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Abstract—This paper concerns the training of a single-layer
morphological perceptron using disciplined convex-concave pro-
gramming (DCCP). We introduce an algorithm referred to as K-
DDCCP, which combines the existing single-layer morphological
perceptron (SLMP) model proposed by Ritter and Urcid with
the weighted disciplined convex-concave programming (WDCCP)
algorithm by Charisopoulos and Maragos. The proposed training
algorithm leverages the disciplined convex-concave procedure
(DCCP) and formulates a non-convex optimization problem for
binary classification. To tackle this problem, the constraints
are expressed as differences of convex functions, enabling the
application of the DCCP package. The experimental results
confirm the effectiveness of the KX-DDCCP algorithm in solving
binary classification problems. Overall, this work contributes
to the field of morphological neural networks by proposing an
algorithm that extends the capabilities of the SLMP model.

Index Terms—Single-Layer Morphological Perceptron, Dis-
ciplined Convex-Concave Programming, Dendritic Structures,
Binary Classification, Non-Convex Optimization.

I. INTRODUCTION

Mathematical morphology is a powerful theory of non-linear
operators based on geometric and topological concepts [1]], [2].
From a mathematical point of view, mathematical morphology
is well defined using lattice theory [3], [4]. In a few words, a
complete lattice is a partially ordered set in which any subset
admits supremum and infimum. The set of the extended real
numbers R = R U {400, —co} is an example of a complete
lattice. By enriching R with addition-like operations, we obtain
the algebraic structure (R,V,A,+,+’) from the minimax
algebra [5]. Accordingly, the symbols “V” and “A” denote
the maximum and the minimum operations, respectively. The
symbols “+” and “+’” coincide with the addition on real
numbers and differ only at the infinities. The minimax algebra
has been successfully applied, for example, in optimization
problems on graphs and machine scheduling [3]], [6].

Broadly speaking, the  mathematical structure
(R, V, A, +,+') resembles the real field, but the multiplication
is replaced by addition, and the sum is substituted by either the
maximum or the minimum operations. Replacing operations
of addition and multiplication of real numbers with lattice-
based operations of minimax algebras gave birth to the class
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of morphological networks in the middle 1990s [7]], [8I,
[9]. The morphological perceptron and the morphological
associative memories feature among the first morphological
neural networks [10], [9]. Despite the algebraic similarity,
morphological neural networks are defined as a network
whose neurons perform an operation from mathematical
morphology [IL1].

Like the traditional multi-layer perceptron network, a multi-
layer morphological perceptron (MLMP) is composed of at
least two layers of neurons formulated using lattice-based
operations from minimax algebra [10], [[12]]. Motivated by the
importance of dendritic structures in neuron cells, Ritter and
Urcid proposed the so-called dendrite morphological neural
networks [13], [14]. From a theoretical point of view, a
single-layer morphological perceptron (SLMP) with dendrite
computation can solve any classification problem in which the
classes are compact (see Theorem 1 in [13]).

Besides incorporating dendrite computation on the mor-
phological perceptron, Ritter and Urcid proposed a greedy
algorithm for training an SLMP model for binary classification
problems. In a few words, the greedy algorithm of Ritter
and Urcid adds dendrite terminal fibers until all the training
data is correctly classified. In a similar fashion, Sussner and
Esmi proposed a greedy algorithm for training morphologi-
cal perceptrons with competitive learning [11]]. Despite their
computational simplicity, the greedy algorithms are subject
to overfitting the training data. In order to avoid overfitted
models, morphological neural networks can be trained, for
example, using genetic algorithms [15[], [16] or solving ap-
propriate optimization problems [17], [18].

In contrast to the greedy algorithm proposed by Ritter and
Urcid, Charisopoulos and Maragos propose training a single
morphological perceptron by solving a convex-concave opti-
mization problem [[17]. In this formulation, which resembles
the formulation of support vector machines (SVMs) [19], the
goal is to minimize the hinge loss classification errors [20].
However, because of the lattice-based operations, the objective
and constraints do not yield a convex optimization problem
but a convex-concave programming problem [21]. Thus, the
training algorithm employed by Charisopoulos and Maragos
uses the convex-concave procedure to determine the optimal



weight assignment for a binary classification problem [21],
[22]. In a similar fashion, we interpret the training of an
SLMP model as a convex-concave optimization problem in
this paper. Precisely, we train an SLMP model using dis-
ciplined convex-concave programming [22]]. However, unlike
the single morphological perceptron model presented in [23],
we consider the general approach of Ritter and Urcid based
on dendrite computation. Specifically, we consider a lattice-
based network with K fixed dendrites. The proposed training
algorithm is referred to as the K -dendrite disciplined convex-
concave procedure (K -DDCCP) because it uses the disciplined
convex-concave programming methodology to train a SLMP
with K dendrites.

