
Byzantine Fault-Tolerant Deferred Update Replication

Fernando Pedone
University of Lugano (USI)

Lugano, Switzerland
fernando.pedone@usi.ch

Nicolas Schiper
University of Lugano (USI)

Lugano, Switzerland
nicolas.schiper@usi.ch

José Enrique Armendáriz-Iñigo
Universidad Pública de Navarra

Navarra, Spain
enrique.armendariz@unavarra.es

Abstract—Replication is a well-established approach to in-
creasing database availability. Many database replication pro-
tocols have been proposed for the crash-stop failure model, in
which servers fail silently. Fewer database replication protocols
have been proposed for the byzantine failure model, in which
servers may fail arbitrarily. This paper considers deferred
update replication, a popular database replication technique,
under byzantine failures. The paper makes two main contribu-
tions. First, it shows that making deferred update replication
tolerate byzantine failures is quite simple. Second, the paper
presents a byzantine-tolerant mechanism to execute read-only
transactions at a single server.

Keywords-Database replication, byzantine fault-tolerance,
dependable systems.

I. INTRODUCTION

Replication is a well-established approach to increasing
database availability. By replicating data items in multiple
servers, the failure of some servers does not prevent clients
from executing transactions against the system. Database
replication in the context of crash-stop failures has been
largely studied in the past years (e.g., [4], [10], [13], [16],
[17]). When a crash-stop server fails, it silently stops its
execution. More recently, a few works have considered
database replication under byzantine failures (e.g., [18],
[21]). Byzantine failures are more severe than crash-stop
failures since failed servers can present arbitrary behavior.

Several protocols for the crash-stop failure model are
based on deferred update replication. According to deferred
update replication, to execute a transaction, a client first
picks a server and submits to this server its transaction com-
mands. The execution of a transaction does not cause any
communication among servers until after the client requests
the transaction’s commit, at which point the transaction
enters the termination phase and is propagated to all servers.
As part of termination, each server certifies the transaction
and commits it, if doing so induces a serializable execution,
i.e., one in which transactions appear to have been executed
in some serial order.

Deferred update replication scales better than state-
machine replication and primary-backup replication. With
state-machine replication, every update transaction must
be executed by all servers. Thus, adding servers does
not increase the throughput of update transactions. With

primary-backup replication, the primary first executes update
transactions and then propagates the database changes to
the backups, which apply them without re-executing the
transactions. The throughput of update transactions is limited
by the capacity of the primary, not by the number of replicas.
Deferred update replication scales better because it allows all
servers to act as “primaries”, locally executing transactions
and then propagating the modifications to the other servers.
As applying transaction modifications to the database is
usually cheaper than executing transactions, the technique
provides better throughput and scalability.

Ensuring strong consistency despite multiple co-existing
primaries requires servers to synchronize. This is typically
done by means of an atomic broadcast protocol to order
transactions and a certification test to ensure the consis-
tency criterion of interest. One of the key properties of
deferred update replication is that read-only transactions
can be executed by a single server, without communication
across servers. This property has two implications. First,
in geographically distributed networks it can substantially
reduce the latency of read-only transactions. Second, it
enables read-only transactions to scale perfectly with the
number of servers in the system.

This paper considers deferred update replication under
byzantine failures. It proposes the first deferred update
replication protocol that is faithful to its crash-stop coun-
terpart: (i) the execution of a transaction does not require
communication across servers, only its termination does,
and (ii) only one server executes the transaction commands,
but all correct servers apply the updates of a committing
transaction. Our protocol is surprisingly simple and similar
to a typical crash-stop deferred update replication protocol,
although based on a more strict certification procedure to
guarantee that transactions only commit if they do not violate
consistency and read valid data (i.e., data that was not
fabricated by a byzantine server).

Our most significant result is a mechanism to execute
read-only transactions at a single server under byzantine
failures. Some protocols in the crash-stop model achieve this
property by carefully scheduling transactions so that they
observe a consistent database view. In the byzantine failure
model, however, clients may inadvertently execute a read-
only transaction against a byzantine server that fabricates a

bogus database view. In brief, our solution to the problem
consists in providing enough information for clients to
efficiently tell whether the data items read form a valid and
consistent view of the database. Clients are still subject to
malicious servers executing read-only transactions against
old, but consistent, database views. We discuss in the paper
the extent of the problem and remedies to such attacks.

The remainder of this paper is organized as follows.
Section II describes the system model. Sections III and IV
discuss deferred update replication in the crash-stop failure
model and in the byzantine failure models respectively.
Section V discusses related work. Section VI concludes the
paper.

II. SYSTEM MODEL AND DEFINITIONS

In this section, we detail the system model and assump-
tions common to both the crash-stop failure model and the
byzantine failure model. Further assumptions, specific to
each model, are detailed in Sections III and IV.

A. Clients, servers and communication

Let C = {c1, c2, ...} be the set of client processes and
S = {s1, s2, ..., sn} the set of server processes. Processes
are either correct, if they follow their specification and never
fail, or faulty, otherwise. We distinguish two classes of faulty
processes: crash-stop and byzantine. Crash-stop processes
eventually stop their execution but never misbehave; byzan-
tine processes may present arbitrary behavior.

