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Abstract—This paper explores methodologies, advantages and
challenges related to the use of the Information Centric Network
technology for developing NoSQL distributed databases, which
are expected to play a central role in the forthcoming IoT
and BigData era. ICN services make possible to simplify the
development of the database software, improve performance, and
provide data-level access control. We use our findings for devising
a NoSQL spatio-temporal database, named OpenGeoBase, and
evaluate its performance with a real data set related to Intelligent
Transport System applications.

I. INTRODUCTION

In the forthcoming era of IoT and Big Data, NoSQL
database technologies are expected to play a central role for the
information management, due to their ability to support large
volumes of read-write operations and to be easily distributed
on different servers. NoSQL databases store generic objects
such as JSON ones. Each object contains all related data,
strongly simplifying the operations to achieve data consistency
in distributed environment.

When load increases, the resources of a NoSQL database
can be scaled “horizontally” by adding new servers, thus
forming a database cluster that is exposed to client applications
as a single entity. Clients interact with one or more front-end
servers, which in turn contact back-end servers that satisfy
front-end requests exploiting local storage spaces. Typical
procedures carried out by front-end servers are routing of
NoSQL operations (queries, insertions, deletions) toward back-
end servers, access control, aggregation and post processing
of results. The overall architecture can include other kind of
servers to perform specific tasks, such as system configuration,
security operations, global indexing etc.

Usually, the communications between front-end and back-
end servers are handled by a TCP/IP network, which sets
up connections between these entities to push or pull data.
However, we argue that the emerging Information Centric
Networks (ICNs) [1]] can be effectively applied for these
communications. An ICN is based on a new network layer,
designed to provide users with named objects, rather than end-
to-end connections. A named object is a bundle of data, with
a limited size of few kB, uniquely identified by a hierarchical
name. To some extent, the ICN services resemble those of
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a Content Delivery Network, but with a finer, packet-level,
granularity.

An ICN provides: a secure name-based Application Pro-
gramming Interface (API), for requesting objects rather than
connections; routing-by-name, for forwarding requests towards
data sources on the base of what (object name) is requested
rather than where the request should go (destination IP ad-
dress); in-network caching, for moving popular objects on the
network edge thus reducing response time and server load;
multicasting, for reducing network traffic and server load in
case of concurrent data requests; data-centric security, for
trusting the data independently from where it came from.

In our opinion, such ICN characteristics could be effectively
adopted in distributed NoSQL databases to simplify software
development, by exploiting the name-based API and routing-
by-name, improve performance, by taking advantage of in-
network caching and multicasting, provide data-level access
control, by using data-centric security. Therefore, the contri-
butions of this paper are:

« a methodology for developing NoSQL distributed data-
bases over Information Centric Networks;

« the practical application of the methodology for devising
OpenGeoBase (OGB), a distributed spatial ICN/NoSQL
database [2]], now extended of temporal features;

e a new OGB performance evaluation.

To the best of our knowledge this is the first paper that
propose to use ICN services for distributed NoSQL databases.
In our previous work [2], we have described the use of
ICN only for the specific case of a NoSQL spatial database.
In this paper we generalize the discussion, by proposing a
methodology valid for generic NoSQL databases.

II. RELATED WORKS

In what follows we provide the reader with minimal back-
ground on ICN and NoSQL databases.

Information Centric Networks

An ICN is formed by nodes that can be logically classified
as consumers, producers and routers. Consumers pull named
objects provided by producers, possibly going through inter-
mediate routers. Any node uses the forwarding engine shown
in fig. [1] and is connected to other nodes through channels,
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Fig. 1. ICN forwarding engine model and packets

called faces, which can be based on different transport tech-
nologies such as Ethernet, TCP/IP sockets, etc..

Data units exchanged in an ICN are called Interest and Data
packets. To download a named object, a consumer issues an
Interest packet that includes the object name (e.g. *d/ptr71z’)
and that is forwarded upstream towards the producer. The
forwarding process is a routing-by-name, i.e. a name-based
prefix matching based on a Forwarding Information Base (FIB)
containing name prefixes, such as ’d’” and "a’ in case of fig[l]
The FIB may be configured by routing protocols, where nodes
advertise name prefixes rather than IP networks [3]]. During the
Interest forwarding, the engine temporary keeps track of the
forwarded Interest in a Pending Information Table (PIT), by
storing the name of the requested object and the identifiers of
the downstream faces from which the Interest comes from.