This work is structured as follows: Section gives a
brief overview of the SLMP model with dendrite computation
proposed by Ritter and Urcid [[13]]. This section also presents
the WDCCP method proposed by Charisopoulos and Maragos
[23]], and it finishes with the proposed non-convex optimization
problem. In Section we rewrite the optimization problem
from the previous section using the difference of convex
functions so the training can be addressed using disciplined
convex-concave programming [22]. The results of the experi-
ments are presented in Section The paper finishes with the
concluding remarks in Section [V]

II. SINGLE-LAYER MORPHOLOGICAL PERCEPTRON

Advancements in neurobiology and the biophysics of neural
computation have highlighted the critical role of dendritic
structures in neurons. In a few words, a neuron has dendritic
postsynaptic regions that receive input from the terminal
branches of other neurons. These terminal branches provide
either excitatory or inhibitory input through their terminal
buttons, and the postsynaptic membrane of the dendrites
determines the excitatory or inhibitory response to the received
input. The dendrite structures have been recognized as the
primary computational units capable of performing logical
operations. In view of this remark, Ritter and Urcid developed
a lattice-based neural model with dendritic structures called
single-layer morphological perceptron (SLMP) [13].

The computations of SLMP are performed using the al-
gebraic structure (R, V, A, +,+’) from minimax algebra [3],
where V and A denote the supremum and infimum operations,
respectively. Accordingly, the maximum and the minimum of
a finite set of real numbers X = {z1,2,...,2,} C R™ are
denoted respectively by

\/XE\n/mi:max{xi:i:17...,n}, (D

i=1
and
n
/\XE/\xi:min{xi:i:17...,n}. )
i=1
The operations “+” and “+’” coincide with the usual addition

for finite real numbers and differ at the infinities as follows:

(+00) + (=00) = (=00) + (+00) = —o0, 3)

and
(+00) +' (=00) = (=00) +' (+00) = o0. (4

In the following, we only consider finite values. Thus, we do
not need to distinguish between “+” and “+4'”, and we shall
consider only the traditional addition “+” of real numbers. De-
tailed accounts on the mathematical structure (R, V, A, +,+')
can be found, for example, in [S], [11].

In mathematical terms, suppose a single neuron with K
dendrites receives an input = [z1, 23, ..., 2,] € R™. Using
lattice-based operations, the computation performed by the kth
dendrite, for k =1,..., K, is given by

() = pi /n\ N\ (=D @i+ wly), (5)

i=11€{0,1}

where w!, denotes the weight of the dendrite fiber coming
from the ith input neuron into kth dendrite and p;, € {—1,+1}
indicates its role, with +1 and —1 for excitatory and inhibitory
junctions, respectively. The state of a neuron is determined
by a function considering the inputs received from all of
its dendrites. Formally, the output of a neuron with dendrite
computation is given by

K
(@) = \ (@), (6)
k=1

and its state is determined by means of the equation

K n
y@) = N\ lpe A N\ DT @iwi) | ] D

k=1 i=11€{0,1}

where the hard limiter activation function given below is used:

0, if >0,
)= {1, if 7 <0. ®)

Remark 1. Lattice theory is endowed with a duality principle
[3]], [S)]. In a few words, the duality principle asserts that every
statement corresponds to a dual one obtained by interchanging
the operations “V and “A”, and vice-versa. Accordingly, by
replacing the minimum with the maximum operation, the
computation performed by the kth dendrite can be expressed
as follows

e(2) = i \n/ Vo (=D @i+ wly). ©)

1=11e{0,1}

Similarly, the output of a neuron with K dendrites can be
computed by means of the equation

K

() = \/ (@), (10)
k=1

and its state is given by y(x) = f(7(x)). We would like to

point out that one can move from (9) and (3)) as well as from

and (6) by redefining the weights and/or changing py

from excitatory to inhibitory, and vice-versa.