We study deferred update replication in two models: in
one model faulty servers are crash-stop; in the other model
faulty servers are byzantine. In either case, there are at most
f faulty servers, and an unbounded number of crash-stop-
faulty clients.

Processes communicate by message passing, using ei-
ther one-to-one or one-to-many communication. One-to-
one communication is through primitives send(m) and
receive(m), where m is a message. If sender and receiver
are correct, then every message sent is eventually received.
One-to-many communication is based on atomic broadcast,
through the primitives abcast(m) and deliver(m), and used
by clients to propagate messages to the group of servers.

In the crash-stop model, atomic broadcast ensures that
(i) if one server delivers a broadcast message, then all correct
servers also deliver the message; and (ii) no two servers
deliver any two messages in different orders. In the byzantine
model, atomic broadcast ensures that (i) if one correct server
delivers a broadcast message, then all correct servers also
deliver the message; and (ii) no two correct servers deliver
any two messages in different orders.

B. Transactions and serializability

Let X = {x1, x2, ...} be the set of data items, i.e., the
database, Cmd = {commit,abort}∪ ({r,w}×X ×V) the
set of commands, where V is the set of possible values of a

data item, and S = C×Cmd the set of statements. Statement
(c, (r, x, v)) means that client c has read item x with value v;
statement (c, (w, x, v)) means that c has modified the state
of x to v.

We define a history h as a finite sequence of statements
in S. We define the projection h|c of history h on c ∈ C as
the longest subsequence h′ of h such that every statement in
h′ is in c× Cmd. In a projection h|c = σ0...σm, statement
σi is finishing in h|c if it is a commit or an abort; σi is
initiating if it is the first statement in h|c or the previous
statement σi−1 is a finishing statement.

A sequence of commands t = σ0...σm in h|c is a
transaction issued by c if (i) σ0 is initiating in h|c and (ii) σm
is either finishing in h|c or it is the last statement in h|c.
Transaction t is committing if σm is a commit statement.
We denote as com(h) the longest subsequence h′ of h such
that every statement in h′ is part of a committing transaction
in h. In other words, com(h) is the committed projection of
h, with all statements of all committed transactions in h.

Let t and u be transactions in a history h. We say that
t precedes u in h, t <h u, if the finishing statement of t
occurs before the initiating statement of u in h. A history
h is serial if for every pair (t, u) of transactions in h,
either t <h u or u <h t. History h is legal if in h
(i) every read statement (ci, (r, x, vj)) is preceded by a write
statement (cj , (w, x, vj)) and (ii) in between the two there
is no statement (ck, (w, x, vk)), vj 6= vk.

History h is serializable if there is a serial permutation
h′ of com(h) such that for each data item x, h′|x is legal,
where h′|x is the projection of h′ on x. Serializability is the
set of all serializable histories.

III. DEFERRED UPDATE REPLICATION

In this section, we review deferred update replication in
the crash-stop failure model. In this model, some atomic
broadcast protocols require a majority of correct pro-
cesses [11]. Thus, we assume the existence of 2f+1 correct
servers in the system. The database is fully replicated, that
is, every server has a complete copy of the database.

A. Overview

In deferred update replication, transactions pass through
two phases in their lifetime: the execution phase and the
termination phase. The execution phase starts when the
client issues the first transaction command; it finishes with
a client’s request to commit or abort the transaction, when
the termination phase starts. The termination phase finishes
when the transaction is committed or aborted.

Before starting a transaction t, a client c must select the
server s that will receive and execute t’s commands; other
servers will not be involved in t’s execution. Each data
item in the server’s database is a tuple (x, v, i), where x
is the item’s unique identifier, v is x’s value and i is the
value’s version. We assume that read and write commands

on database tuples are atomic operations. When s receives a
read command for x from c, it returns the current value of x
(or the most up-to-date value if the database is multiversion)
and its corresponding version. Write commands are locally
stored by c. It is only during transaction termination that
updates are propagated to the servers.

In the termination phase, the client atomically broadcasts
t’s readset and writeset, denoted respectively by t.rs and
t.ws—for simplicity, we say that “c broadcasts t”. The
readset of t is the set of all tuples (x, i), where x is a data
item read by t and i the version of the value read; the writeset
of t is the set of all tuples (x, v), where x is a data item
written by t and v is x’s new value. Notice that the readset
does not contain the values read.

Upon delivering t’s termination request, s certifies t.
Certification ensures a serializable execution; it essentially
checks whether t’s read commands have seen values that are
still up-to-date when t is certified. If t passes certification,
then s executes t’s writes against the database and assigns
each new value the same version number k, reflecting the
fact that t is the k-th committed transaction at s.

To certify t, s maintains a set CT of tuples (i, up),
where up is a set with the data items written by the i-th
committed transaction at s. We state the certification test of
t, Ccs(t.rs, CT), more formally with the predicate below.

Ccs(t.rs, CT) ≡ ∀(x, i) ∈ t.rs : (1)
@(j, up) ∈ CT s.t. (x ∈ up) and (j > i)

If t passes certification, then s updates the database and
CT . Certifying a transaction and creating new database
items is an atomic operation. When a new version of x is
created, the server can decide to keep older versions of x or
not. If multiple versions of a data item exist, then we say
the database is multi-version; if not it is single-version.

