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Abstract—Most approaches to scaling the throughput of state
machine replication resort to concurrent execution of non-
conflicting requests. While these approaches enhance through-
put, conflict detection and handling introduce overhead. Early
scheduling is a promising technique that trades concurrency for
expeditious scheduling decisions. In this technique, requests are
grouped in classes and a fixed subset of threads is assigned to
each class, respecting request dependencies. Early scheduling has
been shown to provide significant performance improvements in
state machine replication.

This paper evaluates the impact of the restrictions imposed
by the early scheduling technique. In particular, it shows that
threads may be idle while pending independent requests are
available to be executed, leading to poor processor utilization.
We characterize resource underutilization for workloads with
different rates of conflicting requests, number of threads, and
number of request classes. The paper opens up new opportunities
to further enhance the early scheduling technique.

Index Terms—State Machine Replication, Concurrent Execu-
tion, Scheduling

I. INTRODUCTION

State machine replication (SMR) is a well-established ap-
proach to fault tolerance [20], [28]. The approach offers strong
consistency and allows application programmers to focus on
the inherent complexity of the application, while remaining
oblivious to the difficulty of handling replica failures [11].
This is one of the reasons SMR has been successfully used in
many contexts and applications (e.g., [6], [12], [16]).

Replica consistency in SMR is based on deterministic
execution of requests in the same order. This simple replica-
tion model is challenged by modern multi-core servers since
deterministic execution often translates into single-threaded
replicas. Based on the observation that independent requests
can be executed concurrently while conflicting (or dependent)
requests1 must be serialized to keep replicas consistent [28],
and the fact that many workloads are dominated by indepen-
dent requests (e.g., [5], [9], [19], [21], [23], [24]), a number
of works have proposed to explore intra-replica concurrency
for request execution. In this context, some proposals follow
more closely the SMR approach (e.g., [2], [3], [19], [23], [25])
than others (e.g., [8], [13], [17], [18], [26]).

An important aspect in the design of multi-threaded SMR
is how to schedule requests for execution on worker threads.

1Two requests conflict if they access common state and at least one of them
updates the state, otherwise they are independent.

Scheduling has been an active area of research for several
decades, with algorithms tailored to different situations. The
SMR scheduling problem can be classified as online, without
processing times information, non-realtime, and with possi-
bly interdependent jobs [22]. There is no discussion in the
scheduling literature on the costs or techniques to detect and
represent dependencies among jobs or requests (i.e., the job
dependency graph is typically given). Also, there is a lack of
discussion on synchronization costs to enforce job dependen-
cies upon execution. Differently from scheduling problems in
other application areas, these aspects matter when scheduling
requests in online services. In modern online services, due to
high throughput and potential concurrency, the overhead to
manage dependencies gains in importance and may become
a system bottleneck. This is an important aspect of concern
when discussing approaches for parallel execution in SMR.

Different approaches to Parallel State Machine Replication
(P-SMR) show different tradeoffs between the concurrency
level allowed in the system and the overhead for conflict
detection and handling [1]: to allow maximum request exe-
cution concurrency, a costly conflict detection is performed
at scheduling time while this overhead may be considerably
reduced if we renounce some concurrency during execution.
Based on these observations, scheduling techniques can be
classified in three categories [1]: (i) In late scheduling [19], all
scheduling decisions are made at the replicas after the requests
are ordered, providing maximum execution concurrency but
introducing high overhead for conflict detection at the replicas.
(ii) In static scheduling [23], scheduling decisions are made
before requests are ordered for execution, providing low
execution concurrency with low overhead since there is no
request scheduling at the replicas. (iii) In early scheduling [3],
part of the scheduling decisions are made before requests are
ordered. These restrictions must be respected at the replicas,
allowing an intermediary level of concurrency for request
executions and also imposing an intermediary overhead for
conflict detection and handling at the replicas.

Among these P-SMR approaches, early scheduling has been
shown to outperform the other approaches in many scenar-
ios [3]. The main reason is that by restricting concurrency,
scheduling can be done more efficiently at the replicas. The
idea is to group service requests in classes and then specify
how classes must be synchronized. Then, a fixed subset of
worker threads is assigned to each class. As a result, requests



are scheduled to one or more worker threads, and may execute
concurrently or serially, depending on the classes of the
requests and how they relate. For example, two requests that
belong to a class that admits concurrency can execute in
parallel; but two requests that belong to conflicting classes
will be executed sequentially, after the involved worker threads
synchronize. The mapping of request classes to working
threads was modeled as an optimization problem where the
goal is to maximize execution concurrency [3], according to
a pre-defined workload.

