
HAL Id: hal-01666439
https://inria.hal.science/hal-01666439

Submitted on 18 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Impact of Indirect WAN Routing on
Geo-Replicated Storage

Raziel Carvajal Gomez, Eduard Luchian, Iustin-Alexandru Ivanciu, Adrian
Taut, Virgil Dobrota, Etienne Rivière

To cite this version:
Raziel Carvajal Gomez, Eduard Luchian, Iustin-Alexandru Ivanciu, Adrian Taut, Virgil Dobrota,
et al.. On the Impact of Indirect WAN Routing on Geo-Replicated Storage. IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN), 2017, Jun 2017, Osaka, Japan.
�10.1109/LANMAN.2017.7972171�. �hal-01666439�

https://inria.hal.science/hal-01666439
https://hal.archives-ouvertes.fr


On the Impact of Indirect WAN Routing on Geo-Replicated Storage

Raziel Carvajal Gómez∗, Eduard Luchian†, Iustin-Alexandru Ivanciu†,
Adrian Taut†, Virgil Dobrota† and Etienne Rivière∗

∗University of Neuchâtel, Switzerland and †TU Cluj-Napoca, Romania

Abstract—Micro-clouds infrastructures allow supporting appli-
cations on local and energy-efficient resources. Communication
between micro-clouds takes place on shared and non-dedicated
Internet links. Network control and optimization can only
happen at the edge. For availability and persistence, the storage
of application data must be geo-replicated. Maintaining strong
data consistency under concurrent accesses requires delay-
sensitive coherence protocols, linking the performance of the
storage to that of the network linking micro-clouds. We evalu-
ate if the use of network control at the edge of a European-wide
multi-site testbed, together with appropriate network monitor-
ing, can allow improving the performance of ZooKeeper, a
strongly-consistent replicated store. Our approach leverages
the indirect routing of coherence protocol traffic in the presence
of network triangle equality violations. We analyze the impact
on storage of variations in WAN performance, and show how
the use of traffic redirection can help reducing it.
Keywords: Indirect routing; Geo-replicated storage; Cloud
storage; Performance; Evaluation.

1. Introduction
Micro-clouds. We observe a shift from monolithic to multi-
site cloud infrastructures. On the one hand, major cloud
players and Internet companies operate collections of few,
but large data centers, spread geographically and serving
a worldwide users population. These data centers are typi-
cally linked through high-performance, dedicated wide-area
networks (WAN) [1]. On the other hand, alternative cloud
providers are deploying infrastructures formed of larger
numbers of modestly-sized data centers, termed as micro-
clouds [2]. This shift to micro-clouds is often motivated by
energy efficiency considerations. It is possible for instance
to deploy micro-clouds close to sources of renewable energy.
A second important rationale for the use of micro-clouds is
access locality. Users can interact with close-by micro-clouds,
resulting in better responsiveness in interactive applications.
Network performance. In contrast with the dedicated net-
work infrastructure used by large companies for interconnect-
ing their data centers, micro-clouds deployments typically
use regular Internet connections that are not owned by the
cloud provider itself. The control by the cloud provider over
the network is limited to the links at its edge. Network
performance metrics between micro-clouds, such as delays

978-1-5386-0728-2/17/$31.00 c©2017 IEEE

and available transfer rates, are influenced by factors such as
extraneous Internet traffic or BGP routing decisions. None
of these factors is under the control of the cloud provider.

The performance experienced by users of cloud applica-
tions is not only influenced by the quality of their connection
to a local micro-cloud, but also to a large extent by the
performance of the network between application components
lying on different micro-clouds. In some cases, due to load
variations inside the network core, the standard direct routing
between two micro-clouds may not be the best possible
choice. There are in particular examples of network triangle
inequalities [3], where the performance of a link between two
micro-clouds A → B is lower than that of the combination
of two links A→ C and C→ B, C being a third micro-cloud
used as a proxy for indirect routing [4].

Cloud storage. Efficient storage is a key enabler for modern
cloud applications, driving performance, scalability, and
availability in the presence of failures. The need for high
horizontal scalability led to the advent of non-relational
storage, or NoSQL. Representative of such systems are
key/value (e.g., Apache Cassandra & Infinispan) and doc-
ument stores (e.g., MongoDB) used to manage application
data, or coordination kernels such as Apache ZooKeeper [5]
used for synchronization and metadata management. NoSQL
storage systems use replication to ensure data persistence and
availability. Data is copied to several servers, or replicas. The
failure of one server does not result in data loss. Replication
requires however that the different copies of a data item be
kept synchronized under concurrent accesses. A coherence
protocol implements this synchronization, which requires
network exchanges between replicas to agree on the order
in which updates should be visible to applications, and to
propagate new values.