B. Algorithm in detail

Algorithms 1 and 2 are high level descriptions of the
client’s and server’s protocol. Notice that to determine the
outcome of a commit request, the client waits for a reply
from a single server. For brevity, we do not show in
Algorithm 1 the case in which the client decides to abort
a transaction. In Algorithm 2, items(t.ws) returns the set
of data items in t.ws, without the values written by t, that
is, items(t.ws) = {x | (x, v) ∈ t.ws}.

C. Read-only transactions

We describe two mechanisms to allow read-only transac-
tions to be executed by a single server only. One mechanism
is based on multi-version databases and does not require
updates from committing transactions to be synchronized
with on-going read-only transactions at a server; the other

1: Algorithm 1: Deferred update replication, client c’s code:
2: Command (c, (r, x, v)) occurs as follows:
3: if first command for t then
4: t.rs← ∅
5: t.ws← ∅
6: choose some server s ∈ S
7: if (x, v) 6∈ t.ws then
8: send (c, (r, x)) to s
9: wait until receive (c, (x, v, i)) from s

10: t.rs← t.rs ∪ {(x, i)}
11: return v
12: else
13: return v such that (x, v) ∈ t.ws

14: Command (c, (w, x, v)) occurs as follows:
15: t.ws← t.ws ∪ {(x, v)}
16: A commit command is executed as follows:
17: if t.ws 6= ∅ then
18: abcast(c, commit-req, t.rs, t.ws) to all servers
19: wait until receive (c, outcome) from s

1: Algorithm 2: Deferred update replication, server s’s code:
2: Initialization
3: CT ← ∅
4: lastCommitted← 0

5: upon receiving (c, (r, x)) from c
6: retrieve (x, v, i) from database
7: send (c, (x, v, i)) to c

8: upon delivering (c, commit-req, t.rs, t.ws)
9: if Ccs(t.rs, CT) then

10: lastCommitted← lastCommitted + 1
11: CT ← CT ∪ {(lastCommitted, items(t.ws))}
12: for each (x, v) ∈ t.ws do
13: create database entry (x, v, lastCommitted)
14: send (c, commit) to c
15: else
16: send (c, abort) to c

mechanism assumes a single-version database but synchro-
nizes the updates of committing transactions with read-only
transactions at servers.

With multi-version databases, each server stores multiple
versions of each data item (limited by a system parameter).
When a transaction t issues its first read command, the client
takes the version of the value returned as a reference for
future read commands. This version number specifies the
view of the database that the transaction will see, t.view.
Every future read command must contain t.view. Upon
receiving a read command with t.view, the server returns
the most recent value of the item read whose version is equal
to or smaller than t.view. If no such a value is available, the
server tells the client that t must be aborted. This technique
is sometimes called multiversion timestamps [8].

If a single version of each data item exists, then read
commands must be synchronized (e.g., through two-phase
locking [2]) with the updates of committing transactions.
During the execution of a transaction t, each read command

of t must first acquire a read lock on the data item. If
a transaction u passes certification, then the server must
acquire write locks on all data items in u’s writeset and then
commit u. Since read and write locks cannot be acquired
simultaneously, this technique may block transactions. This
mechanism has been used by other protocols based on the
deferred update replication model (e.g., [15]).

D. Correctness

To reason about correctness, we must define when read,
write and commit commands of a transaction t take place.
For read and write commands this is simple: a read happens
when the client receives the corresponding reply from the
server that executes t; a write happens after the client updates
t’s writeset. It seems natural to assume that the commit of t
also happens when the client receives the first commit reply
from a server. In our model, however, clients are allowed to
crash and so, the commit may never take place, despite the
fact that some databases consider the transaction committed.
To avoid such cases, without assuming correct clients, we
define the commit event of t as taking place when the first
server applies t’s updates to its database.

1) Update transactions: We argue now that Algorithm 1
is correct for update transactions only. We extend our argu-
ment to include read-only transactions in the next section.

Let h0 be a history created by Algorithm 1. We must
show that we can permutate the statements of committed
transactions in h0 such that the resulting history, hs, is serial
and legal. Our strategy is to create a series of histories
h0, ..., hi, ..., hs where hi is created after swapping two
statements in hi−1 .

Let t and u be two committing transactions in hi such that
t commits before u, which implies that t’s commit request
was delivered before u’s. We show that all of t’s statements
that succeed u’s statements in hi can be placed before u’s
statements. There are two cases to consider.

1) Some u’s statement σu precedes t’s read statement
(ct, (r, x, v)). If σu is a read on x, or a read or a write
on an item different than x, then we can trivially swap
the two. Assume now that σu is a write on x. Since
t is delivered before u and only values of a delivered
transaction can be read by other transactions, we know
that t’s read statement did not read the value written
by σu, and thus, the two can be swapped.

2) Some u’s statement σu precedes t’s write statement
(ct, (w, x, v)). If σu is a statement on an item different
than x, then the two can be obviously swapped. Assume
then that σu is a statement on x. If σu is a write, then
we can swap the two as no read statement from other
transactions have seen them; they only take effect after
a transaction is delivered and t is delivered before u.
Finally, let σu be a read. We show by way of contradic-
tion that (cu, (r, x, vu)) cannot precede (ct, (w, x, vt)).
Since u is certified after t and u passes certification,

from the certification test, it must be that version read
by u is still up-to-date. But since t modifies x, it
updates x’s version, a contradiction that concludes our
argument.

