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Abstract—Attacks targeting computer systems become more
and more complex and various. Some of them, so-called I/O
attacks, are performed by malicious peripherals that make read
or write accesses to DRAM memory or to memory embedded
in other peripherals, through DMA (Direct Memory Access)
requests. Some protection mechanisms to face these attacks exist
and have been implemented for several years now in modern
architectures. A typical example is the IOMMU proposed by
Intel. However, such mechanisms are not necessarily properly
configured and used by the firmware and the operating system.
This experimental paper describes a design weakness that we dis-
covered in the configuration of an IOMMU by the Intel IOMMU
Linux driver and a possible exploitation scenario that would
allow a malicious peripheral to bypass the underlying protection
mechanism. The exploitation scenario is implemented with a
PCI Express peripheral FPGA, based on Intel specifications and
Linux source code analysis.

I. INTRODUCTION

The evolution and sophistication of recent hardware archi-
tectures result from the continuously increasing requirements
for software applications in terms of functionalites, processing
power and speed as well as in terms of memory, storage
capacities and communication possibilities. Today, software
applications executed by microprocessors, like video games or
electronic systems simulators need high performance levels,
need to communicate over different networks and require
services which cannot be provided anymore by the processor
itself, like persistant external data storage or audio digital to
analog encoding, etc. All these services are today provided by
dedicated and independent hardware units which are external
to the processor. These units, called peripherals, need to
communicate with the processor for system configuration and
data sharing.

Before the complexification of microarchitectures, early
personal computers and their peripherals were mostly de-
signed and built by the same compagny. The peripherals
themselves used to be much less complex than today (mi-
crocode, firmwares, etc.). Processor manufacturers used to
trust the peripherals. However, with the increasing demand for
higher performance levels and hardware services, manufactur-
ers improved input/output possibilities. They even specified
normalized communication buses to allow tier manufacturers
to complement bare architectures with complex peripherals.
Then, to relieve the host processor from performing certain
data copies and operation, DMA cycles have been added to
these external buses, allowing as a consequence peripherals
to perform read/write accesses to a set of other peripherals

and RAM memory segments. These communication channels
raise serious concerns about the security of such architectures,
since they open some opportunities to attackers to compromise
the system and hosted applications using some malicious
peripherals. These attacks are so-called I/O attacks. To cope
with such attacks, some hardware protection components, such
as the IOMMU, from Intel, are included in modern computers.
This experience report paper is aimed at analyzing the security
of such protection component. In particular, it is shown,
that even if this component has been introduced 10 years
ago, some serious security concerns may be raised about its
actual efficiency to prevent malicious I/O attacks due to some
design weaknesses in its configuration. Briefly, the weakness is
related to the fact that the configuration tables of the IOMMU
are initialized in a DRAM region which is not protected from
DMA accesses. A malicious peripheral may benefit from this
weakness to modify these tables in memory just before the
hardware setup of the IOMMU.

This paper is organized as follows. The following two
sections describe fundamental components of the architecture,
involved in the identified design weakness: Section II presents
some basic technical background about PCI Express bus and
communications that are used to perform DMA accesses while
Section III presents the IOMMU component itself as well
as some of its internals, that are necessary for the reader to
understand the vulnerability as well as its potential exploita-
tion. Section IV briefly presents some examples of I/O attacks
discovered so far. Section V describes the vulnerability that we
discovered in the configuration of the IOMMU and a scenario
illustrating the possible exploitation of such vulnerability.
Section VI proposes some countermeasures to cope with this
vulnerability. Finally, Section VII concludes and discusses
future work.

II. TECHNICAL BACKGROUND

This section presents basic technical background concepts
related to PCI Express bus and communications, which are
useful to understand the rest of the paper.

A. PCI Express bus

Several different bus specifications like Industry Standard
Architecture (ISA) or Peripheral Component Interconnect
(PCI) have been implemented to support the communications
between the CPU and the peripherals. Today, the PCI Express
bus is used in most personal computers or servers.



Root Complex

Host bridge

CPU

Endpoint

Bridge
root port

Endpoint

Endpoint Endpoint

RAM

Switch
Bridge
upstream port

PCI Express
link

Bridge
downstream port

Downstream port

Upstream port

PCI Express link

Fig. 1. Logical view of a typical PCI Express compliant architecture

PCI Express devices are connected with ports and links. A
port connected to a child device is called a downstream port,
while a port connected to a parent device is called an upstream
port. There are three main types of PCI Express devices. The
root complex, root of the bus hierarchy, is connected to the
CPU thanks to the host bridge and to first level PCI Express
children devices. These devices can be endpoints (so-called
peripherals in the paper) and bridges (Figure 1). A bridge
connects two different logical bus domains with an upstream
and a downstream port. Finally, a switch is a collection of
bridges. We note that the root complex can host peripherals
and bridges. These bridges possess downstream ports only,
which are called root ports.