Geo-replication. Replication in a micro-clouds environment
requires considering that due to the lack of redundancy in
hardware and networking, an entire micro-cloud can fail
and not only a single server. As a result, preventing the
loss of data or the unavailability of applications requires
hosting replicas on servers that are located at different sites,
leading to geo-replication. Replicating data on several sites
has the added advantage of allowing access from users
to the closest copy. Geo-replication requires however that
the coherence protocol exchanges synchronization messages
between sites, subject to WAN latencies. Typically, several
rounds of such WAN communications are required before

hhttp://cassandra.apache.org
http://infinispan.org
https://www.mongodb.com
http://zookeeper.apache.org


being able to return the call from the application, leading
to cumulatively high latencies. It is therefore of critical
importance to maintain the performance of the underlying
network as good as possible, and limit the impact of geo-
replication on the performance of applications.
Motivation. We are interested in evaluating the potential
for dynamic network optimization at the edge of a multi-
site environment hosting several micro-clouds. Our target is
strongly-consistent geo-replicated NoSQL storage. We wish
to answer the following three research questions:

. What is the impact of WAN routing between micro-
clouds on the performance of geo-replicated storage?

. Can network performance indicators at the edge of the
network allow driving network optimizations decisions
and in particular the use of indirect routing?

. Can we dynamically optimize multi-site routing and
what is the impact on storage performance?

Contributions. Our research methodology and contributions
are as follows. We present the deployment and setup of a
four-site testbed across four countries in Europe. Each site
is equipped with network function virtualization (NFV), in
the form of an edge server supporting an Open vSwitch
router [6]. The use of tunneling for application flows, along
with the orchestration of edge routers by a common software-
defined networking (SDN) controller for all four sites, allows
supporting the dynamic and transparent use of indirect
routing in the testbed. We present the addition of network
monitoring capabilities at the edge using active probing.
In particular, we report on an implementation of a cyclic-
path active delay measurement technique adapted to a multi-
site context. Our study considers a representative strongly-
consistent NoSQL storage system, Apache ZooKeeper [5],
typically used for application metadata and for coordination
purposes. Based on measurements collected in real-time
on the platform and under varying network load, we drive
the network optimization by switching between direct and
indirect routes, and analyze the impact on performance.1

Our results show that network triangle inequalities can
be observed in our testbed, and that they negatively affect
storage performance, with the coherence protocol playing
a key role in this degradation. Applying indirect routing
rules dynamically allow mitigating to a large extent the
effect of network triangle inequalities while incurring a
minimal impact for the transition. Our results are encouraging
and motivate the use of network adaptation in multi-site
environments where control resides only at the edge.
Outline. The remainder of this paper is organized as follows.
We start by discussing related work in Section 2. We
further detail the network requirements of a geo-replicated
ZooKeeper in Section 3. We present our four-node testbed,
networking and monitoring in Section 4. We present and
discuss our evaluation results in Section 5 and conclude in
Section 6.

1. We leave the addition of automated and software-defined adaptation
based on network performance indicators to future work. We concentrate
on establishing whether such an adaptation is feasible, and beneficial for
geo-replicated storage running in multi-micro-cloud environments.

2. Related Work
Previous work emphasized the interest of using indirect

routing in various scenarios. Opos et al. [4] show that indirect
routing can increase network throughput for at least 30% of
a sample of nodes from the PlanetLab testbed. Andersen et
al. [7] confirm the assumption that indirect paths between
Internet hosts can lead to better resilience when errors on
these paths take place at uncorrelated points in time. Wang
et al. [8] further confirm the existence of network triangle
inequality violations and suggest that distributed systems be
aware of this fact, as we intend to achieve.

Monitoring network performance from the edge requires
specific solutions. Throughput is typically monitored using
a combination of active probing and Kalman filtering [9].
One-way delays are also estimated based on active probing,
as we discuss in Section 4.