Let us conclude by pointing out that Ritter and Urcid
proposed an algorithm for training an SLMP for binary clas-
sification problems [13]]. Their algorithm behaves as a greedy
heuristic, where the dendrites of the morphological neuron
grow gradually as long as there are misclassified training
patterns. The training process only ends when all the training
data is correctly classified. Consequently, it is possible that the
morphological neural network overfits the dataset.

A. Weighted Disciplined Convex-Concave Programming

In contrast to the greedy training algorithm of Ritter and
Urcid, Charisopoulos and Maragos trained a single morpholog-
ical perceptron by solving an optimization problem [23], in a
similar fashion to traditional support vector machines [19]]. By
formulating the training as an optimization problem, one ob-
tains a convex cost function, but the constraints are composed
of inequalities given by the difference of convex functions
(DC) or, equivalently, convex-concave functions. The follow-
ing reviews the training method proposed by Charisopoulos
and Maragos.

First of all, Charisopoulous and Maragos considered a
network with a single morphological neuron described by the

equation
y($)=f<\/ »’UH-wi) ; Y
i=1
for all input * = [z1,...,2,] € R™. We would like to

remark that (TT)) corresponds to a particular SLMP with only
one excitatory dendrite (K = 1 and p; = +1) and weights

satisfying w®, = —oco and w}; = w;, forall i =1,...,n.
Consider a training set 7 = {(x) y)) j =
1,...,M} C R"™ x {cp,c1}, where ¢y and c; represent the

class labels in a binary classification problem. Define the sets

Co={zW :y) =¢o} and O = {2V :y0) = ¢},
12)
of the training samples associated with the labels ¢y and
c1, respectively. Charisopoulos and Maragos proposed the

following optimization problem for training the morphological
model given by (II)):

M
min v; max(&;,0),
by S v max(6,0
j=1
s.t. (xgj)—i-wi) < &, if zU) e ¢y,
1

13)

.
Il

(asl(»j) +w;) > —=¢, if x) e Oy,

.

Jj=1

where w = [wy,...,w,] € R™ is a weight vector and
€ = [¢&,..., &) € RM s the slack variable vector used
to ensure that only misclassified patterns contribute to the
objective (loss) function. Furthermore, the weights v; are
introduced into the objective function to penalize patterns with
a greater likelihood of being outliers. Because of the maximum
operations, the constraints in the optimization problem
are expressed by the difference between convex and concave

functions, resulting in a convex-concave optimization problem
[21]. The training algorithm based on the convex-concave
procedure proposed by Charisopoulos and Maragos can be
implemented using the DCCP library for the CVXPY, an open-
source optimization package for python [22]], [24].

Besides the morphological network given by (II),
Charisopoulos and Maragos also considered a model given
by the convex combination of two morphological neurons as
follows A € [0, 1].

y(x) = f ()\ (\/xl—kwl) +(1=X </\x2+ml>>
i=1 i=1

(14)

III. TRAINING A SINGLE-LAYER MORPHOLOGICAL
PERCEPTRON USING CONVEX-CONCAVE PROGRAMMING

We propose a training algorithm for a single-layer mor-
phological perceptron featuring K dendrites. Drawing inspi-
ration from the Charisopoulos and Maragos approach, our
training method for an SLMP network aims to minimize
the slack variables within the constraints established by the
decision functions presented in Ritter and Urcid’s SLMP
model, as detailed in [13]. Precisely, given a training set
T = {29, y)) . j =1,...,M} C R" x {co,c1}, the
weights of an SLMP are obtained by solving the optimization
problem:

M
min max(§;,0)
=1 _ (15)
st r(x9) < g, if ) € Oy,
(") > -g, ifz¥ ey,

where 7(xU) denotes the output of a neuron with dendrite
computation under presentation of /), and Cy and C;
are given by (I2). Unfortunately, unlike (I3), (I3) is not a
convex-concave optimization problem and we need additional
assumptions and some mathematics to solve it.

A. Geometric Interpretation and Additional Assumptions

In this subsection, we provide a geometric interpretation of
the SLMP that supports additional assumptions considered to
solve ((15)).