B. Communications

Each PCI Express device is identified with a PCI logical bus,
device and function identifier (id), noted bus:dev.fun. This
identification is used to route PCI Express messages between
devices.

A PCI Express message type is defined for every kind of
transactions, like configuration or memory read and write for
example. A transaction can be posted, which means that it does
not expect a reply from the requested device, also it can be
non-posted where a reply, called the completion, is needed.
For example a memory write is posted because the sender
doesn’t expect any response. At the opposite, a memory read
is non-posted and leads to the transmission of a memory read
completion by the receiver.

The receiver of a message is either identified by its identifier
or by an address. This address corresponds to a location in
the main memory or to a register of another device if the
registers of this device are memory mapped. Regarding a
memory read message, it contains a destination address and
a device requester id. The destination of the corresponding
memory read completion is the associated requester id. PCI
Express messages are therefore routed by address or id. To
route the messages correctly, bridges are configured by the

host to know which ids and memory ranges are responsible
for downstream (Figure 2).
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At boot time, the devices are not configured (they do not
know their own identifier). Indeed, the manufacturer can not
know the bus on which the device will be plugged. However,
when the BIOS ”Basic Input Output Systems” looks for all
available devices (using the simple assembler instruction mov
from the PCI Express space mapped in memory), each mem-
ory access is processed by the host bridge. The host bridge
then translates this access into a PCI Express configuration
request which is routed to the corresponding bus. In particular,
this request contains the identifier of the contacted device. So,
if this device is available in the system, it receives this request
and then knows its identifier. This step is important to allow
a device to communicate.

PCI Express peripherals are able, through DMA requests,
to have access to other peripheral memories and to the main
RAM, even in the kernel memory regions, without any control
of the processor. This raises a major concern from the security
point of view if the peripheral behavior can be controlled by an
attacker. To mitigate this threat, Intel has developed a hardware
component to filter PCI Express messages. This component,
called IOMMU, is presented in the next section.

III. IOMMU INTERNALS – DMA REMAPPING

IOMMUs are designed to virtualize the memory space of
the peripherals. An architecture can contain several IOMMUs,
each one being dedicated to a subset of installed devices
(Figure 2). IOMMUs translate and filter requests according
to the protection domain assigned to the emitter device. A
protection domain is simply a set of translation policies. The
process is divided in two phases. The first one identifies
the protection domain assigned to the emitter device. This
phase, called device to domain mapping, is conceptually
similar to an address translation but instead, it associates PCI
identifiers to address translation domains. In the second phase,
called address translation, the addresses used by peripherals
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memory accesses are translated by the DMA Remapping units
(DMAR), before crossing the host bridge (Figure 2). This
translation is similar to the one made by the cores Memory
Management Unit (MMU). Access controls are applicable in
the two translation phases.

Each DMAR unit can be configured separately. The behav-
ior of a DMAR is defined by a configuration page and a tree
structure (Figure 3) configured at bootime in the DRAM. This
configuration page contains the main control register called
Global Command Register (GCMDR) which is responsible to
activate the translation mechanism thanks to the Translation
Enable bit (TE) [1, 10]. It also contains a pointer to the root
of the structures (i.e. the root entry of the root table in the
figure 3), named the Root Table Address Register (RTAR).
The location of the configuration page of a DMAR is identified
thanks to a dedicated register in the memory controller. The
identifier of a PCI Express message sender is used to index
the first two tables of the tree structure (root table and context
table) in the first phase. The resolved address is then used
to pinpoint the structures for the second phase. These last
structures are indexed with the destination address of the PCI
Express message. The result is the physical address of the
translation. During the handling of these tables, a dedicated
bit can indicate if the access is granted or forbidden. Finally,
we note that the second translation phase can be deactivated
(pass through mode) thanks to the translation type field of a
context entry.

In this section we have introduced the theoretical function-
ing of DMAR. Unfortunately, like other hardware or software
systems, these mechanisms may be inefficient if the implemen-
tation and the configuration are not correct. In the following,
we briefly present some examples of such vulnerabilities be-
fore describing in detail the novel vulnerability we discovered
as well as the exploitation example we implemented.

IV. I/O VULNERABILITIES

Many I/O attacks have been presented in the literrature [2],
[3], [4], [5], [6]. In this paper, we focus on DMA attacks.
These attacks were described in several studies. In particular,
[7] demonstrates that an outsider can compromise a remote
network card to control the system, remotely. Fortunately, most
of these vulnerabilities have been fixed with the integration of
IOMMU in the systems.