Network function virtualization and SDN [10] are used to
optimize the network layer based on application requirements.
Mohammadkhan et al. [11] present a solution to the problem
of network function placement in a data center network. This
approach is linked to the convergence of SDN and NFV as
discussed by Wood et al. [12].

Storage performance optimization in a multi-site envi-
ronment involves several aspects beyond networking. Con-
sidering the impact of failures, Frezewd et al. [13] analyze
the placement of replicas on micro-clouds with a focus on
recovery time, while Narayanan et al. [14] formalize the
optimal capacity allocation for sustained performance under
such recoveries. Volley [15] considers the more general prob-
lem of service placement in geo-distributed cloud services.
Yi et al. [16] study alternative coherence mechanisms for
edge clouds. Other approaches [17], [18] reconfigure the
geo-replication itself, either by moving replicas or changing
the consistency level dynamically. These optimizations are
complementary to the ones we develop in this paper.

3. Geo-Replicated Cloud Storage
We start by providing an overview of the coherence

protocols used for strongly-consistent geo-replication in
Apache ZooKeeper [5]. Our goal is to understand how WAN
communication patterns between sites can affect the delay
for read and write operations for the clients.

ZooKeeper is a coordination kernel, storing key/value
pairs named znodes and organized in a hierarchy. Reading
and writing znodes allows implementing a variety of syn-
chronization patterns, such as locks or barriers. ZooKeeper is
also often used for metadata management. It provides strong
consistency guarantees for shared data. Write operations are
linearizable. The order in which they are seen by clients
connected to different sites is unique, and this order respects
the real-time ordering of operations. Read operations are
sequentially consistent. Reads see updates in the unique
order, but may return values “from the past” with respect to
the real-time ordering.

We present in Figure 1 the network exchanges for a read
and a write to a three-site ZooKeeper. Clients are connected
to their local site. ZooKeeper elects a leader server, which is

http://openvswitch.org
http://zookeeper.apache.org
https://www.planet-lab.org
http://zookeeper.apache.org


LLocal connection
WAN connection
Read call
Write call

1

2
3

4

5

6 1 2

clients

write read

(Leader)

servers

5

Figure 1: Network flows affecting service delay for read
and write operations to a multi-site ZooKeeper installation.

in charge of deciding on the ordering of all write operations.
To guarantee linearizability, the ordering of a write operation
must be guaranteed between the call from the client Ê and
its return Ï. The local site forwards the write call to the
leader Ë. The leader orders the update and sends it through
FIFO channels to all sites Ì. Sites do not apply it yet, but
acknowledge the reception to the leader Í. After receiving
all acknowledgements, the leader sends a commit message
to all sites Î. All sites apply the update, and the local site
can return from the client call Ï. As a result, the service of
a write operation involves up to 4 communications between
sites (Ë to Î) (2 when the local site is also the leader).
When these rounds are parallel (to or from multiple sites)
but must complete before the next round, the experienced
delay is that of the slowest link. This applies to steps Ì
and Í but not to step Î. Read operations are simpler as
they only require a roundtrip À and Á from the client to
its local site. This complies with sequential consistency as
the local site applies updates in the unique order decided by
the leader, but may not have received the latest commits (in
terms of real-time ordering) before replying to the client.

4. Multi-Site Testbed and Networking
We present in this section our testbed, its network

configuration, and how we monitor the performance of WAN
links from the edge. We build a 4-site testbed spanning four
European countries and represented in Figure 2. Each site
hosts virtual machines supporting instances of storage servers
and benchmarking clients. An Open vSwitch router at the
edge of the network at each site controls inter-site routing. A
SDN controller at the CLU site orchestrates these virtualized
routers. The testbed is managed using a single OpenStack
installation spanning all four sites, with a controller also at
the CLU site. All machines feature 2 virtual CPU cores at
2.5 GHz, 2 GB of RAM and run Ubuntu 14.04 Trusty using
the libvirt libraries.