2) Read-only transactions: We consider first read-only
transactions in the presence of multi-version databases. Let
t be a read-only transaction in some history hi of the system.
We extend the argument presented in the previous section to
show that all of t’s read commands can be placed in between
two update transactions, namely, after the transaction u
that created the first item read by t and before any other
update transaction. From Section III-C, every future read of
t will return a version that is equal to or precedes t.view.
Therefore, every read command issued by t can be placed
before any command that succeeds u’s write commands.

We claim now that read-only transactions are also se-
rializable with single-version databases. In this case, the
local execution at a server follows the two-phase locking
protocol, which is serializable [2]. Notice that although
read and write commands are synchronized in a server,
certification of update transactions is still needed since two
update transactions executing on different servers may see
inconsistent reads. For example, transaction t may read data
item x and write y, while transaction u, executing at a
different server, may read y and write x. In such a case,
certification will abort one of the transactions.

IV. BFT DEFERRED UPDATE REPLICATION

To adapt our protocol to the byzantine failure model, we
make a few extra assumptions. We first assume that the
number of servers is at least 3f+1. This is the minimum to
solve atomic broadcast with malicious faults [12]. We make
use of message digests produced by collision-resistant hash
functions to ensure data integrity [19], and public-key signa-
tures to ensure communication authenticity [20]. We follow
the common practice of signing message digests instead of
signing messages directly. We also assume that each client-
server pair and each pair of servers communicate using
private channels that can be implemented using symmetric
keys [5]. Finally, clients are authenticated and servers en-
force access control. This forbids unauthorized clients from
accessing the database, and prevents potentially byzantine
servers from issuing transactions that may compromise the
integrity of the database. Obviously, a byzantine server can
compromise its local copy of the database, but this behaviour
is handled by our protocols.

A. Overview

A byzantine server could easily corrupt the execution of
the algorithm presented in the previous section. For example,
it could hamper the execution of the atomic broadcast
protocol or answer client commands with incorrect data.
While the first problem can be solved by replacing the
atomic broadcast algorithm for crash-stop failures with one

f+1 replies

Server 1

Client
➀

➁

➂

➃

➃
➄

➄

➄

➃

. . .

Server 2

Server n

transaction
execution

. . .
transaction
certification

transaction
termination

➀ Client's read commands are sent to a single server
➁ Server's reply to a read command is sent back to client
➂ Client broadcasts commit command for update transactions
➃ Servers certify transaction and return outcome to client
➄ Servers exchange signatures

Server 1

Client
➀

➁

➂

➃

. . .

Server 2

Server n

transaction
execution

. . .

transaction
termination

➀ Client's read commands are sent to a single server
➁ Server's reply to a read command is sent back to client
➂ Client requests validity and consistency proof to server
➃ Server returns proof previously signed by f+1 servers
➄ Client certifies transaction, if it fails contacts another server

➄

Figure 1. BFT deferred update replication: update (left) and read-only transactions (right)

that tolerates byzantine failures [14], the second problem is
less obvious to address.

A byzantine server may return two types of “incorrect
data”: invalid or stale. Invalid data, as opposed to valid
data, is fabricated by the server and does not correspond
to any value created by a committed transaction. Stale
data is too old, although it may be valid. We address the
problem of stale data with the certification test by checking
that the values read are still up-to-date. To guarantee that
transactions read valid data, each database tuple is redefined
as (x, v, i, d), where in addition to x’s value v and version
i, it contains a digest d of v. A read command returns the
value read and its digest, and readsets include the digest of
values.

We decompose the certification test into a component that
checks the validity of data read, Cvb (t.rs, CT), and another
component that checks whether the items read are up to date,
Cub (t.rs, CT).1 Moreover, tuples (i, up) in CT contain in
set up elements (x, d), that is, the items written and the
digest of the values written.

Cub (t.rs, CT) ≡ ∀(x, i, d) ∈ t.rs : (2)
@(j, up) ∈ CT s.t. ((x, ∗) ∈ up) and (j > i)

Cvb (t.rs, CT) ≡ ∀(x, i, d) ∈ t.rs : (3)
∃(j, up) ∈ CT s.t. ((x, d′) ∈ up) and (d = d′)

Additionally, to shield clients from byzantine servers that
would commit a transaction t that violates serializability,
clients wait for more than one server’s reply before conclud-
ing the outcome of transactions. It turns out that at commit

1The decomposition of the certification test into two components is done
for clarity purposes. An implementation would probably combine the two
to speed up the execution.

time, by waiting for a set of f + 1 identical replies, t’s
outcome can be safely determined by the clients since only
up to f servers can be compromised.

The left side of Figure 1 illustrates the protocol for update
transactions. Note that step 5 in the illustration will be
explained as part of the protocol for read-only transactions
(cf. Section IV-C).