When an Interest reaches a node (producer or intermediate
router) having the requested named object, the node sends
back the object within a Data packet, whose header includes
the object name. The Data packet is forwarded downstream to
the consumer by consuming the information previously left in
the PITs, as bread crumbs.

The forwarding engine caches (in-network) forwarded Data
packets in a local store and immediately replies to Interest for
cached Data. The data freshness is loosely controlled by an
expiry approach. Any Data packet includes a freshness period
metadata, chosen by the user, which indicates how long the
engine should wait after the arrival of the Data before marking
it as stale.

The forwarding engine also supports multicast distribution.
In case of concurrent Interests for a same object, the engine
forwards only the first one, stores in the PIT the identifier of
all arrival downstream faces and, when receives back the Data
packet, relays a copy of it towards each downstream face.

ICN is built on the notion of data-centric security, for which
the content itself is made secure rather than the connections
over which it travels. ICN security framework provides each
user with a private key and a ICN digital certificate, signed by
a trust anchor, and uniquely identified by a name called key-
locator [4]). Each Data packet is digitally signed by the content
owner and includes the key-locator of the digital certificate to
be used for signature verification. For access control purposes,

Back-end
Servers

Front-end

Application
Server

Internet (thin dieny OF
Local Interface (fat client)

Query, Insert
Delete, Update

ICN Back-end
Network

Fig. 2. NoSQL/ICN distributed database architecture

Interest packets can be signed too.

Currently, different ICN implementation exists, the mostly
used are NDN [5] and CCNx [6] .

NoSQL databases

Database management systems (DBMS) may be based
either on a relational model, or on a non-relational model
also referred as NoSQL. For large information sets NoSQL
databases are more and more replacing relational ones, since
they can be easily distributed over different servers, and this
feature fit well with cloud environments where databases are
usually deployed. MongoDB, Cassandra, DocumentDB, etc.
are popular NoSQL databases.

Many NoSQL databases are based on an aggregate-oriented
data model. An aggregate is an object containing a set of
information (a document, a row of related data, etc.), with
an unique object identifier (oid) and seen as a self-consistent
unit for DB operations, thus simplifying data distributions. The
storage space of a database is logically organized in data sets,
i.e. group of related objects such as a MongoDB/DocumentDB
collection, or a Cassandra columns-family. Furthermore, the
storage space can be physically distributed over different
servers (sharding).

Temporal and spatial database functionality are usually
integrated as extension/plug-in of a general purpose DBMS,
which implement indexing procedures, such as R-Tree or
Grid [7]], and spatial/temporal query schemes, such as range
queries, proximity queries, etc. However, although there ex-
ist numerous databases with spatial or temporal extensions
(InfluxDB, Riak TS), databases including both extensions are
rather limited, even though they are deemed to be very useful
since often time and space exists together.

ITII. ICN/NOSQL DISTRIBUTED DATABASES

Figure [2] depicts the architecture of the proposed
ICN/NoSQL database. It is formed by a cluster of servers
working on top of an ICN layer rather than a TCP/IP one.
The front-end servers are ICN consumers, and the back-end
servers are ICN producers. Applications interact with front-end
servers that exposes a typical NoSQL interface for querying,
inserting and deleting objects. A front-end server could be co-
located with the application (fat client solution) or running on
a remote Internet device (thin client solution).
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Figure [3| shows the functional decomposition of the pro-
posed architecture: front-end servers offer an Application Pro-
gramming Interface (API) and an internal engine that satisfies
client requests by using the ICN based procedures, hereafter
described. The back-end servers are composed by an ICN
interface that deals with ICN packets received-from or going-
to the front-end servers, and by a local database engine that
handles the local storage space.

A. Data model

We readily observe that the NoSQL aggregate-oriented
model perfectly fits the ICN paradigm simply considering an
aggregate as an ICN named object, whose name is the object
identifier (oid). Database objects can be requested by oid using
Interest packets and received within Data packets. We dubbed
these packets as olnterest and oData, for distinguishing them
from other Interest/Data packets used for different purposes.