We keep a logical separation between the data and
management networks. While the latter has a much smaller
volume than the former, it should also have a higher priority
to enable fast and accurate monitoring and control. All
communication between compute nodes, or between the
controllers and the compute nodes, is secured using virtual
private networks using OpenVPN. We establish tunnels
between compute nodes, for security and to allow a stable
logical topology independent of the physical WAN links,
so that the overlay between storage nodes appear as part
of the same (virtual) LAN. The use of tunnels is instru-

Lancaster, UK

Bordeaux, FR

Cluj-Napoca, RO

Neuchâtel, CH

controllers
BOR

LAN

NEU

CLU

Figure 2: Physical locations of the four sites.

n1

n2 n3

d1,2 (20)

d2,1 (30)

d1,3 (35)

d3,1 (22)

d3,2 (40)

d2,3 (30)

Figure 3: Three-node setup with OWDs (ms) in parentheses.

mental in allowing dynamic re-routing of application flows,
without interrupting these flows. This allows transparency
for applications and cloud services using the tunnels. The
routing change actually happens at the Open vSwitch router
tunnel connection point, allowing to be controlled by the
SDN controller, either manually as we do in this paper or
automatically as we intend to do in future work.
Network measurements. Deciding on the use of indirect
routing requires accurate and timely information about the
network performance. We are interested in two metrics,
the Available Transfer Rate (ATR) and the One-Way Delay
(OWD) for each path linking sites in our infrastructure. Based
on these measurements, we can determine if a Triangle
Inequality Violation (TIV) exists for one of the metrics,
justifying the use of indirect routing.

The ATR of a path is the minimum of the difference
between the path capacity and the path flow, calculated for
all its links. To account for asymmetries in capacities and
usage, the ATR is measured separately for each direction
of the path. We use our own tool ATRAM [9] to measure
ATRs. The tool is based on a combination of active probing
and Kalman filtering. We calibrate it using Yaz [19].

Using echo-based measurements (e.g., ICMP and ping)
only provides the round-trip time (RTT), and does not
allow distinguishing between the two directions of a path.
Similarly as for ATRs, we are interested in taking into
account asymmetries in path delays. To obtain the one-way
delays (OWD), we implement a cyclic-path delay active
measurement scheme, based on the model in [20]. We
illustrate it using Figure 3, using a simple 3-node setup.
This model expresses the cyclic-path delays in terms of one-
way delay variables dij . The goal is to find the maximum
number of independent measurements from a source node,
n1 in our example. Let N = 3 be the number of nodes

http://openvswitch.org
https://www.openstack.org
https://openvpn.net


and E = 6 be the number of directional links. There are
N(N − 1) = 6 independent variables, for which we can
measure up to E − (N − 1) = 4 equations, each giving the
sum of OWD over two or more or the E links, and collected
from n1. In our example, we may obtain:

d1,2 + d2,1 = 50 ms, d2,3 + d3,2 = 70 ms,
d3,1 + d1,3 = 57 ms, d1,2 + d2,3 + d3,1 = 72 ms.

This equation system is underdetermined and cannot be
used directly to derive the individual values of OWDs dij . An
estimation of these values is calculated by determining the
space of possible values for each dij , based on the constraint
that ∀i,∀j, dij ≥ 0 and constraints derived from the collected
equations. These yield ranges of possible values for each dij .
A configurable (in our case, 10) number of sample values
are selected for all dij in their respective ranges that satisfy
the constraints. The final estimation for the value of each dij
is taken as the average of all valid solutions. More details
about the process can be found in [21]. Resulting OWDs for
our example are given directly on Figure 3.

The collection of cyclic-path measurements from the
source node works as follows. Our mechanism is designed
for overlay networks where all nodes are members of a
multicast group. The source node injects probes into the
network by flooding to this group, and collects responses
containing cumulative latencies for paths in the topology.
The novelty of our solution is that for the first copy of any
probe packet that reaches a new node, we break the flooding
rule of not sending back information to the node that issued
the packet. Instead, the node returns the packet to the source
node, allowing to measure a cyclic-path delay by subtracting
the departure time from the arrival time. Note that this only
happens for the first reception of the packet: subsequent
receptions are transmitted further, allowing to measure other
cyclic paths (e.g., n1 → n2 → n3 in Figure 3). The process
is scalable as neighboring nodes (members of the multicast
group) will act at their turn as the origin of new probes and
will replicate the mechanism that we previously described
(e.g., allowing to measure n2 → n3 → n2). This process
is cyclic and runs every second. To stop a cycle, cancel
the current flood and start a new measurement, the source
node instructs members of the group to switch to a different
listening UDP port. Packets for the previous port are simply
discarded. If the network is too large to use a single source
node, it is possible to split the domain into sub-domains,
each with its own source node and multicast group.