Although early scheduling shows performance gains, it re-
stricts concurrency according to the class definitions and class-
to-thread mapping. To understand why, consider a sharded
application, where each shard is associated with read and
write request classes. Threads are mapped to classes according
to the class definition and expected shard load. In general,
if a shard has expected load higher than the others, more
threads will be mapped to implement that shard. However,
with workloads transiently deviating from the expected values,
early scheduling does not distribute workload evenly across
threads. Consequently, some threads may be overloaded while
others are idle.

In this paper, we revisit the early scheduling approach.
By conducting a series of experiments with many different
workloads, we identify scenarios in which idle and overloaded
threads coexist during system execution. We quantify load
unbalance among threads considering the amount of requests
each thread has to execute and the time demanded by syn-
chronization. The study opens up new opportunities to further
enhance the early scheduling technique.

The paper continues as follows. Section II introduces the
system model and some preliminary definitions. Section III
surveys related work. Section IV presents the early scheduling
technique. Section V evaluates early scheduling looking at
possible performance enhancements. Section VI concludes the
paper.

II. BACKGROUND

A. System Model

We assume a distributed system composed of interconnected
processes that communicate by exchanging messages. There
is an unbounded set of client processes and a bounded set
of replica processes. The system is asynchronous: there is no
bound on message delays and on relative process speeds. We
assume the crash failure model and exclude arbitrary behavior.
A process is correct if it does not fail, or faulty otherwise.
There are up to f faulty replicas, out of 2f + 1 replicas.

Processes have access to an atomic broadcast communi-
cation abstraction, defined by primitives broadcast(m) and
deliver(m), where m is a message. Atomic broadcast ensures
the following properties [10], [14]2:
• Validity: If a correct process broadcasts a message m,

then it eventually delivers m.

2Atomic broadcast needs additional synchrony assumptions to be imple-
mented [7], [11].

• Uniform Agreement: If a process delivers a message m,
then all correct processes eventually deliver m.

• Uniform Integrity: For any message m, every process
delivers m at most once, and only if m was previously
broadcast by a process.

• Uniform Total Order: If both processes p and q deliver
messages m and m′, then p delivers m before m′, if and
only if q delivers m before m′.

B. Consistency

Our consistency criterion is linearizability. A linearizable
execution satisfies the following requirements [15]:

• There exists a total order among any two operations that
respects the real-time ordering of operations across all
clients. One operation precedes another in real time if
the first operation finishes at a client before the second
operation starts at a client.

• It respects the semantics of the operations as defined in
their sequential execution.

C. Command Independence

To keep strong consistency, instead of sequentially exe-
cuting commands, it has been observed that it suffices for
a replica to execute sequentially only commands that access
the same variables and one of the commands modifies the
shared variables (conflicting or dependent commands). The
other commands (independent commands) can be executed
concurrently without violating consistency [28]. The notion
of command interdependency is application-specific. Recently,
several replication models have exploited command dependen-
cies to parallelize the execution on replicas.

More formally, command or request3 conflict can be defined
as follows. Let R be the set of requests available in a service
(i.e., all the requests that a client can issue). A request can
be any deterministic computation involving objects that are
part of the application state. We denote the sets of application
objects that replicas read and write when executing a request r
as r’s readset and writeset, or RS(r) and WS(r), respectively.

Definition 1 (Request conflict). The conflict relation #R ⊆
R×R among requests is defined as

(ri, rj) ∈ #R iff

 RS(ri) ∩WS(rj) 6= ∅ ∨
WS(ri) ∩RS(rj) 6= ∅ ∨
WS(ri) ∩WS(rj) 6= ∅


Requests ri and rj conflict if (ri, rj) ∈ #R. We refer to

pairs of requests not in #R as non-conflicting or independent.
Consequently, if two requests are independent (i.e., they do
not share any objects or only read shared objects), then the
requests can be executed concurrently at replicas (e.g., by
different worker threads at each replica).

3We use command and request with the same meaning.