First of all, the output of the kth dendrite given by (3) can
be expressed as follows for all ¢ = [z1,...,2,] € R™

n n

(@) = N\ (@i +wi) A N\ (=2 —wiy).

i=1 =1

(16)

Note that 7 () > 0 if and only if —wilk <z; < —w?k, for all
i =1,...,n. Therefore, the inequality 7 (x) > 0 holds if and
only if the pattern « belongs to the hyperbox whose bottom-
left and top-right corners are —wj = [—wiy,...,—wk,] € R"
and —w) = [-wd,...,—w? ] € R™ respectively. In
other words, a dendrite determines a hyperbox in R". By
considering only excitatory dendrites, the output of a neuron
given by satisfies 7(x) > 0 if and only if = belongs
to the hyperbox determined by at least one dendrite. In other



words, the decision surface of a morphological neuron with
dendrite computation corresponds to the union of the hyperbox
determined by its dendrites if pp, = +1 forall k=1,..., K.

Consider an SLMP with K excitatory dendrites, that is,
pr = +1 for all & = 1,...,K. Given a training set
T = {(@W,y) : j = 1,...,M}, the weights w) =
[wi, —w?] € RY, where N = 2n, obtained by concatenating
w}, and —wY, can be determined by solving the following
optimization problem:

HllIl E max(&;,0)
j=1

K N
s.t. /\ [zlw + (wk)l] < & if z0) e ¢
k=1i=1
K N 4
\/ /\ {zi(])Jr(wk)l] > =¢ if z0) e ¢y
k=1j=1
a7
where 2() = [£0), —x()] € RY is obtained by concatenating

x0) and —x() and W € RE*Y is a matrix with its rows
being represented by wy. When considering one dendrite
(K = 1), we encounter the optimization problem presented
by Charisopoulos and Maragos in [23]. This problem is
a disciplined convex-concave program (DCCP) and can be
solved using the DCCP library for the python’s CVXPY
package [22]. However, the problem fails to be DCCP when
dealing with more than one dendrite. Thus, the constraints
should be expressed as differences of convex functions, which
will be further detailed in the following subsection.

B. Alternative Formulation a SLMP Network

The optimization model defined by is not a DCCP
problem [22]]. Hence, we must rewrite the constraints in (26)
as the difference of two convex functions (DC). For this
purpose, we use the Definition [T below and used an alternative
formulation based on [23].

Definition 1. A function real-valued function f is called DC

on a convex set S C R if there exist two convex function f1,
f2: 8 = R such that f(x) = fi(x) — fa(x) for all x € S.

Consider the following function

K N
=V A [z + (wi)i]

(18)
k=1i=1
Alternatively, we can write ¢ as follows:
\/ /\ (19)
; i=1
vl (v wai]] e
k=1 =1
K
=V [ (z,wp)] Q1)

>
Il
—

where U*(z, wy) = I{laXN{—Zi — (wg);}. Thus, we have
i=1,...,

oz, W) = k_maXK{—\I/k(z,wk)}. (22)
Moreover, the function above can be rewritten as
(P(Z,W) :991(Z7W) _‘pZ(va)a (23)
where
p1(z, W) = nax Z\Il ERTA (24)
et t;ékz
and
K
W)= U (z,wy), (25)
k=1

are both functions convex functions.
Concluding, problem (17)) can we rewritten using DC func-
tions as follows:

M
. .
min ;maX(ﬁp )

s.t. 801(2(j)’ W) — ¢2(z(j)714/) <, 20) ¢ Co,
wl(z(j)a %2 ) - 902(z(j)7 %! ) Z 75]'7 Z(j) S Cl-
(26)

The problem (26), which is equivalent to problem (T7), can
be solved in a straightforward manner using the disciplined
convex-concave programming (DCCP) extension package for
CVXPY library for python [22].

