
BlockHouse: Blockchain-based Distributed
Storehouse System

Doriane Perard∗, Lucas Gicquel† and Jérôme Lacan∗
∗ ISAE-Supaero, Université de Toulouse, France
† Edokial, Causse Comtal, 12340 Bozouls
Email: ∗firstname.name@isae-supaero.fr

†gicquel.lucas@edokial.com

Abstract—We propose in this paper BlockHouse, a
decentralized/P2P storage system fully based on pri-
vate blockchains. Each participant can rent his unused
storage in order to host data of other members. This
system uses a dual Smart Contract and Proof of Re-
trievability system to automatically check at a fixed
frequency if the file is still hosted. In addition to trans-
parency, the blockchain allows a better integration with
all payments associated to this type of system (regular
payments, sequestration to ensure good behaviors of
users, ...). Except the data transferred between the
client and the server, all the actions go through a smart
contract in the blockchain in order to log, pay and
secure the entire storage process.

I. Introduction

To face the huge increase of data generated by appli-
cations, enterprises must manage their storage by taking
into account the reliability, confidentiality and privacy.

Local storage is the first possibility and is optimal for
confidentiality and privacy. However, despite the numerous
existing local storage systems, it is not really easy to
ensure the full system reliability. As a consequence, small
or medium enterprises often choose to focus on their main
activity and externalize this kind of service.

In this case, the most evident solution is using cloud
storage which is cheap and reliable. This main issue of this
choice is probably the confidentiality and privacy. Indeed,
even if the data can be locally encrypted before being
stored on the remote cloud, this solution is generally not
recommended for critical data.

A potential solution would be to collaborate with
trusted associate enterprises to share the storage resources
in a kind of peer-to-peer network. In other words, com-
panies having unused storage capacity can rent this to
other enterprises. Technically, this type of service can be
supported by an extensive literature on both reliability
and confidentiality.

One of the potential issues in this distributed system is
that all the system members must agree on the amount,
duration and storage reliability of each file. One of the
system members could ensure the role of trust third party
by logging all the file exchanges and transactions in a

ledger, but this could be problematic for companies storing
critical data.

The recent developments of blockchains have shown that
such systems can provide trust in a competitive system
without trusted third party. The idea of integrating this
tool in a distributed storage system is quite natural.
However, companies want to control the access to their
data and so, traditional public blockchains like Bitcoin
or Ethereum, where anonymity is omnipresent, can not
be used. These are the reasons why private blockchains
have been created: indeed, these blockchains manage the
users’ account and check the user’s identity at each con-
nection. This kind of blockchain is also more efficient than
the public ones: they require only few seconds and few
computation power to create a block.

Our proposal is a distributed storage system managed
on a private blockchain. A storage smart contract contains
the amount of data and the storage duration. In addition
to transparency, this allows a better integration with all
payments associated to this type of system (regular pay-
ments, sequestration to ensure good behaviors of the users,
...). The system also periodically checks that data is really
stored on the servers by using cryptographic tools, called
Proof of Retrievability (PoR) [1] that will be stored on the
blockchain as well. Except the data transferred between
the client and the server, all the actions go through a smart
contract in the blockchain in order to log, pay and secure
the entire storage process.

The paper is organized as follows. We present the related
works in section II. All the details about BlockHouse are
presented in section III. We propose some extensions in
section IV before concluding in section V.

II. Related works
In this Section, we first introduce the key concepts of

PoR which is one of the main components of our system.
Then we will present other works using blockchains and
storage systems.

1) Proof of retrievability: is a mathematical tool that
allows a server to prove to a client that it does have specific
data, that can be fully recovered. The client sends random
challenges, and the server answers with a concurring proof.

ar
X

iv
:2

00
1.

07
01

6v
1

 [
cs

.C
R

]
 2

0
Ja

n
20

20

A proof is much smaller than the original file, therefore it
can be frequently transferred. To verify it, the client needs
the metadata, a small amount of data computed from the
original file. It is thus possible to be sure that the file is still
stored on the remote server, without having to download
entirely.

These concepts were introduced by Juels and Kaliski
[2].The survey [1] is a good overview of existing proofs of
retrievability classified according to different attributes.