III. RELATED WORK

In [1], a classification of approaches to Parallel SMR is
introduced with the following classes:
• Pipelined SMR is a technique whereby replicas imple-

ment staging to enhance throughput. Replicas are orga-
nized in a series of modules connected through shared
totally ordered message queues (e.g., [27]). Although
staging improves the system throughput, there is always
only one thread sequentially executing the commands.

• Late Scheduling proposes that commands delivered at
replicas be evaluated for conflict and scheduled concur-
rently for execution whenever they are independent from
the ones under execution or pending. In [19], a parallel
SMR is proposed where replicas are augmented with a
deterministic scheduler. Based on application semantics,
the scheduler serializes the execution of conflicting re-
quests according to the delivery order and dispatches
non-conflicting requests to be processed in parallel by
a pool of worker threads. Since the scheduling decision
is taken at the replica, before execution, the scheme has
been dubbed late scheduling.

• Early Scheduling emerges from the observation that the
overhead needed to keep command dependency informa-
tion in late scheduling can be significant. Early schedul-
ing (e.g., [2], [3]) trades concurrency for expeditious deci-
sions at replicas. With application semantics, requests are
grouped in classes and subsets of threads are assigned to
implement classes. Threads to classes assignment is per-
formed a priori. Since classes can conflict, requests from
conflicting classes are serialized by involving threads
from those different classes that synchronize to execute
conflicting commands implemented by a thread level exe-
cution model. With this scheme, when commands arrive,
the scheduler simply schedules them according to the
mode (sequential or concurrent) to the set of pre-assigned
threads. The complexity of dependency detection and
according scheduling is thus bounded. The next section
will dive into more details.

• Static Scheduling is a more strict idea of Early Schedul-
ing. It completely eliminates scheduling decisions at
replicas. P-SMR [23] adopts this approach. Clients map
requests to different multicast groups based on request
information which is application specific. Non-conflicting
requests can be sent to distinct groups, while conflicting
ones are sent to the same group(s). At the replica side,
each worker thread is associated to a multicast group
and processes requests as they arrive. When a request
arrives through more than one group, associated threads
synchronize to execute, imposing an order on all involved
threads (multicast groups).

Although the scheduling classification above encompasses
several existing proposals to P-SMR, there are approaches
to concurrent request execution in SMR-like architectures
that do not fall into any of the identified categories. We
call here SMR-like those architectures that depart from the

principle of request independency and introduce additional
cooperation among replicas, beyond the basic assumption of
request ordering.

Rex [13] and CRANE [8] add complexity to the execution
phase by introducing consensus about replicas synchronization
events to solve non-determinism due to concurrency. Rex
uses an execute-agree-follow strategy. A primary replica logs
dependencies among requests during execution, based on
shared variables locked by each request. This creates a trace of
dependencies which is proposed for agreement with other fol-
lower replicas. After agreement replicas replay the execution
restricted to the trace of the first executing server. CRANE
[8] solves non-determinism with the input determinism of
Paxos and the execution determinism of deterministic multi-
threading [26]. CRANE implements an additional underlying
consensus on synchronization events such that replicas see the
same sequence of calls to synchronization primitives.

Eve [18] and Storyboard [17] use optimistic approaches that
may lead to additional overhead in case replicas do not agree
on the result. In Eve, this is done with optimistic execution and
comparing results (consensus). If replicas diverge, roll-back
and conservative re-execution is performed. With Storyboard,
replicas have (a priori) forecasts of sequences of locks needed
by requests. When execution deviates from expected, replicas
have to establish a deterministic execution.

IV. EARLY SCHEDULING

Several approaches to parallel SMR resort to application
semantics to parallelize independent commands. While this al-
lows concurrency, it introduces scheduling overhead to decide
which commands are independent and which thread should
execute each command. The Early Scheduling approach [2],
[3] proposes a way to classify requests in request classes and
a fast scheduling algorithm based on classes.

A. Request Classes

The notion of request classes was introduced in [2] to
denote application knowledge. Consider a service with a set R
of possible requests. Each class has a descriptor and conflict
information, as defined next.

Definition 2 (Request classes). Let R be the set of requests
available in a service (same as considered in request conflicts).
Let C = {c1, c2, ..., cnc} be the set of class descriptors, where
nc is the number of classes.

We define request classes as R = C → P(C) × P(R),4
that is, any class in C may conflict with any subset of classes
in C, and is associated to a subset of requests in R. A conflict
among classes happens when any two requests from those
classes conflict, according to the conflict definition #R above.
Moreover, we introduce the restriction that a non-empty non-
overlapping subset of requests from R is associated to each
class.