B. Algorithm in detail

Algorithms 3 and 4 present the client’s and server’s
protocol. To execute a read command, a client c contacts
a server s and stores the version, the value, and the digest
in t.rs. Write operations are buffered in t.ws as before.
When c wishes to commit t, c atomically broadcasts a
signed message to all servers. This is denoted by 〈m〉σc

,
where m is a message and σc is c’s signature. Signing
messages guarantees that only authenticated clients issue
commit requests. After receiving f+1 identical replies from
servers, c can determine t’s outcome.

Besides a change in the certification test and in the data
sent back to the client when answering read requests, the
server’s code is similar to the crash-stop case. In Algo-
rithm 4, we must instantiate items(t.ws) (see line 11) as
items(t.ws) = {(x, v’s digest) | (x, v) ∈ t.ws}.

C. Read-Only Transactions

A simple way to handle read-only transactions is to
execute and terminate them in the same way as update
transactions. This leads to a simple solution but increases
the latency of read-only transactions since they need to
be atomically broadcast and certified by servers. In the
following, we describe a mechanism that allows read-only
transactions to be executed locally to a server only, just like
deferred update replication in the crash-stop failure model.

1: Algorithm 3: Deferred update replication, client c’s code:
2: Command (c, (r, x, v)) occurs as follows:
3: if first command for t then
4: t.rs← ∅
5: t.ws← ∅
6: choose some server s ∈ S
7: if (x, v) 6∈ t.ws then
8: send (c, (r, x)) to s
9: wait until receive (c, (x, v, i, d)) from s

10: t.rs← t.rs ∪ {(x, i, d)}
11: return v
12: else
13: return v such that (x, v) ∈ t.ws

14: Command (c, (w, x, v)) occurs as follows:
15: t.ws← t.ws ∪ {(x, v)}
16: A commit command is executed as follows:
17: if t.ws 6= ∅ then
18: abcast 〈c, commit-req, t.rs, t.ws〉σc to all servers
19: wait for identical (c, outcome) from f+1 servers

x: the data item’s key v: the data item’s value
i: the data item’s version d: the data item’s digest

1: Algorithm 4: Deferred update replication, server s’s code:
2: Initialization
3: CT ← ∅
4: lastCommitted← 0

5: upon receiving (c, (r, x)) from c
6: retrieve (x, v, i, d) from database
7: send (c, (x, v, i, d)) to c

8: upon delivering 〈c, commit-req, t.rs, t.ws〉σc

9: if Cu
b (t.rs, CT) and Cv

b (t.rs, CT) then
10: lastCommitted← lastCommitted + 1
11: CT ← CT ∪ {(lastCommitted, items(t.ws))}
12: for each (x, v) ∈ t.ws do
13: create database entry...
14: ...(x, v, lastCommitted, v’s digest)
15: send (c, commit) to c
16: else
17: send (c, abort) to c

x: the data item’s key v: the data item’s value
i: the data item’s version d: the data item’s digest

To allow read-only transactions to execute at a single
server, without inter-server communication, clients must be
able to tell unilaterally whether (i) a value returned by
a server as a response to a read command is valid (cf.
Section IV-A) and (ii) any set of valid values read by the
client belongs to a consistent view of the database. If the
client determines that a value returned by the server is invalid
or inconsistent, it aborts the transaction and retries using
another server.

A set of values read by a client is a consistent view of the
database if the values could be the result of a serial execution
of the committed transactions. For example, assume that
transactions t and u modify the values of data items x and
y. Any transaction that reads x and y must see either the

values created by t or the ones created by u or none, but
not a mix of the two (e.g., x from t and y from u).

We ensure proper transaction execution by letting the
client ask the server, at the end of the transaction execution,
for a proof that the values read are valid and consistent. A
validity and consistency proof for a transaction t, denoted
as vcp(t), consists of all elements of CT whose version lies
between the lowest and highest data item version read by t.
Moreover, to ensure that byzantine servers do not fabricate
data, every element (i, up) in vcp(t) must be signed by
f + 1 servers, denoted 〈i, up〉Σf+1 . Given a validity and
consistency proof vcp(t), the client decides to commit t if
the following conditions hold:

1) The proof vcp(t) is valid: If imin and imax are, respec-
tively, the minimum and maximum data item versions
read by t, then vcp(t) contains all tuples (i, up) such
that imin ≤ i ≤ imax. Moreover, each element of
vcp(t) is signed by f + 1 servers, which guarantees
that at least one correct server abides by this element.

2) The values read by t are valid: Each data item with
version i read by t matches its corresponding digest in
vcp(t) with version i.

3) The values read by t are consistent: For each item x
read with version i, no newer version i′ > i of x exists
in vcp(t).

Conditions 2 and 3 can be stated more precisely with
predicates (4) and (5), respectively. Note that these predi-
cates are similar to those used to certify update transactions
(cf. Section IV-A). The main difference is that read-only
transactions do not need to be certified against elements
in CT whose version is newer than the highest data item
version t read.