2) Distributed storage and blockchains: Since
blockchains are managed by a peer-to-peer network,
it is quite natural to integrate it in a distributed storage
system. Storj, BlockStore and Sia are 3 different systems
that propose P2P storage using blockchain.

Sia [3] is a Bitcoin-based blockchain aiming at storing
client files on several hosts. The contracts between the
clients and the hosts are stored on the blockchain. The
file is first split into encrypted chunks and encoded with
erasure codes [4]. The hosts are asked to provide regu-
lar proofs-of-storage (with a limited number of possible
challenges). However, in such a public system, the end of
the contract just relies on the reputation and on the file
redundancy which incites the host to return the file to the
client.

The Storj system [5] uses similar concepts and suffers
from the same drawback to not provide guarantees on
the file recovery at the end of the contract. This is not
acceptable for companies.

BlockStore [6] is one of the first to detail the overall
scheme of the file storage process. It sets up all the
advanced storage system basics. It uses Space Wallet, a
special structure that tracks available storage space on all
nodes. Their technical choice is to reduce the blockchain
weight by storing only failing proofs in the blockchain. The
other features (audits, transfer, ...) are off-chain. However,
it does not solve the file recovery issue at the end of the
storage.

III. BlockHouse description
This section presents our proposal BlockHouse, which

can be decomposed into three steps: The initialization
which mainly includes the negotiation of the storage con-
tract, then the storage and audit part which contains
the periodic proofs-of-retrievability and the corresponding
payments, and the end of the contract which is the most
critical with the final payment and the client file restitu-
tion.

A. Initialization step
Fig. 1 presents the initialization step of the BlockHouse

protocol.
1) Contract creation: A node (the client) which wants

to rent some storage can make a proposition to the net-
work. To do this, he makes a special transaction (À in
the Fig.) with some details about his data (the data size,
the contract duration, the proof of retrievability frequency

Fig. 1: Initialization step

wanted, the price, the file sequestration needed). Every
participant in the blockchain network is able to know who
wants what.

Thanks to a reputation score, based on the blockchain
history, every node can be rated on different criteria:
on one hand, the clients are rated on their number of
litigation, on the other hand, hosts are rated on the ratio
of succeed proofs to submitted proofs. When a potential
host with enough free storage wants to host the data, it
makes a transaction Á to request an agreement with a
client he found sufficiently rated. When a client has chosen
the best host, it makes a last transaction Â to validate
the agreement. It can choose several hosts to improve
availability. It finally transfers the full payment of the file
storage to the smart contract.

The client sends the data to the host(s) (Ã) and gen-
erates the metadata for the future proofs of retrievability
(Ä).

This initialization phase ends when the host sends its
first proof of retrievability Å.

2) Sequestration: To assure that both participants hon-
estly play the game, they must deposit some tokens in
a smart contract in Á and Â. These tokens are a kind
of sequestration, to push them to respect the contract
until the end. There are two types of sequestration, with
different goals. Both are deposited by the storage server
when he responds positively to a proposal.

• The first sequestration, called file sequestration, is
sent to the client if the hosting server is not able to
return the original file.

• The second sequestration is used in case of conflict at
the end of the contract. Indeed, if the client declares
that he can not download the file back, it is not
possible to be sure that the client is honest or not.
In this case, we have to ask to other nodes to check,
and they are rewarded with the dishonest node’s
sequestration. These tokens will be called auditors
sequestration, and both parties have to deposit it.

Fig. 2: Audits

Fig. 3: End of the contract

B. Storage and audit part
Fig. 2 presents the second part of the BlockHouse

protocol, which is repeated according to the announced
frequency.

Once these formalities have been completed, the host
has to frequently perform proof of retrievability to be
payed. The way we propose to implement the time in the
blockchain is discussed in IV-B.

The challenge is randomly generated from the
blockchain itself, as explained in IV-A. Thus, it is
deduced directly from the system and not required to be
chosen by one node and sent to the others, saving storage
space and bandwidth.

Every time the host performs a proof of retrievability,
it includes it in a new transaction (Á). A smart contract
receives this transaction, and check the proof using the
initial data. If this proof is asked (the frequency is good)
and correct, a payment is sent from the smart contract to
the host (Á).