4We denote the power set of set S as P(S).



a) Example: Consider a service partitioned in 2 shards
where requests can be classified as read-only and read-write,
per shard and globally. Different shards can be read and written
independently. Read operations in a shard do not conflict.
Writes conflict with reads and writes. Global writes conflict
with any global or local operation. Global reads do not conflict
with reads, global or local.

We model this application with the following classes. Read
class CR1 in partition 1 conflicts with the write class CW1 on
the same partition and with the global write class CWg . The
read class CR2 in partition 2 conflicts with the write class CW2

on the same partition and with the global write class CWg. The
class CWg also conflicts with itself, with the write classes and
with the overall reading class CRg . Writing classes CW1 and
CW2 also conflict with themselves and with the overall reading
class CRg . Class CRg also conflicts with itself. This is denoted
in Figure 1, where classes are nodes and conflicts are edges.

Fig. 1: Request class definition with two shards.

B. Classes, Threads and Execution

Central to the idea of Early Scheduling is that the scheduling
algorithm avoids the Late Scheduling overhead, i.e., it does
not have to evaluate every other pending command to decide
how to schedule a new incoming one. It suffices to know the
request’s class to associate an appropriate worker thread. With
this, the scheduling overhead is bounded, independently of the
population of pending requests.

1) Execution Model: To accomplish such a straightforward
scheduling algorithm, the Early Scheduling adopts a replica
execution model that will synchronize requests from conflict-
ing classes. A replica will have one scheduler thread and
n worker threads. Each worker thread has a separate input
FIFO queue. The scheduler receives each request r totally
ordered from consensus and decides to which worker thread(s)
to associate.

a. If scheduled to one worker only, r can be processed
concurrently with other requests.

b. If scheduled to more than one worker thread, then r de-
pends on preceding requests assigned to these workers.
Therefore, all workers involved in r must synchronize
before one worker among these executes r.

2) Class to threads mapping: With this execution model,
the following class-to-thread-mapping rules can be applied to
ensure linearizable executions:

i. Every class is associated with at least one worker
thread, to ensure that requests are eventually executed.

ii. If a class is self-conflicting, it is sequential. Each request
is scheduled to all threads of the class and processed as
described in the previous section.

iii. If two classes conflict, at least one of them must be
sequential. The previous requirement may help decide
which one.

iv. For conflicting classes c1, sequential, and c2, concur-
rent, the set of workers associated to c2 must be included
in the set of workers associated to c1. This requirement
ensures that requests in c2 are serialized w.r.t. c1’s.

v. For conflicting sequential classes c1 and c2, it suffices
that c1 and c2 have at least one worker in common. The
common worker ensures that requests in the classes are
serialized.

These rules result in several possible class-to-threads map-
pings. A mapping is defined as follows.

Definition 3 (CtoT). CtoT = C → {Seq, Conc} × P(T )
where: C is the set of class names; {Seq, Conc} is the
sequential or concurrent synchronization mode of a class; and
P(T ) the possible subsets of T = {t0, .., tn−1}, the n worker
threads at a replica.

a) Example: Following our example from Figure 1,
considering 4 worker threads available, a possible mapping
following the rules above is depicted in Table I.

TABLE I: A possible mapping of 4 threads in Figure 1

C = {seq, conc} × P ( {t0, t1, t2, t3} )
CR1= conc {t0, t2, }
CR2= conc { t1, t3}
CW1= seq {t0, t2, }
CW2= seq { t1, t3}
CRg= seq {t0, t3}
CWg= seq {t0, t1, t2, t3}

C. Algorithms

With a CtoT , Algorithms 1 and 2 present the execution
model for the scheduler and worker threads, respectively.
Whenever a request is delivered by the atomic broadcast
protocol, the scheduler (Algorithm 1) assigns it to one or
more worker threads. If a class is sequential, then all threads
associated with the class receive the request to synchronize
the execution (lines 4–6). Otherwise, requests are associated
to a unique thread (line 7–8), following a round-robin policy
(function next).