Ccr(t.rs, vcp(t)) ≡ ∀(x, i, d) ∈ t.rs : (4)
@〈j, up〉Σf+1 ∈ vcp(t) s.t. ((x, ∗) ∈ up) and (j > i)

Cvr (t.rs, vcp(t)) ≡ ∀(x, i, d) ∈ t.rs : (5)
∃〈i, up〉Σf+1 ∈ vcp(t) s.t. ((x, d′) ∈ up) and (d = d′)

To build a validity and consistency proof from CT , we
add to each CT entry a certificate of f+1 server signatures.
Database servers build certificates asynchronously. When the
i-th update transaction t commits on s, the value, version,
and digest of each data item x written by t are updated.
Periodically, server s signs new tuples (i, up) and sends this
information to all servers. When s gathers f+1 signatures of
the tuple (i, up), s inserts this new element in CT . This asyn-
chronous scheme does not add communication overhead to
update transactions. However, a read-only transaction t may
stall until the server answering t’s requests gathers enough
signatures to provide a validity and consistency proof for t.
The protocol for read-only transactions is illustrated on the
right side of Figure 1.

Algorithms 5 and 6 present the client and server protocols
to execute read-only transactions. In the algorithms, given a
transaction t and a validity and consistency proof vcp(t) for
t, read validity and consistency are expressed by predicates
Cvr (t.rs, vcp(t)) and Ccr(t.rs, vcp(t)) respectively.

1: Algorithm 5: Read-only transactions, client c’s code:
2: Command (c, (r, x, v)) occurs as follows:
3: if first command for t then
4: t.rs← ∅
5: choose some server s ∈ S
6: send (c, (r, x)) to s
7: wait until receive (c, (x, v, i, d)) from s
8: t.rs← t.rs ∪ {(x, i, d)}
9: return v

10: Command (c, commit)/(c, abort) occurs as follows:
11: imax ← max({i | (x, i, ∗) ∈ t.rs})
12: imin ← min({i | (x, i, ∗) ∈ t.rs})
13: send(c, commit-req, imin, imax) to s
14: wait until receive(c, vcp(t))
15: if vcp(t) is valid and

Cc
r(t.rs, vcp(t)) and Cv

r (t.rs, vcp(t)) then
16: outcome← commit
17: else
18: outcome← abort

x: the data item’s key v: the data item’s value
i: the data item’s version d: the data item’s digest

1: Algorithm 6: Read-only transactions, server s’s code:
2: Initialization
3: forwarded← ∅
4: upon receiving (c, (r, x)) from c
5: retrieve (x, v, i, d) from database
6: send (c, (x, v, i, d)) to c

7: upon receiving (c, commit-req, imin, imax)
8: vcp← ∅
9: for i in imin to imax do

10: wait until element e = 〈i, up〉Σf+1 is in CT
11: vcp← vcp ∪ {e}
12: send (c, vcp) to c

13: periodically do
14: for each (i, up) ∈ CT \ forwarded do
15: send 〈i, up〉σs to all servers
16: forwarded← forwarded ∪ {(i, up)}
17: upon receiving 〈i, up〉∗ from f + 1 servers
18: CT ← CT ∪ {〈i, up〉Σf+1}

x: the data item’s key v: the data item’s value
i: the data item’s version d: the data item’s digest

Table I summarizes the costs of the proposed protocols
for the crash-stop and byzantine failure models. To compute
these costs, we consider a transaction t that performs r reads
and present the latency and number of messages sent for the
execution and termination phases, when t is an update and
a read-only transaction.

D. Liveness issues

Byzantine servers may compromise the progress of the
above protocol by being non-responsive or slow. Besides at-
tacks that would slow down the delivery of atomic broadcast
messages [1], byzantine servers may also not answer client
read requests or slow down their execution. The first case
can be treated as in the crash-stop case, that is, the client
may simply consider that the server has crashed and restart
executing the transaction on another server. The second case
is more problematic since it may not be possible to distin-
guish between a slow honest server and a malicious one. To
avoid such an attack, the client can execute the transaction
on two (or more) servers and abort the transaction on the
slower server as soon as the faster server is ready to commit.

A more subtle attack is for a byzantine server to provide
read-only transactions with old, but valid and consistent,
database views. Although serializability allows old database
views to be seen by transactions (i.e., strictly speaking it
is not an attack), useful implementations try to reduce the
staleness of the views provided to transactions. There are (at
least) two ways to confront such server misbehaviour. First,
clients can broadcast read-only transactions and ask servers
to certify them, just like update transactions. If the transac-
tion fails certification, the client can retry using a different
server. Second, clients may submit a read command to more
than one server and compare their versions. Submitting read
commands to f+1 servers ensures the “freshness” of reads,
but may be an overkill. More appropriate policies would be
to send multiple read commands when suspecting a server
misbehavior, and possibly try first with a small subset of
servers.

E. Optimizations

Our protocols can be optimized in many ways. In the
following, we briefly present three optimizations.

Client caches: To increase scalability, clients can cache
data item values, versions, digests, and elements of CT . In
doing so, clients can execute queries without contacting any
server, provided that the necessary items are in the cache.
Before inserting a tuple (x, v, i) in the cache, where v and i
are x’s value and version respectively, we verify the validity
of v and make sure that version i of x has value v by using
the appropriate element of CT . We proceed similarly with
elements of CT by verifying their signatures before inserting
them in the cache. At the end of the execution of a read-
only transaction t, the consistency of the values read can
be checked using cached elements of CT . If some elements
of CT are missing, they are retrieved from a server. If t is
an update transaction, the consistency of the values read by
t are performed by the certification test. To avoid reading
arbitrary old values, cache entries are evicted after some time
(e.g., a few hundreds of milliseconds).