As presented in the previous section, a well configured
DMAR unit is theoretically able to enforce an expected access
control policy on a DMA accessible memory. The control
access policy is given by the DMAR domain and a domain
is associated to a device through device to domain mapping.
Consequently, in order to be efficient, the DMAR unit needs
to identify precisely each DMA capable device.

However, in [8], the authors take benefit of the colocation of
PCI Express and PCI bus to exploit a weakness in the filtering
performed by the IOMMU. Indeed, the PCI to PCI Express
bridge uses its own PCI id as the requester id when translating
PCI read / write cycles to PCI Express messages, acting like
a proxy. Therefore, all the devices behind the PCI Express
to PCI bridge are sharing the identity of the bridge from the
IOMMU point of view, and so the same domain.

To illustrate the problem, let an Ethernet card and an Ipod
be two devices installed behind a PCI Express to PCI bridge. If
the Ethernet device driver configures the DMAR unit to map
a memory region for DMA read and write, this association
will also apply for the Ipod. The Ipod is therefore also able
to have access to the region mapped by the Ethernet device
driver. Authors called this vulnerability source id sharing. They
exploited it by injecting malicious Ethernet frames into an
IP kernel stack with a malicious firewire controller plugged
behind the same bridge of a legitimate network card. Finally,
they succeeded in corrupting an operating system ARP cache
injecting well chosen ARP reply packets.

Even if such attacks are today inefficient in recent architec-
tures, we discovered that the configuration of the IOMMU
by the IOMMU Linux driver in recent kernels presents
weaknesses that could be exploited by an attacker. In the
following, we present this vulnerability and the attack scenario
we implemented.

V. BYPASSING IOMMU
This section describes the discovered weakness in the Linux

kernel. First, the architecture used for the experiment and the
attack assumptions are presented. Then, the weakness is pre-
sented along with the attack scenario. Finally, the experiment
is detailed.

A. Intel implementation
In this section, we introduce the Intel hardware architecture

considered in our study. Two main physical components can



be distinguished in modern Intel architectures: the Processor
and the Platform Controller Hub (PCH). In our case, we
used a standard desktop machine hosting an Intel Haswell
i7-4770 processor associated to the Intel PCH C220 (Figure
4). Our processor contains the cores, but unlike the older
pre Nehalem microarchitectures, it also hosts an integrated
graphic processor and the deprecated northbridge (providing
the memory controller, southbridge bus interface, etc.), called
now the system agent.
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Fig. 4. Architecture of the system

The processor is connected through the proprietary DMI
bus and bridges to the second main component of the archi-
tecture, ex southbridge, the PCH. C220 PCH hosts some I/O
controllers like USB or Ethernet and audio. It also defines
four root port bridges. Three of them are directly connected
to expansion slots. The last one is connected to a PCI Express
to PCI bridge itself connected to a PCI expansion slot. In
PCI Express terms, we can see that the root complex is both
part of the processor and PCH. Also, the host bridge is in the
processor.

Two DMAR units are available. The first one is dedicated to
the integrated video card embedded within the processor. The
second one ensures the control and filtering of PCI Express
messages from all other peripherals. In order to take benefit
of these DMAR units, the operating system must be updated
and correctly configured.

B. Attack assumptions

The attack assumptions are more easily understood using
a scenario. Let Alice and Bob two employees of the same
company. They both share the same machine, which is quite
common for average to big sized enterprises. Alice wants to

spy on Bob’s activity. To be stealthy enough, she does not
want to use classical software techniques which can be quite
easily detectable in the case of a forensic analysis. She opts
for a DMA attack which is stealthier. Alice and Bob run a
GNU/Linux distribution with Intel DMAR activated but no
Intel TXT late launch [9] (which is outside the scope of
this paper). Alice has successfully identified a vulnerable PCI
Express peripheral with the associated exploit allowing remote
controlled arbitrary PCI Express reads and writes generation
(like [7] as an example). Also, she selected a COTS DMA
rootkit to get control on low level software stacks to do her
spying.

C. Firmware and Linux IOMMU driver vulnerabilities

The vulnerability we discovered relies on a
weakness of the BIOS used in the architecture
and a weakness in the Intel IOMMU Linux driver
drivers/iommu/intel-iommu.c. The latter makes the
IOMMU configuration vulnerable during the boot up process.
In order to understand the details, it is necessary to review
the boot sequence used on a Linux machine.