Algorithm 1 Early scheduler.
1: variables:
2: queues[0, ..., n− 1]← ∅ // one queue per worker thread
3: on deliver(req):
4: if req.class.smode = Seq then // if execution is sequential
5: ∀t ∈ CtoT (req.classId) // for each conflicting thread
6: queues[t].fifoPut(req) // synchronize to exec req
7: else // else assign req to one thread in round-robin
8: queues[next(CtoT (req.classId))].fifoPut(req)



Algorithm 2 Worker threads for early scheduling.
1: variables:
2: myId← id ∈ {0, ..., n− 1} // thread id, out of n threads
3: queue[myId]← ∅ // the queue with requests for this thread
4: barrier[C] // one barrier per request class
5: while true do
6: req ← queue.fifoGet() // wait until a request is available
7: if req.class.smode = Seq then // sequential execution:
8: if myId = min(CtoT (req.classId)) then // smallest id:
9: barrier[req.classId].await() // wait for signal

10: exec(req) // execute request
11: barrier[req.classId].await() // resume workers
12: else
13: barrier[req.classId].await() // signal worker
14: barrier[req.classId].await() // wait execution
15: else // concurrent execution:
16: exec(req) // execute the request

Each worker thread (Algorithm 2) takes one request at a
time from its queue in FIFO order (line 6) and then proceeds
depending on the synchronization mode of the class. If the
class is sequential, then the thread synchronizes with the
other threads in the class using barriers before the request is
executed (lines 8–14). In the case of a sequential class, only
one thread executes the request. If the class is concurrent, then
the thread simply executes the request (lines 15–16).

Safety and liveness are argued in [3], where it is shown
that these algorithms generate linearizable executions and that
every request is eventually executed.

V. EARLY SCHEDULING ANALYSIS

Early scheduling restricts concurrency to allow fast schedul-
ing decisions. This section analyzes early scheduling in differ-
ent scenarios to understand how these restrictions affect thread
utilization and load balancing.

A. Environment

Experiments were conducted in seven nodes connected by
a local-area network (cluster). Three server nodes implement
BFT-SMaRt replicas, one per node. BFT-SMaRt [4] is a well-
established framework to develop SMR. Each server node
has the following configuration: AMD Opteron® Processor
6366 HE @ 2271.490Mhz, 64 cores; 125GB RAM; operating
system Linux Ubuntu 4.15.0 (buildd@lgw01-amd64-001); gcc
version 7.3.0 (Ubuntu 7.3.0-16ubuntu3), 64 bits; Java Vir-
tual Machine and OpenJDK version 11.0.3; OpenJDK 64-Bit
Server VM.

Four client nodes were configured to run client processes.
Each client node has the following configuration: Intel® Xeon®

L5420 @ 2.50GHz processor with 8 cores; 8GB RAM; operat-
ing system Linux Ubuntu 4.15.0, (buildd@lgw01-amd64-014)
(gcc version 7.4.0 (Ubuntu 7.4.0-1ubuntu1 18.04.1)), 64 bits;
Java Virtual Machine and OpenJDK version 11.0.3; OpenJDK
64-Bit Server VM.

B. Application

The experiments were performed using a linked list appli-
cation. The application was implemented to support separate
data shards, that is, each replica has an internal partitioned

state. There are commands to read from the list and write in
the list, accessing a single shard or all shards. A read operation
checks whether an element is in one shard or in all shards, and
a write operation includes an element in one shard or in all
shards. Duplicated elements are not included in some shard,
i.e., the write operation checks if some element already is in
some shard before inclusion.

We conducted experiments with 2, 4 and 8 shards, in a
system with 6, 10 and 18 request classes, respectively. In
a deployment with n shards, there are n local (i.e., single-
shard) reads classes, n local writes classes, one global (i.e.,
all shards) read class, and one global write class. Each replica
was configured to run t worker threads, where each shard
is assigned two threads (the read and write classes of each
shard are mapped to the same two threads), and consequently,
t = 2n. Figure 1 and Table I present the case for 2 shards.

C. Metrics

We consider three distinct metrics:

1) Synchronization idleness. This metric represents the
average wait time for a thread to synchronize with
all other threads in the same class before executing a
synchronizing command. It is obtained as follows:

i High precision system nano-time is collected right
before the first barrier await instruction, at lines 9
and 13 in Algorithm 2.

ii In the thread responsible for executing the request,
a second system time is collected right after the
first barrier await instruction, before the exec in-
struction of line 10.

iii In waiting threads, the second measure of system
time is collected after the second barrier await
instruction of line 14.

iv The amount of waiting time (difference between
the two instants of time collected as described
above) is stored per second for each thread.