Failure Number of Transaction Execution Termination
model servers type latency messages latency messages

crash-stop 2f + 1 update r × 2 O(r) δ(abcastcs) + 1 msgs(abcastcs) + O(n)
read-only r × 2 O(r) - -

byzantine 3f + 1 update r × 2 O(r) δ(abcastbyz) + 1 msgs(abcastbyz) + O(n2)
read-only (r + 1)× 2 O(r) - -

Table I
THE COST OF THE PROPOSED PROTOCOLS (n IS THE NUMBER OF SERVERS, f IS THE MAXIMUM NUMBER OF FAULTY SERVERS, r

DENOTES THE NUMBER OF ITEMS THE TRANSACTION READS, abcastcs DENOTES AN ATOMIC BROADCAST ALGORITHM FOR
CRASH-STOP FAILURES, AND abcastbyz IS AN ATOMIC BROADCAST ALGORITHM FOR BYZANTINE FAILURES).

Limiting the size of CT : We limit the number of
element in CT by some value K to reduce the space
overhead of the set of committed transactions on the servers.
After the k-th transaction commits and server s inserts tuple
〈k, up〉Σf+1 into CT , s checks whether CT contains more
than K elements. If so, the element of CT with the lowest
timestamp is removed. This scheme may force servers to
unnecessarily abort transactions due to missing versions in
CT . Choosing K must thus be done carefully.

Efficient message authentication: In the above protocol,
public-key signatures are used by servers to sign elements
of the set of committed transactions and by clients to
authenticate their commit messages. Public-key signatures
are expensive however. In particular, it is orders of magni-
tude slower than message authentication codes (MACs). In
contrast to public-key signatures, a MAC cannot prove the
authenticity of a message to a third party. We thus replace
signatures by vectors of MACs [3]. This vector contains one
entry per machine of the system, that is, clients and servers.
In doing so, any vector of MACs can be verified by any
client or server.

F. Correctness

Correctness of the protocol for update transactions relies
on the fact that at certification, we use value digests to check
for data integrity and versions to check for data staleness.
The rest of the correctness argument is based on the same
principles as the crash-stop case and we thus omit it.

Proving the correctness of read-only transactions is more
subtle. To be serializable, read-only transactions must read
values from a consistent view of the database that is the
result of a serial execution of some finite sequence of
transactions. Let imax and imin respectively be the highest
and lowest data item versions read by a transaction t. We
claim that if t commits, then the view of the database t
observes is the result of the execution, in version order, of all
transactions whose corresponding tuple in CT has a version
that is smaller than, or equal to imax. Let ht be the sequence
of such transactions sorted in ascending version order.

We first note that since t commits, the server s on which
t executed behaved as prescribed by the protocol. This is
because each element of the validity and consistency proof

vcp(t) of t is signed by f +1 servers, and thus ensures that
the values and versions read by t are those that would be
returned by a correct server.

Since the client checks that (i) vcp(t) contains all versions
between imin and imax and (ii) for any data item x read by
t, no newer version of x exists in vcp(t), t reads a consistent
view of the database that is the result of the serial execution
of transactions in ht.

V. RELATED WORK

Database replication and deferred update replication have
been largely studied under benign faults (e.g., non-byzantine
servers subject to crash-stop failures). Few works have
considered the effects of byzantine servers on database
replication. The first paper to consider the problem is [9],
written more than two decades ago. This paper investigates
the use of byzantine agreement and state machine replication
in the context of databases. It proposes to execute transac-
tions atop serializable databases at the expense of limiting
transaction concurrency. The deferred update replication
protocol we propose allows concurrency among transactions
in that multiple transactions can be simultaneously executed
by different servers. Only transaction termination needs to
be serialized.

More recently, Vandiver et al. [21] proposed a system
that allows more concurrency between transactions. Clients
communicate through a central coordinator that chooses a
replica as primary and the rest as secondaries. Transac-
tions are first executed on the primary to determine which
transactions can be executed in parallel. When the result
of a query is returned to the coordinator, the latter ships
this query to the secondaries. A commit barrier, maintained
by the coordinator and incremented whenever a transaction
commits, is used to determine which transactions can be exe-
cuted in parallel at the secondaries. That is, two transactions
that executed in parallel on the primary will be executed
in parallel on the secondaries, provided that no transaction
commits in the mean time. This is, roughly speaking, the
basics of the Commit Barrier Scheduling protocol proposed
in [21]. This approach is similar to ours in the sense that it
allows the concurrent execution of transactions, although our
protocol allows the execution of transactions at any replica.

Moreover, in contrast to [21], our protocol does not require
a trusted coordinator, a strong assumption.