1) Device configuration: At startup, IOMMUs are deacti-
vated. During the boot time configuration, the firmware scans
the PCI configuration space to discover and initialize vital
devices, like the main VGA controller, loading and executing
its embedded firmware (VGA BIOS). Read and write accesses
to the configuration space send PCI Express configuration
messages to the targeted device. Devices know their PCI ids
after the first scan, as explained in section II-B. Therefore,
the peripherals are able to generate messages and access the
DRAM at the early firmware execution stage, long before the
execution of the bootloader and then of the operating system
kernel. At the end of the execution of the BIOS, the control
is given to the bootloader and the kernel.

2) IOMMU configuration: The kernel is uncompressed and
loaded by the bootloader, GNU GRUB in our experiment.
Linux kernel modules and drivers are then loaded and initial-
ized. DMAR is configured by one of these drivers. The Intel
IOMMU driver creates the translation structures and saves
them in the main DRAM. It builds the address translation
domains and device to domain mapping before copying the
root table pointer into the associated register. Finally, the driver
activates DMAR by setting the TE bit of the GCMD Register.
Let us note that these structures are stored in memory in areas
not protected by any security mechanism.

3) Cache policy: The vulnerability we discovered is ex-
ploitable also because Linux flushes cache lines (L1 / L2
and Last Level Cache) after every table entry modification,
to ensure the integrity of the structure in memory.

4) Physical memory space: We realized that as long as the
machine hardware configuration is not modified, the physical
addresses of the DMAR root table are not changed. This
property can simplify the exploitation presented in this paper,
preventing the attacker from searching structures to modify in
the memory space.



D. Linux IOMMU driver exploitation
The goal of this attack is to bypass the DMAR address

translation mechanism for a malicious peripheral and so enable
read and write transactions to all DMA accessible memory
ranges from this malicious peripheral. Our exploitation aims
at bypassing the IOMMU memory protection without altering
the integrity of the kernel itself. Fulfilling this constraint makes
the attack more difficult to identify.

1) Exploration phase: As explained in Section V-B, the
exploitation must begin with an exploration phase, carried out
on a architecture similar to the targeted system architecture.

Figure 4 illustrates the possible position of a malicious
peripheral in the architecture. The exploited vulnerable pe-
ripheral (converted into a malicious peripheral by a remote
attack for instance) is simulated by a FPGA, embedded on
a PCI Express peripheral development board. The FPGA is
connected to the 00:1c.2 PCH root port. Our accesses
are controlled and translated by DMAR unit 0, associated to
DMI bridge upstream. After the startup process, the FPGA
is associated to the identifier 05:00.0. The different access
requests of the FPGA are processed through the sixth entry
of the root table, then the first entry of the context table and,
depending on the accessed address, the corresponding address
translation tables (Figure 3).

Configuration structures of the DMAR unit 0 are setup by
the Linux driver. This driver stores these structures in the
DRAM (as we explained previously, these structures do not
stay in L1 or L2 cache, they are regularly flushed in memory).
An analysis of the driver indicates that the location of these
structures doesn’t change from one boot to another. They are
always located at the same address, provided that the hardware
configuration and the operating system are kept intact. In
addition, the analyses of the system lead to the identification
of free pages accessible from DMA requests.

This information is the pre-requisite to perform the attack
presented in the next section.

2) Implementation: The easiest way for a malicious periph-
eral to access DRAM is to enable pass through mode in the
context entry of the DMAR (the address translation part of
Figure 3 must grant every access of the malicious peripheral).
The following steps describe a way to grant these accesses at
the startup of the system.

First, the configuration of the system, at startup, allows all
peripherals to write to DRAM. Thus, the malicious peripheral
can easily produce a malicious context table in a free memory
page (step 0, Figure 5), with all entries to pass through. This
step must be performed at the beginning of startup.

When Linux begins its execution, it first writes its own
root table (step 1 and 2). The second step of the attack must
overwrite the sixth entry of this root table (it correponds to the
bus 5 of our FPGA) before the IOMMU activation through bit
TE.

Since these addresses do not change as long as the hardware
configuration of the machine does not change, we do not
have to scan the memory space for similar patterns. This
is important because there is very short delay between the

time Linux root table is written and the time the IOMMU is
activated and it would probably be difficult to scan the memory
to look for specific patterns in this short delay.

To maximize the chances to actually overwrite the root table
entry during this short time interval, the malicious peripheral
floods the bus with PCI Express write requests to the sixth
entry of the root table (step ∞). Finally, Linux activates the
IOMMU (steps 3) with compromised DMAR structures.
From now, the malicious peripheral can perfom all DMA
accesses it wants.