2) Queue idleness. This metric represents the average time
that a thread waits for new commands in its queue. It is
obtained as follows:

i High precision system nano-time is collected right
before the fifoGet instruction, at line 6 in Algorithm
2, which blocks the thread until a new command
is available.

ii The second system time is taken right after line 6.
iii The waiting time (difference between the two

instants of time collected as described above) is
stored per second for each thread.

3) Queue size. This metric represents the average size of
a thread’s queue. It is obtained by counting how many
commands were returned by the fifoGet instruction, line
6 in Algorithm 2. In the implementation, this instruction
actually returns a batch of commands available at the
scheduler, in the same order as scheduled. The amount
of commands is stored per second for each thread.



TABLE II: Threads to classes mappings for 4 shards and 8 threads
C = {seq, conc} × P ( {t0, t1, t2, t3, t4, t5, t6, t7} )

CR1= conc { t2, t4 }
CR2= conc {t0, t6 }
CR3= conc { t3, t5 }
CR4= conc { t1, t7}
CW1= seq { t2, t4 }
CW2= seq {t0, t6 }
CW3= seq { t3, t5 }
CW4= seq { t1, t7}
CRg= seq {t0, t4, t6, t7}
CWg= seq {t0, t1, t2, t3, t4, t5, t6, t7}

TABLE III: Threads to classes mappings for 8 shards and 16 threads
C = {seq, conc} × P ({t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15})

CR1= conc {t0, t1 }
CR2= conc { t2, t3 }
CR3= conc { t4, t5 }
CR4= conc { t6, t7 }
CR5= conc { t8, t9 }
CR6= conc { t10, t11 }
CR7= conc { t12, t13 }
CR8= conc { t14, t15}
CW1= seq {t0, t1 }
CW2= seq { t2, t3 }
CW3= seq { t4, t5 }
CW4= seq { t6, t7 }
CW5= seq { t8, t9 }
CW6= seq { t10, t11 }
CW7= seq { t12, t13 }
CW8= seq { t14, t15}
CRg= seq {t0, t2, t4, t6, t8, t10, t12, t14 }
CWg= seq {t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15}
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Fig. 2: Metrics and throughput in 10 seconds (left) and an entire execution (right), balanced workload 1-1-1, 2 shards (4
threads), and light operations.



D. Workloads

On the client side, we configured each node to run 10, 40
or 50 processes, according with number of shards (2, 4 and 8,
respectively), sending requests to servers with mixed workload
of read and write commands. Each client process sends batches
of 50 commands per request, without interval between each
request. This configuration results in performance near its
peak.

Several executions were performed submitting the applica-
tion to different workloads, ranging the percentages of reads,
writes, local and global operations. The percentage of writes
and global operations ranged from low to high levels due to
observation that as the level of conflicts increase, it directly
affects the metrics that we are monitoring, especially thread
synchronization idleness.

We also consider balanced and unbalanced workloads. In
the balanced workload, each shard receives a similar number
of local requests. In the skewed workload, each client process
sends about 50% of its commands to only one shard (except for
the experiments with 2 shards where one shard received 80%),
and the remaining commands are equally distributed across the
remaining shards. We carried out experiments with different
command execution costs, ranging from light, moderate to
heavy costs (i.e., lists with 1K, 10K and 100K elements,
respectively).

We represent different workloads with notation α-β-γ,
where α is the percentage of local writes (i.e., writes in a single
shard); β is the percentage of global operations (i.e., operations
involving all shards); and γ is the percentage of global writes
in the global operations. For example, workload 25-5-25 has
25% of local writes and 5% of global operations, where 25%
of the global operations are global writes. Each experiment
lasts 4 minutes, where results for the first minute are discarded
(system warm-up). In the remaining three minutes, we collect
data to compute average and standard deviation values for the
metrics described in Section V-C.

E. Results

We start by presenting the results during a single execution
with 2 shards, balanced workload 1-1-1 and light operation
costs to observe how these metrics evolve during the time. Due
to high amount of data collected in a run, and to understand
how we thereafter consolidate the data, we first present only
10 seconds of a single execution in Figure 2 (left), where we
can see thread behavior with respect to each metric and the
system throughput.

