80%
of the dataset.

Once the first clustering is done, we take
the group with the smallest number of trajec-
tories Cy to apply the VFMK clustering algo-



rithm. Accordingly, we get four clusters k =
{co—0,Cc0—1,C0—2,¢c0—3} and we show three in
figures 2c, 2d and 2e, respectively. Cluster co_g3
represent the group of noisy trajectories. In the
cluster cg_g, trajectories follow some routes, such
as the train line RER D, the Al highway and the
train line RER B. Cluster cg_o is quite similar
to cluster co_g. However, cg_o is noisier and it
contains the commuting patterns between the west
zone and the airport. Further, sub-clustering has
been done in order to identify more precisely
different routes. Nevertheless, further clustering
does not provide significant information. Cluster
co—1 depicts the RN104 route, Al highway and
the train line RER B as well as commuting patterns
between the east zone and the airport.
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Fig. 3. Vector field corresponding to clusters co—¢ and cp—3,
respectively
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Since the group of trajectories from the VFKM
clusters are coarse, we need to refine them by
applying the Infomap community detection algo-
rithm. The question about the cluster to be passed
as input is raised. Consequently, as shown in
Figure 3, we choose the group of vector fields
minimizing the entropy. In our case the most
homogeneous vector field corresponds to cluster
co—o. Thus, Figure 4 depict the remaining anten-
nas to detect routes. It is worth noting that the
activity of antennas (i.e., the number of different
cell phone attach to a given antenna) changes over
time. Hence, we are able to filter low activity an-
tennas to keep only high activity antennas, which
should represent main roads. The different colors
in Figure 3 represent the antenna activity, where
blue, green and red correspond to low, medium
and high antenna activity, respectively.

Taking into account only high activity antennas,
we build a transition matrix 7. This transition
matrix, contains the number of vector fields from
antenna 7 to antenna j. Relying on the 7" matrix,
we build a graph GG, where nodes are the antennas,
weighted by the number of different cell phone

Fig. 4. Antenna activity corresponding to cluster co—g.

attach to the antenna ¢ and the edges are the
number of flows from antenna ¢ to j.

Fig. 5. Result of the Infomap community detection algorithm
over cluster co—g.

Accordingly, the graph G is the input of the
Infomap community detection algorithm. Figure 5
illustrates the result of the community detection
algorithm to find more fine routes. The algorithm
found 15 communities C' = {cy,...,c14}, which
represent different routes.

Fig. 6. Ground truth of set of antennas covering routes.



TABLE III
CORRESPONDENCE BETWEEN REAL ROUTES AND DETECT
COMMUNITIES.
Routes Communities
A104 ¢9 (0.16), c11 (0.05)
A1SUD c0 (0.29), cl (0.27)
A3 c6 (0.17), c14 (0.17)
N2 c10 (0.46)
RN104 ¢5 (0.17)
RER B c2 (0.14), ¢3 (0.19)

Others cd,c7,c8,c12¢,13

To evaluate the performance of our approach,
we rely on Jaccard Similarity J = AN B/AU B,
where A and B are a set of antennas represented
by either trajectories or communities. We use this
metric to measure the similarity between detected
communities and ground truth extract manually
from the Telco antennas database (c.cf., Figure 6).
We obtain different values for the communities
ranging from 0.05 to 0.46, as presented in Ta-
ble III. We observe that computed communities
represent routes. The limitation of the Infomap
algorithm is the resolution. Since we are not
able to stop the algorithm to obtain the optimal
resolution vis-a-vis the routes, we need to merge
complementary communities, which are partial
routes, to detect a complete route. For instance,
A104 route is composed of ¢9 and cll1. Finally,
with the presented method, the intervention of an
expert is reduced to merge visually communities to
complete the set of antennas representing routes.

VII. CONCLUSION

In the present work, we describe a methodology
to extract sets of antennas covering a route of
interest. More precisely, our methodology detects
automatically important routes for geostatistics
studies like origin-destination matrix construction,
urban planning, etc. In this study, we have used
CDR data from a Telco company to extract im-
portant routes connecting Paris and Charles de
Gaulle airport obtaining a Jaccard Similarity score
between detected routes and ground truth ranging
from 0.165 to 0.46. In the future, we will analyze
how to merge complementary communities auto-
matically and test our methodology in an urban
environment.
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