E. FPGA device implementation

We based the development of our malicious peripheral on
Milkymist System On Chip [10], which is originally a video
DJing open hardware project. Thanks to the hardware flexi-
bility of FPGAs and the thoughtful modularity of hardware
and software developed for Milkymist, we removed unneeded
functionalities and added a PCI Express end point stack with
minimum effort. Milkymist is made for a custom board hosting
a Xilinx virtex 4 FPGA[11]. Since we needed a PCI Express
connector and gigabit transceivers to develop the PCI Express
peripheral, we have chosen a Xilinx ML605.

Our SOC contains the original Milkymist Lattice Mico32
microprocessor (LM32), Onchip ROM, Ethernet MAC, bus
bridges, caches and controllers (Figure 6). In addition, we
developed the malicious PCI Express peripheral, PCIE-EP.
This core brings host memory access to the SOC through PCI
Express memory messages. With PCIE-EP, the LM32 is able
to program memory reads, memory writes (with a high rate
mode). Note that this SOC is flexible and can be adapted for
other purposes, e.g., for the implementation of integrity tests
in the context of a hardware assisted trusted architecture as
presented in [12].

F. Results and demonstration

In order to demonstrate that the exploitation of this vulner-
ability allows a potential attacker to further take control of the
host, we considered an example of a kernel rootkit that we
injected in kernel memory through DMA requests performed
by our malicious FPGA device, once it has successfully mod-
ified the IOMMU configuration so that it can make read/write
accesses to kernel memory. Our rootkit is a binary code which
is injected in kernel memory and modifies the behavior of the
setuid kernel function. Each time this function is called, the
euid (effective uid) of the calling task is systematically set to
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0. We developed a small C code to call setuid function, that
we executed by a non-root user, both in the presence and in
the absence of our exploitation of the IOMMU configuration.
The short video at1 shows the rootkit installation and use.

VI. SECURED BOOT PROCESS WITH IOMMU

Efficient protection against this attack can be implemented
either by specifically and precisely configuring the hardware
of each computer, or by redesigning the Intel architecture.
However, setting such specific protections is quite difficult for
the end user which is not a hardware and operating system
expert. For instance, Intel TXT is one of these solutions but its
installation and deployment is quite tricky. As a consequence,
up to our knowledge, Intel TXT is not a solution that is largely
deployed so far. It is therefore necessary to find solutions that
are efficient without being too restrictive.

From our point of view, even if the operating systems have
difficulties in taking into account all the details of all hardware
platforms, they should use some existing features to harden
the security of the system. We can mention especially the Bus
Master Enable bit (BME) which can prevent the peripherals
from sending messages. If this bit is set in the configuration
of the different PCI Express bridges, the peripherals that are
connected to these bridges cannot send any DMA requests by
themselves anymore and thus cannot perform the exploitation
we described in this paper. This bit is correctly set at the
startup of the system. However, the firmware disables this
protection before giving the control to the bootloader. This
behavior is really surprising and we are currently investigating
to understand its justification.

We also note that our platform brings additional security
features: some DMA protected configurable memory seg-
ments. The DMA Protected Range (DPR) specified by the
processor and the Protected Memory Ranges (PMR) imple-
mented in the IOMMU [13, Vol. 2, 2.5]. Linux does not use
these memory segments placing IOMMU structures outside
the protected ranges. Devices are consequently able to read and
write the IOMMU configuration before its activation. These
DMA protected memory segments are quite usual in modern

1http://homepages.laas.fr/nicomett/SSTIC2016/iommu-pwn-sstic.webm

architectures and should be systematically used to set up such
hardware protection components, such as the IOMMU. Once
again, we noticed that the Linux kernel does not use these
protected memory segments.

But, despite these protections, the system remains vulnera-
ble to DMA attacks while the firmware is being executed, in
the first moment of the boot process. This weakness is due
to the fact that the firmware does not filter DMA accesses.
It can be exploited by a malicious peripheral to modify the
code of either Linux or the firmware itself and so prevent the
activation of the IOMMU. At this time, it is necessary to check
the integrity of software components by using a technology
like Intel TXT.

VII. CONCLUSION

This paper presents an experiment demonstrating the possi-
ble exploitation of a vulnerability related to the configuration
of the IOMMU by the Linux IOMMU kernel driver. This
attack makes it possible for malicious peripherals to make
read and write accesses in main memory and to bypass the
protection mechanisms embedded in the IOMMU. We are
currently studying other operating systems (such as Windows,
BSD systems) in order to check whether this vulnerability is
only related to Linux kernel or not. In the same way, we also
plan to investigate the boot process when the Intel TXT is
activated to check that this technology does not suffer from
similar weaknesses.
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