B. Data sharding

Sharding is a method for distributing objects across multiple
back-end servers. It uses an object attribute (sharding key) and
a sharding logic to map the object onto a sharding domain,
which is partitioned in subsets called shards. Each back-end
server is configured for storing the objects belonging to one
or more shards.

For instance, in fig. 4| we consider a simple address book
application in which the sharding domain is the set of possible
surnames and each shard contains all the surnames starting
with a given letter. The shards ’a’ and ’b’ are assigned to
server 1, the shard ¢’ to server 2, and so forth. The sharding
key is the surname and the sharding logic simply extracts the
first surname letter to identify the related shard.

To ensure optimal performance and scalability the sharding
strategy have to be selected in a way that is appropriate for the
types of queries the application performs. When the sharding
strategy is carefully designed, most of the queries can be sent
only to those back-end servers that actually have the interested
data (query routing), optimizing system load. Otherwise, the
queries should be distributed to all the back-end servers (query
flooding). For instance, the sharding strategy used in fig. [
allows query routing in case of queries finding by surname.
For other queries, flooding is necessary.

To support data sharding, the NoSQL/ICN database identi-
fies each shard with a unique name, called shard identifier. On
the ICN routing plane, back-end servers advertise their shard
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Fig. 4. Data sharding and insert

identifiers as ICN name prefixes. Thus, ICN nodes can route-
by-name Interest packets having the shard identifier as first
name component towards the proper back-end server.

For instance, in fig. {] the shard identifiers are a’, ’b’, ’c’,
’d’, etc.. Server 1 advertises the name prefixes ’a’ and ’'b’,
Sever 2 advertises the prefix ’c’, and so forth.

C. Insert operation

From the top down, fig. describes the object insert
procedure of the NoSQL/ICN database. When a user inserts
an object, a sharding logic computes the associated shard
identifier on the base of the sharding key. In figure [] the
sharding key is the surname ’Detti’ and the computed shard
identifier is °d’.

A naming function composes the object identifier as an ICN
name, called oName, by combining the shard identifier (sid),
the data set identifier (did), the unique user identifier (u#id) and
an unique application dependent suffix (e.g. a random string),
as follows

oName = {sid}/{did}/{uid}/{app suffix}

In figure [Z_f] the sid is ’d’, the did is ab’ (Address Book), the
uid is ’ul’, and the application suffix is ’ptr71z’.

Afterwards, a packaging function encodes the object as
an oData packet and, finally, a Push procedure exploits ICN
routing-by-name to deliver the oData packet to the responsible
back-end server, which stores it in its local database. We
observe that ICN natively provides pull services but not push
ones; however in the literature there are different approaches
for pushing data [8] [9], including our one in [2]].

For some applications it may happens that an object “inter-
sects” more than one shard. For instance, in the address book
application example, if a contact has as two surnames, e.g.
Blefari Melazzi, such an object belongs to two shards, b’ and
'm’. We deal with a multiple shard object by packaging it in
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many oData packets, one for each shard, whose oNames differ
for the shard identifier. We identify one of them as master
object, and the others as reference objects. The reference
objects contain the name of the master object, i.e. a references.

D. Query operation

A query is a request for database objects satisfying specific
conditions. A query is solved by the front-end server as
shown in fig. 5] A sharding logic parses query parameters
and computes the involved shards. For each shard, a naming
function computes a name, called gName, which is composed
by the shard identifier (sid), the data set identifier (did) and
query conditions, e.g. surname="Detti”.

gName = {sid}/{did}/{query conditions}

For each qName an Interest, called glnterests, is sent out and
it is routed-by-name by the ICN toward the appropriate back-
end server. The receiving back-end server parses the gName
to extract the query conditions, and then carries out a local
query using the local database engine. The local query returns
only the names (oNames) of the master objects that match the
query conditions. The name list is packaged in a Data packet,
called gData, which is sent back to satisfy the glnterest.

When all gData packets are received, the front-end server
has a whole list oNames, which are then pulled through an
olnterest-oData packet exchange. In so doing, we are actually
solving a query in two pull phases and this may sound as a
temporal inefficiency. Anyway, we chose this approach both to
transport only one time objects that intersect more shards, and
to exploit the ICN in-network caching, as hereafter discussed.