Byzantium [18] considers byzantine failures of servers
that guarantee snapshot isolation, as opposed to serializ-
ability. Under snapshot isolation, transactions observe a
committed instant of the database, which may correspond
to the database state when the transaction started or, more
likely in a distributed environment, to some earlier state of
the database [7]. Transactions that execute concurrently can
only commit if they do not modify the same data items,
a policy sometimes referred to as first-commiter-wins rule.
In Byzantium, a client first selects a replica that will act
as the coordinator for its transaction and then atomically
broadcast the begin operation to all replicas so that they
all use the same database snapshot for the transaction.
The transaction is entirely executed by the coordinator. At
commit time, the operations along with their results are
atomically broadcast to all replicas. If the transaction was
executed in a correct coordinator, then a quorum of servers
will obtain the same results and the transaction can commit;
otherwise, the transaction is aborted and the client is notified
about the byzantine coordinator. Both update and read-only
transactions are atomically broadcast.

VI. FINAL REMARKS

This paper has considered the deferred update replication
technique under the byzantine failure model. Deferred up-
date replication has been largely used to implement database
replication in the crash-stop failure model. It is more scalable
than other replication techniques such as state machine
replication and primary-backup since transactions may be
executed at any server. Moreover, it allows read-only trans-
actions to be executed at a single replica. The paper makes
two contributions: First, it shows that it is surprisingly simple
to use deferred update replication under byzantine failures—
in fact, our protocol only requires a small modification of
the certification procedure and an additional check, per-
formed by clients, to filter out transaction outcomes sent by
byzantine servers. Second, the paper shows that even though
some servers may behave maliciously, read-only transactions
can be executed at a single server—the execution must be
certified by the client at the end of the transaction however.

Our protocols ensure serializable execution. Some
database replication protocols are based on snapshot iso-
lation (e.g., [6], [13]). It turns out that it would not be dif-
ficult to change our algorithms to ensure snapshot isolation
instead. As we have described, read-only transactions see a
view of the database that corresponds to its committed state
when the first read command is issued. This mechanism can
be used to provide transactions, both read-only and update,
with a consistent and valid database snapshot. The first-
commiter-wins rule can be easily implemented by having
servers check against write-write conflicts, as opposed to
write-read conflicts, as currently done for serializability.

ACKNOWLEDGEMENTS

The authors wish to thank Antonio Carzaniga, Rui
Oliveira, Ricardo Padilha, José Orlando Pereira and the
anonymous reviewers for the insightful discussions and
comments about this work.

This work was partially funded by the Hasler Foundation,
project number 2316.

REFERENCES

[1] Y. Amir, B. A. Coan, J. Kirsch, and J. Lane. Byzantine
replication under attack. In DSN, pages 197–206, 2008.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
1987.

[3] Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance and proactive recovery. ACM Transactions on
Computer Systems (TOCS), 20(4):398–461, November 2002.

[4] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-jdbc:
Flexible database clustering middleware. In USENIX Annual
Technical Conference, FREENIX Track, 2004.

[5] W. Diffie and M. E. Hellman. Multiuser cryptographic
techniques. In AFIPS ’76: Proceedings of the June 7-10,
1976, national computer conference and exposition, pages
109–112, New York, NY, USA, 1976. ACM.

[6] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: Uniting
durability with transaction ordering for high-performance
scalable database replication. In Proceedings of EuroSys,
2006.

[7] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replica-
tion using generalized snapshot isolation. In Symposium on
Reliable Distributed Systems (SRDS’2005), Orlando, USA,
2005.

[8] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database
Systems: The Complete Book. Prentice Hall, 2008.

[9] Hector Garcia-Molina, Frank M. Pittelli, and Susan B. David-
son. Applications of byzantine agreement in database sys-
tems. ACM Trans. Database Syst., 11(1):27–47, 1986.

[10] B. Kemme and G. Alonso. A new approach ro developing
and implementing eager database replication protocols. ACM
Transactions on Database Systems (TODS), 25(3), September
2000.

[11] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[12] L. Lamport, R. Shostak, and M. Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages
and Systems, 4(3):382–401, 1982.

[13] Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-
Peris. Middleware based data replication providing snapshot
isolation. In International Conference on Management of
Data (SIGMOD), Baltimore, Maryland, USA, 2005.

[14] J.-P. Martin and L. Alvisi. Fast byzantine consensus. In
DSN’05, pages 402–411, 2005.

[15] F. Pedone. The Database State Machine and Group Commu-
nication Issues. PhD thesis, École Polytechnique Fédérale de
Lausanne, Switzerland, 1999. Number 2090.

[16] F. Pedone, R. Guerraoui, and A. Schiper. Transaction reorder-
ing in replicated databases. In Proceedings of the 16th IEEE
Symposium on Reliable Distributed Systems, Durham (USA),
1997.

[17] C. Plattner and G. Alonso. Ganymed: scalable replication
for transactional web applications. In Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware,
pages 155–174, 2004.

[18] Nuno M. Preguiça, Rodrigo Rodrigues, Cristóvão Honorato,
and João Lourenço. Byzantium: Byzantine-fault-tolerant
database replication providing snapshot isolation. In HotDep,
2008.

[19] R. Rivest. The md5 message-digest algorithm. internet rfc-
1321. 1992.

[20] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A
method for obtaining digital signatures and Public-Key cryp-
tosystems. Communications of the ACM, 21(2):120–126,
February 1978.

[21] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Samuel
Madden. Tolerating byzantine faults in transaction processing
systems using commit barrier scheduling. In SOSP, pages
59–72, 2007.