In this specific interval, we can observe that in the first
3 seconds there is low rate of synchronization idleness, due
to high incidence of concurrent commands. This is also the
reason why there is queue idleness, and low amount of
commands in the queues. Since there are few commands in
the queues, threads are more prone to wait for new commands.
It incurs that system throughput is higher than in the next 7
seconds, when more sequential commands arrive, causing the
threads to spend more time in the synchronization barriers,
increasing the quantity of commands in the queues, decreasing

the queue idleness (i.e., threads do not need to wait due
to command availability in the queues), and decreasing the
system throughput.

Based on these data, each metric was aggregated per second
of execution, and we present the results of an entire experiment
execution in Figure 2 (right).

Synchronization idleness (Figure 2(b)): Each thread spends
different amounts of time waiting for synchronization in the
barriers. In this case of balanced workload 1-1-1 with light
operation costs, threads t0 and t3 are the most idle. This
behavior reflects the class-to-threads mapping (Table I), where
both threads are associated with larger number of classes.
Notice that thread t3 is the most idle because it never executes
synchronized commands. This happens because t3 has the
highest thread id (line 8 of Algorithm 2).

Queue idleness (Figure 2(d)): Queue idleness is inversely
proportional to synchronization idleness. Threads t1 and t2
now are the most idle, due to faster execution of commands.
This happens because both threads receive fewer commands,
and more often need to get more commands from the sched-
uler. Thus, they are more prone to find their queue empty,
resulting in waiting. Threads t0 and t3, however, do not need
to wait since they spend much time in the barriers, waiting
for sequential executions, causing their queues to always have
new commands to execute.

Queue size (Figure 2(f)): We can see how idleness of threads
impacts their accumulated work. As threads t0 and t3 are more
often idle waiting for synchronization, the size of their queues
keeps increasing during the execution, while queue sizes of
threads t1 and t2 are lower and more constant.

Figure 3 presents the consolidated results for a system with
2 shards, considering different workloads composed of light
operations. We vary both percentage of conflicts and request
distribution among the shards.

Synchronization idleness (Figure 3(a)): We can observe in
this experiment that idleness increases together with conflict
percentage. Moreover, according with the classes to threads
mappings (Table I), thread t0 continued to be less idle than
others (lowest thread id is always responsible for executing
commands) and t3 is the most idle in majority of workloads.
However, for workloads with high degree of conflicts (25-5-
25 and 75-10-75), t0 executes most of commands while the
others remain almost all time only waiting for synchroniza-
tions. Notice that for workload 0-0-0 (only reads, which are
concurrent commands) there is no synchronization idleness.

Queue idleness (Figure 3(b)): In general, the amount of
queue idleness decrease with more conflicting workloads due
to increasing synchronization idleness. While the percentage of
conflicts in a workload gets higher, all threads spend more time
in the synchronization barriers and, consequently, more time
are available to them receive new commands in their queues,
decreasing the time needed to wait for new commands.

Queue size (Figure 3(c)): This experiment shows that the
difference between queue sizes among threads in the same
workload increases in some cases, especially in cases with
intermediary levels of conflict in the workload. This happens
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Fig. 3: Results for 2 shards (4 threads), with balanced workloads (top) and skewed workloads (bottom).

again because of the static classes to threads mappings. Notice
the particular case of threads t1 and t2, which are associated
with less amount of request classes and have, in average, less
commands in their queues than the other two threads.

Skewed workloads: Figures 3(d), 3(e) and 3(f) present the
results for same conflict percentages and shards/threads config-
urations but for skewed workloads, where most of commands
are addressed to shard 1. This experiment shows that average
thread idleness continues in high levels for most cases. It
is however important to note the increasing on queue sizes
variation and differences for most cases, where threads t0
and t2 accumulate more commands in their queues since they
belong to the overloaded partition.

We can also observe high levels of standard deviation
in some of the analyzed workloads. This happens because,
depending on the demand from clients, in some measurement
intervals the threads execute more sequential than concurrent
commands, and vice-versa. Moreover, the synchronizations
demanded to execute a sequential command is not needed
for concurrent ones. This unbalance between sequential and
concurrent commands execution leads to high variance.

Impact of the number of shards in the system: Figures 4
and 5 present the results for a system configured with 4
and 8 shards, respectively, considering balanced and skewed
workloads where shard 1 received more requests. For better
presentation, we exclude workloads 75-0-0 and 75-10-75 since
they are the ones with most conflicting requests and always
presented the same behavior with high levels of idleness.