5. Evaluation

We start by evaluating the base performance of our
testbed network. We consider our testbed with no deployed
application. We collect individual measurements of one-
way delays (OWD) and available transfer rates (ATR) every
second, for all 12 links of our 4-node testbed and for a
duration of 4 minutes. Figure 4 presents the distribution
of ATR measurements and Figure 5.(left) presents the

 0

 10

 20

 30

 40

→								←
BOR - CLU

→								←
BOR - LAN

→								←
BOR - NEU

→								←
CLU - LAN

→								←
CLU - NEU

→								←
NEU - LAN

A
T

R
 (

M
b

/s
)

Figure 4: Baseline network performance: Available Transfer
Rates (ATR) measured with no application deployed.

distribution of OWD measurements.2 In the both cases, and
for the rest of our evaluation, each pair of sites yields two
distributions: the two sites are given by the abscissa and the
arrows represent the direction of the link that is measured
(e.g., the first distribution is from BOR to CLU and the second
is from CLU to BOR). The median ATR is heterogeneous and
ranges from 2.4 to 18 Mbits/s. We also observe that links
are typically asymmetric, with ATRs varying significantly
for the both directions of a link, e.g. for BOR→NEU. Delays
are more symmetric, but we observe a factor of ∼3 between
the fastest and the slowest links.
Triangle Equality Violation. As discussed in the introduc-
tion, a TIV is identified when there exists a triplet of sites
A, B and C, for which the routing between A and B yields
a lower performance than the routing between A and C, and
then from C to B. A TIV may exist for either (or both) of
the ATR and OWD metrics. For the ATR, the performance
is defined as a minimum along the paths: a TIV exists if the
ATR from A to B is lower than both ATRs from A to C and
from C to B. For the OWD, it is defined as the cumulative
delay over the paths: a TIV exists if the delay from A to
B is higher than the sum of the delays from A to C and
from C to B. We can see that when considering the medians
of measurement distributions in Figure 4 and Figure 5.(left)
our testbed does not initially feature a TIV for either of the
metrics. However, when traffic happens in the testbed, a TIV
can be observed clearly. We concentrate in the following
of this evaluation on a TIV for the OWD metric. Indeed,
our target application, ZooKeeper, is latency-sensitive: the
delay seen by clients for read and writes applications is
the key metric for characterizing its performance [5]. We
identify an example OWD TIV when the path between CLU
and LAN is subject to traffic. We consider a traffic goal of
98% of the median ATR (Figure 4) for both the CLU→LAN
and LAN→CLU links. We use the iPerf tool to generate this
target traffic. Figure 5.(middle) presents the distribution of
measured OWD in this context. We can clearly see that the
median delay for the CLU→LAN link, about 65 ms, is higher
than the sum of the CLU→NEU median delay (∼23 ms)
and NEU→LAN median delay (∼16 ms). We could identify
other examples of OWD TIV but will concentrate on this
CLU-NEU-LAN TIV for the remainder of this evaluation.

2. We use box-plots with whiskers for representing distributions: The
middle bar is the median, boundaries of the box are the first and third
quartiles. Lines down and up from the box indicate the span covered by
99% of values from the distribution. Individual points show outliers.

https://iperf.fr


 0

 10

 20

 30

 40

 50

 60

 70

→			←
BOR
CLU

→			←
BOR
LAN

→			←
BOR
NEU

→			←
CLU
LAN

→			←
CLU
NEU

→			←
NEU
LAN

O
n
e

-W
a
y
 D

e
la

y
 (

m
s
)

Baseline: no load and no indirect routing

 0

 10

 20

 30

 40

 50

 60

 70

→			←
BOR
CLU

→			←
BOR
LAN

→			←
BOR
NEU

→			←
CLU
LAN

→			←
CLU
NEU

→			←
NEU
LAN

O
n
e

-W
a
y
 D

e
la

y
 (

m
s
)

+ LAN-CLU and CLU-LAN loaded, no indirect routing

 0

 10

 20

 30

 40

 50

 60

 70

→			←
BOR
CLU

→			←
BOR
LAN

→			←
BOR
NEU

→			←
CLU
LAN

→			←
CLU
NEU

→			←
NEU
LAN

O
n
e

-W
a
y
 D

e
la

y
 (

m
s
)

+ indirect routing for LAN-NEU-CLU & CLU-NEU-LAN

Figure 5: Distribution of OWD in different configurations, without and with the use of indirect routing.