IV. COMPUTATIONAL EXPERIMENTS

In our experiments, we used four databases: Ripley’s dataset
[26], the synthetic blobs and double moons datasets, and the
breast cancer dataset for classification (the three latter are
available at scikit—learn [27]). The first three datasets
have two features (that is, z0) € R?), whereas the breast
cancer dataset has 30 features (e.g. x() € R30),

For comparison purposes, we have considered the greedy
training algorithm proposed by Ritter and Urcid [13]], the
WDCCP method proposed by Charisoupoulos and Maragos
[23], and the linear support vector machines (Linear SVM)
[28]. We used 1000 training samples and 250 testing sam-
ples for the datasets containing two features. For the breast
cancer dataset, we used 381 samples for training, while the
remaining 188 were used for testing. Moreover, we repeated
each experiment 30 times to better compare the accuracy
score between the classifiers. Table [l summarizes the results
of the experiments conducted in this study. Figure [I] shows
the decision surfaces and the corresponding accuracy scores
produced by the morphological networks trained with the
greedy algorithm of Ritter and Urcid, the WDCCP, and the
proposed 4-DDCCP on the Ripley dataset. This figure also
includes the decision surface produced by the linear SVM
classifier.

Note that the linear SVM and morphological models trained
using the WDCCP and K-DDCCP algorithms exhibited com-
parable performance regarding accuracy and robustness for



TABLE I
ACCURACY’S MEAN AND STANDARD DEVIATIONS AND THE BEST SCORE.

Greedy WDCCP 2-DDCCP 3-DDCCP 4-DDCCP SVM
Ripley 0.793£0.007  0.871+0.006  0.8524+0.015  0.85440.015  0.840£0.060  0.856+0.000
Best: 0.804 0.876 0.876 0.872 0.872 0.856
Blobs 0.968+0.004  0.700£0.000  0.848+0.195  0.932+0.131  0.92740.142  0.75240.000
Best: 0.972 0.700 0.988 0.988 0.988 0.752
Double Moons | 0.986+0.004 0.678+0.002  0.885+0.055  0.894+£0.057  0.908+0.033  0.880+0.000
Best: 0.988 0.680 0.936 0.936 0.992 0.880
Breast Cancer | 0.8284+0.002  0.599+0.008  0.940+0.007  0.946£0.002  0.947+£0.000  0.957+£0.000
Best: 0.830 0.606 0.947 0.947 0.947 0.957

the Ripley dataset. As expected, the greedy training algorithm
overfitted the dataset, yielding a 100% accuracy score for the
training set. In contrast, in the blobs dataset, the SLMP with
the K-DDCCP method outperformed both the SVM method
and the morphological network trained using the WDCCP.
On the downside, we observed that the K-DDCCP method
lacked robustness for the blobs dataset due to its substantial
standard deviation. The lack of robustness is partially caused
by the randomness of the initialization of the method used
for solving the convex-concave optimization problem. For the
breast cancer dataset, the SLMP with K-DDCCP method
achieved excellent results, demonstrating robustness due to its
low standard deviation.

V. CONCLUDING REMARKS

In this paper, we presented the K-DDCCP algorithm for
training a single-layer morphological perceptron (SLMP). The
algorithm extends the capabilities of the SLMP model pro-
posed by Ritter and Urcid by using a training algorithm that
uses a convex-concave procedure to solve an optimization
problem that resembles the one solved by traditional SVM
for binary classification tasks. Precisely, we formulated a non-
convex optimization problem for binary classification using the
decision functions defined by Ritter and Urcid. By expressing
the constraints as differences of convex functions, we were
able to solve it using the DCCP package for python’s CVXPY
library [22].

The experimental results presented in Section showed
that SLMP with the K-DDCCP algorithm outperformed the
model with the greedy algorithm of Ritter and Urcid in terms
of the classification accuracy score. Indeed, the algorithm
achieved better generalization performance by incorporating
multiple dendrites and utilizing the DCCP framework. This
highlights the importance of dendritic structures in neural
networks and their ability to perform logical operations.

Concluding, the proposed algorithm contributes to the field
of morphological neural networks by providing a novel ap-
proach to training single-layer perceptrons with dendritic
structures. The use of disciplined convex-concave program-
ming enables the optimization of non-convex problems, ex-
tending the applicability of morphological neural networks to
complex classification tasks.

Future work could focus on further improving the K-
DDCCP algorithm by incorporating additional optimization

techniques or exploring different variations of morphological
neural networks. Additionally, investigating the performance
of the algorithm on larger datasets and comparing it with other
state-of-the-art classification algorithms would provide a more
comprehensive evaluation of its capabilities.

Overall, this work contributes to advancing morphological
neural networks and demonstrates the potential of incorpo-
rating dendritic structures in designing efficient and effective
neural models for classification tasks.
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