E. Caching

Even though caching can dramatically accelerate query
processing, its usage should be carefully designed in database
applications, where it is likely not acceptable to send back stale
data. For this reason we used two different caching strategies
for gData and oData.

We observe that while the name of a gData remains
unchanged, its content may change over time due to ob-
ject insertions or removals. Indeed, the name embeds query
conditions and the content contains the query result. As a
consequence, we do not cache qData packets within the ICN
forwarders (fig. [T), since they use an expiry based freshness
control and therefore stale data can be sent back. However, we
deploy an application-layer qData cache within the back-end
server, whose elements are immediately cleaned when object
insertions or removals make them stale (fig. [3).

To increase the effectiveness of qData cache, the front-end
server decomposes a complex query in a set of smaller sub-
queries that may be requested more frequently than the com-
plex one (fig. [5). For instance, a query for * surname="Detti”
OR surname="Blefari” * can be restructured as sub-query for
surname="Detti” and a sub-query for surname="Blefari”.

For what concern the caching of oData packets, the cache
inside the ICN forwarding engine can be safely used since their
content never change. Moreover, when an object is removed,
its oName will no more be included in any gData, thus
the removed oData will be never fetched during the query
procedure even if cached.

F. Delete operation

To delete an object it is necessary to remove the master
object and, in case, all its reference objects. The removal of
an object is carried out issuing a command Interest, called
diInterest, that includes the oName of the object to remove
followed by the ”/DELETE” command string. A Data message
called dData containing the operation result is sent back.

G. Security

The ICN/NoSQL database exploits data-centric security to
achieve data-level access control and data-level security. The
main idea is to encode the user access rights within the name
(kIName) of its certificate, i.e. its key-locator. Namely,

klName = CERT/{did}/{uid}/{permission[rw,r]}

The data-level access control scheme provides that a user
(uid) having a certificate for a given data set (did) is allowed
to read (r) all the objects of such data set. Moreover, if the
user has the writing permission (rw), she can also insert and
remove objects in the data set. The ICN implementation of
these policies requires to sign every Interest and Data packet
sent by the front-end server and to verify the signature at
the back-end side. Furthermore, a comparison between other
identifiers is required as reported in table [I|

With regard to data security, the front-end server control the
data integrity by verifying signature of Data packets.

IV. OPENGEOBASE
A. Description

OpenGeoBase (OGB) is a distributed NoSQL spatial
database, whose current release provides also some temporal
features. Users can store spatial objects, structured as Geol-
SON Feature objects [10]. In addition, each object could have
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a temporal extent, specifying the time period during which the
information reported in the object is valid.

For instance, the following GeoJSON could be used by
a city traffic monitoring application, where mobile sensors
periodically insert information regarding sensor name and
speed, GPS Ing/lat, and measurement valid period in Unix
epoc time.

{"type": "Feature",

"geometry": {"type" : "Point", "coordinates":
[12.51133, 41.89191},
"properties": {"sensor-name":
"23 km/h" },
"temporalExtent": {"validTime":

[24807931

"sensorl",
"speed"

{"type" :"interval", "value":
248079311}}

OGB users can carry out either inclusion or intersect
spatial range queries for obtaining all the GeoJSON objects
completely (inclusion) or partially (intersect) contained in the
range area, i.e. a 2D bounding box. Moreover, range queries
could be time bounded, i.e. limited only to objects valid in a
given time interval.

The sharing strategy of OGB considers the physical space
as the sharding domain. The domain is partitioned in shards
that are squared geographical zones, aligned with the Ing/lat
GPS grid, and whose side is 1 degree long. The shard identifier
(sid) has the form 1ng/lat, where Ing/lat is the south-west
coordinate of the zone.

To optimize gData caching, a query decomposition strategy
(fig. B) tessellates the query area with a limited number of
covering tiles (e.g. 40), where tiles can have a side length of
1 or 0.1 or 0.01 degrees. Furthermore, in case of a spatio-
temporal query there is an additional decomposition that
divides the requested time interval in a limited number of
covering periods (up to 5), whose size may be 1, 10, 100,1000
or 10000 minutes. For each couple tile/period a sub-query is
carried out, and then returning GeoJSON objects are collected
and sent back to the application.