 0

 50

 100

 150

 200

 250

R
							CLU

W R
							BOR

W R
							LAN

W

L
a

te
n

c
y
 (

m
s
)

Baseline: no load and no indirect routing

 0

 50

 100

 150

 200

 250

R
							CLU

W R
							BOR

W R
							LAN

W

L
a

te
n

c
y
 (

m
s
)

+ LAN-CLU and CLU-LAN loaded, no indirect routing

 0

 50

 100

 150

 200

 250

R
							CLU

W R
							BOR

W R
							LAN

W

L
a

te
n

c
y
 (

m
s
)

+ indirect routing for LAN-NEU-CLU & CLU-NEU-LAN

Figure 6: ZooKeeper performance of read (R) and write (W) operations from client in LAN connecting to the three sites.

Impact of indirect routing. Using the SDN controller, we
install routing rules at the Open vSwitch routers of the
three sites of the CLU-NEU-LAN triangle, setting up the
indirect routing of the CLU-LAN tunnels for application traffic
through NEU in the both directions. We maintain the load
on the CLU→LAN and LAN→CLU links. This load does not
use the tunnels and is therefore not redirected via NEU. The
resulting OWD distributions are shown in Figure 5.(right).
We can clearly observe that the delay for the CLU→LAN and
LAN→CLU links reaches a median delay of about 36 ms in
the both directions, more than the direct unloaded routes but
significantly lower than the loaded ones.
Performance of geo-replicated storage. To guarantee avail-
ability in the presence of f = 1 site fault, ZooKeeper requires
servers on 2f + 1 = 3 sites. We deploy them at CLU, BOR
and LAN. We set the CLU site to host the leader server. We
use a client running the ZooKeeper benchmark to measure
the delays of synchronous reads and writes to ZooKeeper.
This client is deployed on the LAN site and we evaluate
its performance when it connects to its local server in LAN
but also when it connects to servers in BOR and CLU. The
benchmark reads and writes znodes of size 1 KB.

We consider first a static use of indirect routing, where the
benchmark is stopped and relaunched between experiments,
in order to collect distributions of delays in the same
configuration. Figure 6 presents the performance of read
and writes to ZooKeeper from the client in LAN. The site
given as the abscissa is the connection point for the client
(CLU, BOR or locally to LAN). The three plots correspond to
the three configurations used for Figure 5: (a) the baseline
testbed with no traffic other than that of ZooKeeper itself; (b)
the same testbed with traffic injection at 98% of the median
measured ATR for both directions of the LAN→CLU link
and (c) same as before but with the indirect routing via NEU
for the LAN→CLU application traffic in the both directions.

We can observe that, as expected, the performance of read
operations in the baseline configuration (a) is much better

than that of write operations that involve multiple rounds of
inter-site communications. In particular, connections from
the client to the local site are very fast. Connections from the
client to a distant site correspond roughly to the sum of the
OWD to and from this distant site, e.g., a read from the client
in LAN to the server in CLU is ∼60 ms, very close to the sum
of the OWD for LAN→CLU and CLU→LAN in Figure 5.(left).
The performance of writes is also consistent: a write to the
local site LAN yields a delay involves the following steps
(see Figure 1): Ê LAN→LAN (negligible), Ë LAN→CLU
(leader), Ì CLU→LAN and Í LAN→CLU (longest delay for
send/ack steps), Î CLU→LAN, Ï LAN→LAN (negligible).
The sum of median OWDs, about 120 ms, is consistent with
the median performance seen by the application.

When subject to traffic on the LAN→CLU and
CLU→LAN links, we clearly see a degradation of perfor-
mance for reads made at the distant site CLU from the
client at LAN, but more importantly, a general degradation
of performance for writes made at any of the sites. Indeed,
the higher delays of the LAN→CLU and CLU→LAN links
is reflected on the time taken by the coherency protocol to
inform and get an acknowledgment of the ordering of the
writes from the leader server in CLU (steps Ì and Í).

Figure 6.(right) presents the performance of ZooKeeper
when using indirect routing. We can clearly observe that this
indirect routing has a very positive impact: by mitigating
the high-delay problem of the LAN→CLU and CLU→LAN
links, it allows the performance of the read operations to
CLU and of the write operations to all sites to reach a level
of performance that is very close to that of the un-loaded
baseline configuration.