C. End of the contract
Fig. 3 presents the last part of the BlockHouse protocol,

with a classic end (without issue).
In common use, just before the end, the client has to

download its file À. In the meantime, the host continue to
create proofs of retrievability Á. If the downloaded file is
correct, the client announces it in a special transaction Â.
Then, the sequestrations are given back to their owners
(Ã) and the file is deleted (Ä).

However, there are other reasons why the contract could
be interrupted:

• Early termination by the client: in the event that the
client decides to early terminate the contract, each
party recovers its sequestration, and the money used
to pay the proofs is fully sent to the server.

• Early termination by the hosting server: in the event
that the server decides to early terminate the con-
tract, the client recovers his sequestration and money
used to reward the proof, but also the file sequestra-
tion from the server. The server recovers its auditors
sequestration.

• Incorrect proof of storage: if there is too much in-
correct proofs of storage from the hosting server, the
contract is terminated. As the previous case, the client
recovers his sequestration and money used to reward
the proofs, but also the file sequestration from the
server. The server recovers its auditors sequestration.

• Ending download issue: this is the most complex
case. The customer must issue a correct termination
message at the end of the contract, when it has suc-
cessfully downloaded its file. In the event that it sends
an incorrect message, it is not possible for the rest of
the network to judge which one of the two parties
is dishonest. Indeed, the client may not succeed in
downloading the file because the server does not make
it available, or may try to cheat to receive the file
sequestration from the server. To decide between the
two, we use others nodes, called auditors.

D. Auditors
Since the file is downloaded outside the blockchain, in

case of disagreement it is impossible for a network user
to know who is right. To know if the client is lying (and
therefore the file is available) or if the server is lying (the
file is not available), other nodes, called auditors, are asked
to check. The chosen auditors who correctly answer (i.e.
in agreement with the majority) are rewarded with a part
of the auditors sequestration.

Since verification is time-consuming, it may be useful to
implement sanctions, for example banning a user who is
at fault, in order to encourage everyone to act honestly.
This is possible because we are in the case of a private
blockchain, where nodes are identified and accepted in the
network.

Auditors must be selected randomly from the blockchain
and in sufficient quantity to ensure a majority of honest
response, as we explain in IV-C.

IV. Discussion
A. Random data (seed)

As explained previously, we want the blockchain to
randomly generate random challenges and choose auditors.

In the blockchain, the too obvious way would be to use
the block hash as a seed for a pseudo-random number
generator. However, a party can control the hash of a block
to predict the future block hash [7] and then control the
future challenges.

50 100 150 200 250 300
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100

Number of auditor nodes n

Pr
ob

a
of

di
sh

on
es

t
m

aj
or

ity
p = 2/3p = 5/7p = 4/5

Fig. 4: Probability to have a dishonest majority, depending
on n, with p = 4/5, p = 5/7 and p = 2/3.

Other ways to generate random numbers would be using
multiple blockchain elements like the i-th block hash in-
stead of using the last block hash, smart contract address,
timestamp, client or server address, last proof hash, etc.

B. Regular trigger
To make sure that every host still hosts the clients’

files, the system itself will incite them to create a proof
at a specific and fixed frequency. Working with a private
blockchain, it is not possible to use the block number as
fixed frequency: indeed, in this context, blocks are only
created when new transactions are processed. We can only
work with a clock.

As we can see in the block validation algorithm section
of [8], blocks are validated if each nodes’ clock in the net-
work are synchronized with at most 15 minutes difference.
Thanks to this feature, it is possible to use the nodes’ clock
in the smart contract to determine the date of every proof.

C. Probability to have a majority of honest auditors
To evaluate the probability to have a honest majority,

let us denote n the number of nodes chosen to be auditors.
We note p the probability one node responds correctly, and
Xn the total number of correct answers.

We assume that the Xn can be modeled as realizations
of an independent discrete random variable following a
probability binomial distribution with probability p.