In general, synchronization idleness again presented high
levels for most workloads, and queue idleness increases for
skewed workloads (mainly for the scenario with 4 shards and
8 threads presented in Figure 4(d)). It is also important to note
that queue sizes suffers with more variation and differences
in quantity among threads in the skewed workloads scenario.
This behavior can be observed in Figure 5(f) where threads

t0 and t1, associated to shard 1 (Table III), receive more
commands than all other threads and, consequently, their
queues contain more requests to execute.

In this specific scenario with 8 shards and skewed workloads
(Figure 5, right), we can observe how the static mappings
of classes to threads affect performance. In these scenarios,
thread t1 almost always have a larger amount of accumulated
commands waiting for execution in their queues (Figure 5(f))
but, at the same time and for most of the workloads considered,
t1 together with almost all threads also present high leves of
idleness (Figure 5(b)).

Based on these results we can observe that a better distri-
bution of work among the threads has a potential to improve
system performance. For example, threads in idle states can
receive commands originally designated, by the static map-
ping, to other overloaded threads. The main challenge is that
this redistribution must respect all the conflict dependencies.

Impact of different execution costs (Figure 6): The final
set of experiments studies how operation costs affect threads
behavior, considering a system with 4 shards and 8 threads. We
aggregated metrics averages of all threads, then we could range
operation cost for all considered workloads. Operation costs
affect threads idleness since they spend more time executing
heavier commands and, consequently, are less prone to become
idle. Light operations incur in faster command execution,
thus allowing threads to have more sequential commands to
execute, increasing the amount of barrier synchronization.

Figure 6(a) shows that thread synchronization idleness de-
creases slightly with higher operation costs. Skewed workloads
present the same behavior (Figure 6(d)). For queue idleness,
we can observe the same phenomenon both in balanced (Fig-
ure 6(b)) and skewed (Figure 6(e)) workloads scenario. Finally,
the queue size is smaller for higher operation costs. This
happens because servers need more time to process requests
and send replies to clients. Consequently, clients remain most
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Fig. 4: Results for 4 shards (8 threads), with balanced workloads (left) and skewed workloads (right).

of time blocked waiting for replies and few requests are issued
in the system

VI. CONCLUSION

Although early scheduling improves performance of P-
SMR, it restricts concurrency, resulting in thread idleness and
unbalanced load among threads. We quantify these phenomena
for many different configurations and discuss their reason
in the paper. The study identifies novel directions in which
early scheduler can be further improved. In particular, a
better distribution of work among idle threads could translate
into increased performance, something that we are currently
investigating.
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Fig. 5: Results for 8 shards (16 threads), with balanced workloads (left) and skewed workloads (right).
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Fig. 6: Results for 4 shards (8 threads), different operation costs, with balanced workloads (top) and skewed workloads (bottom).

All about Eve: execute-verify replication for multi-core servers. In
Symposium on Operating Systems Design and Implementation, 2012.

[19] R. Kotla and M. Dahlin. High throughput byzantine fault tolerance. In
IEEE/IFIP Int. Conference on Dependable Systems and Networks, 2004.

[20] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[21] L. H. Le, C. E. Bezerra, and F. Pedone. Dynamic scalable state machine
replication. In IEEE/IFIP International Conference on Dependable
Systems and Networks, 2016.

[22] J. Leung, L. Kelly, and J. H. Anderson. Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. CRC Press, Inc., Boca
Raton, FL, USA, 2004.

[23] P. J. Marandi, C. E. Bezerra, and F. Pedone. Rethinking state machine
replication for parallelism. In ICDCS, 2014.

[24] P. J. Marandi and F. Pedone. Optimistic parallel state-machine replica-
tion. In IEEE Int. Symposium on Reliable Distributed Systems, 2014.

[25] O. M. Mendizabal, R. T. S. Moura, F. L. Dotti, and F. Pedone. Efficient
and deterministic scheduling for parallel state machine replication. In
IPDPS, 2017.

[26] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient determin-
istic multithreading in software. ACM Sigplan Notices, 44(3):97–108,
2009.

[27] N. Santos and A. Schiper. Achieving high-throughput state machine
replication in multi-core systems. In ICDCS, 2013.

[28] F. B. Schneider. Implementing fault-tolerant service using the state
machine aproach: A tutorial. ACM Computing Surveys, 22(4):299–319,
Dec. 1990.