OGB is implemented using a thin client approach (fig.
2); the front-end server logic runs within a Spring STS
Application Server; the ICN is based on NDN software [3l;
the back-end server is a modified version of ndn-repo, which
uses SQLite3 as local database engine.

B. Performance evaluation

We carried out a performance evaluation using two Euro-
pean real data sets, related to Intelligent Transport System
(ITS) applications [11]. The first data set, named "GTFS”,
contains information regarding European public transports

such as: stop coordinates, schedules, time-tables, etc. This
information has been derived by downloading a thousand
of public GTFS files from Internet. For each GTFS file,
we inserted a GeoJSON multipoint object, without temporal
extension, where each point is associated to a stop. Several
stored objects are composed by thousands of points (e.g. all
train stops of a country) and their size may even reach the
MByte order.

The second data set, named "Rome bus”, is spatio-temporal
and contains the positions of 2870 buses in Rome, sampled
with a step of 5 minutes during a single day. Each bus mea-
surement is stored as a GeoJSON point object, and includes
bus detail, position and sample time.

The considered cluster architecture is formed by a set of
front-end (FE) servers, a set of back-end (BE) servers, and
a benchmark application that uniformly distributes queries
and insertions among available FE servers. These software
components run on different virtual machines, connected each
other by a Linux bridge.

Fig. reports the maximum range query rate for the
GTFS data set versus the range query area, for different cluster
configurations, i.e. number of FE and BE servers. Maximum
rate is the highest rate for which the time needed to solve
a query (query delay) has a stable behavior versus time, as
shown in fig. It has been measured by loading the system
with a sequence of range queries, randomly located in Europe,
and whose inter-arrival time follows a Poisson distribution.

The cluster with the greatest resources, 3 FE and 2 BE
servers, supports the highest rate, thus confirming the database
capability to horizontally scale. Performance improves both in-
creasing the number of BE servers, thanks to data sharding and
query routing, and increasing the number of FE servers, thanks
to load balancing. The maximum rate decreases increasing the
range query area, since queries require more processing and
data transfer.

Fig. shows the average query delay versus the area
size, in case of an unloaded system. Unloading conditions are
reproduced submitting range queries with a rate equal to the
half of the maximum one. There is no practical difference
among the cluster deployments since increasing resources, i.e.
FE or BE servers, is only needed in overloading conditions.
We point out that the maximum rates reported in fig. [6(b)] are
much greater than the inverse of query delays reported in
However, this result is not surprising since it is a consequence
of our multi-threads implementation of the FE server, whereby
client requests can be served in parallel.

Fig. [6(d)] reports the average query delay versus the query
rate in case of range queries of 10° km?. From the comparison
between 3FE-1BE and 1FE-2BE we infer that for OGB it is
more effective to increase the number of FEs than the number
of BEs. In facts, the processing load of a FE server is greater
than the one of a BE server. It is worth to note that delays of
1FE-2BE deployment rapidly grows up since we are reaching
its maximum sustainable rate.

Fig. shows the maximum query rate in case of spa-
tio/temporal queries carried out on the Rome bus data set.
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Fig. 6. Performance evaluation results

We consider range queries whose spatial extension is 1 km?,
randomly located in Rome, and requesting objects that are
valid in a given period. Being Rome fully contained in a
single shard (12 lat, 42 Ing), we used a single back-end server
and only changed the number of front-end servers. Also in
this case having more resources makes it possible to sustain a
greater rate. Increasing the query temporal extent, query rate
decreases since more objects are sent back, and also the front-
end decomposition processing is higher.

Fig. [6(f)] reports the maximum insert rate measured by
storing spatio/temporal objects with point geometry. Also
for insertions, performance improves scaling out the cluster
resources. We remark that differently from traditional spa-
tio/temporal databases, in our case each query or insertion
requires a digital signature verification and/or computation that
adds few milliseconds of processing delay but provides data-
level access control feature. To give an idea of the security
impact, in fig. [6(f)] we also reported a case in which inserted
objects are unsigned.

V. CONCLUSIONS

We exploited ICN technology to develop NoSQL distributed
databases. The results obtained from a practical implementa-
tion, with real data sets, have shown the ability of ICN/NoSQL
databases to effectively support horizontal scalability, caching,
data sharding and data level access control.
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