We need a minimum number of nodes in the network for
the blockchain to work properly, and for the consensus to
be valid. We therefore assume that this number is sufficient
to be able to approximate the binomial distribution by a
normal distribution (n ≥ 30, np ≥ 5 and n(1− p) ≥ 5):

f(x) = e−
1
2 (x−µ

σ)2

σ
√

2π
= e

− 1
2 (x−np√

np(1−p)
)2√

np(1− p)
√

2π
(1)

The probability to have a dishonest majority is:

Pm = p
(

0 ≤ Xn ≤
n

2

)
=
∫ n

2

0
f(x)dx =

∫ n
2

0

e
− 1

2 (x−np√
np(1−p)

)2√
np(1− p)

√
2π

(2)

In Fig. 4, we represent the probability to have a majority
of dishonest auditors depending on the number auditor
nodes.

The probability is lower than 10−6 when there are at
least 41 nodes with p = 4/5, 101 nodes with p = 5/7 and
181 nodes with p = 2/3.

V. Conclusion
The increasing popularity of blockchains reveals all the

possibilities a decentralized ledger can offer. Nonetheless
blockchains can also have other usages.

In this paper, we introduce a new usage of blockchains in
a private context, with the aim of proposing a new decen-
tralized storage system. The BlockHouse system is based
on a protocol including three main steps done on-chain: the
storage contract initialization, regular audits and the end
of the contract. It is mainly based on cryptographic proofs
of retrievability which allow smart contracts to verify that
hosts are storing the data correctly. This system allows to
extend the trust on the data stored by the servers thanks
to the blockchain.

The major problem that could arise in our system would
be that the blockchain size increases significantly and
then becomes complicated to store. In order to fix that
problem, erasure codes can be used as a way to cancel
this growth [9].

Acknowledgement
We thank Yann Bachy for his comments that greatly

improved the paper.

References
[1] C. B. Tan, M. H. A. Hijazi, Y. Lim, and A. Gani, “A survey

on proof of retrievability for cloud data integrity and availabil-
ity: Cloud storage state-of-the-art, issues, solutions and future
trends,” Journal of Network and Computer Applications, vol. 110,
pp. 75–86, 2018.

[2] A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability
for large files,” in Proceedings of the 14th ACM conference on
Computer and communications security. Acm, 2007, pp. 584–
597.

[3] D. Vorick and L. Champine, “Sia: Simple decentralized storage,”
2014. [Online]. Available: https://sia.tech/sia.pdf

[4] J. Li and B. Li, “Erasure coding for cloud storage systems: A
survey,” Tsinghua Science and Technology, vol. 18, no. 3, pp. 259–
272, June 2013.

[5] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj
a peer-to-peer cloud storage network,” 2014.

[6] S. Ruj, M. S. Rahman, A. Basu, and S. Kiyomoto, “Blockstore: A
secure decentralized storage framework on blockchain,” in 2018
IEEE 32nd International Conference on Advanced Information
Networking and Applications (AINA). IEEE, 2018, pp. 1096–
1103.

[7] K. Chatterjee, A. K. Goharshady, and A. Pourdamghani, “Prob-
abilistic smart contracts: Secure randomness on the blockchain,”
arXiv preprint arXiv:1902.07986, 2019.

[8] E. Ruchevits, “Block protocole 2.0,” 2015. [Online].
Available: https://github.com/ethereum/wiki/blob/
c02254611f218f43cbb07517ca8e5d00fd6d6d75/Block-Protocol-2.
0.md

[9] D. Perard, J. Lacan, Y. Bachy, and J. Detchart, “Erasure code-
based low storage blockchain node,” in IEEE International Con-
ference on Blockchain. IEEE, 2018.

https://sia.tech/sia.pdf
https://github.com/ethereum/wiki/blob/c02254611f218f43cbb07517ca8e5d00fd6d6d75/Block-Protocol-2.0.md
https://github.com/ethereum/wiki/blob/c02254611f218f43cbb07517ca8e5d00fd6d6d75/Block-Protocol-2.0.md
https://github.com/ethereum/wiki/blob/c02254611f218f43cbb07517ca8e5d00fd6d6d75/Block-Protocol-2.0.md

	I Introduction
	II Related works
	II-1 Proof of retrievability
	II-2 Distributed storage and blockchains

	III BlockHouse description
	III-A Initialization step
	III-A1 Contract creation
	III-A2 Sequestration

	III-B Storage and audit part
	III-C End of the contract
	III-D Auditors

	IV Discussion
	IV-A Random data (seed)
	IV-B Regular trigger
	IV-C Probability to have a majority of honest auditors

	V Conclusion
	References