These previous results allow us to positively answer
the questions asked in our introduction: (1) WAN routing
strongly affects the performance of geo-replicated storage; (2)
network performance indicators and in particular our OWD
measurement tool allow precisely estimating the performance
of the application when combined with the knowledge of

http://openvswitch.org
https://github.com/brownsys/zookeeper-benchmark


 0

 50

 100

 150

 200

 250

 300

 0  5  10  15  20  25  30

(a) (b) (c)

L
a
te

n
c
y
 (

m
s
)

Time (s)

WRITES READS

Figure 7: Dynamic adaptation impact on operations delays.

its interaction patterns, and using indirect routing allows
mitigating the impact of performance variations. We still
need to evaluate the ability of our setup to enable indirect
routing with no application interruption, and evaluating
the impact of such a dynamic change on its performance.
Figure 7 presents this evaluation. It represents individual
measurements of alternated read and write calls from the
client in LAN connected to the master in CLU. Steps (a)-(c)
correspond to the ones described previously. We can clearly
see the decrease in performance when reaching step (b), and
that the implementation of indirect routing for the phase (c) is
fast. We observe a short spike of delay when enabling indirect
routing, but this spike (300 ms) remains within reasonable
boundaries. This positively answers our final question and
shows the practicality of enabling dynamic adaptation with
no application downtime or performance degradation.

6. Conclusion
We have shown that indirect routing can support dynamic

network-level adaptation in a multi-site testbed supporting a
demanding and latency-sensitive application, geo-replicated
ZooKeeper. Our work opens several interesting perspectives.
First, we are interested in studying the long-term performance
variations of the WAN testbed we have built and evaluate
if there exists patterns and trends for the performance that
can be observed at the edge of the network. Second, we
wish to automatize the decision process for using indirect
routing. This could happen at the level of the SDN controller
itself, or through the cooperation of the SDN controller
and virtualized network functions (VNF) as described in
SDNFV [22]. We envision the construction of performance
and traffic models for storage applications and coherence
protocols, allowing to make informed decisions during the
network optimization process. These models, together with
performance measurements, could allow deciding on indirect
routing in micro-clouds environments based on application
needs for reactive data storage and management.
Acknowledgments. We are grateful to Yehia Elkhatib, Inti
Gonzales-Herrera and Laurent Réveillère for their help in setting
up our testbed. The research leading to these results has received
funding from CHIST-ERA under project DIONASYS, from the
Swiss National Science Foundation (SNSF) under grant 155249,
and from the URBIVEL project under identifier P 40 333.

References
[1] S. Jain et al., “B4: Experience with a globally-deployed software

defined WAN,” in ACM SIGCOMM Conference, 2013.

[2] I. Cuadrado-Cordero, F. Cuadrado, C. Phillips, A.-C. Orgerie, and
C. Morin, “Microcities: A platform based on microclouds for neigh-
borhood services,” in 16th International Conference on Algorithms
and Architectures for Parallel Processing, ser. ICA3PP, 2016.

[3] C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee, “Trian-
gle inequality variations in the internet,” in 9th ACM SIGCOMM
Conference on Internet Measurement Conference, ser. IMC, 2009.

[4] J. M. Opos, S. Ramabhadran, A. Terry, J. Pasquale, A. C. Snoeren,
and A. Vahdat, “A performance analysis of indirect routing,” in IEEE
Intl. Parallel and Distributed Processing Symp., ser. IPDPS, 2007.

[5] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems,” in USENIX Annual Technical
Conference, ser. ATC, 2010.

[6] M. V. Ulinic, A. B. Rus, and V. Dobrota, “Openflow-based implemen-
tation of a gearbox-like routing algorithm selection in runtime,” Acta
Technica Napocensis, vol. 55, no. 2, pp. 23–32, 2014.

[7] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan, “Best-path vs.
multi-path overlay routing,” in 3rd ACM SIGCOMM Conference on
Internet Measurement, ser. IMC, 2003.

[8] G. Wang, B. Zhang, and T. S. E. Ng, “Towards network triangle
inequality violation aware distributed systems,” in 7th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC, 2007.

[9] I. A. Ivanciu, A. B. Rus, V. Dobrota, and J. Domingo-Pascual, “Active
measurement of the available transfer rate used in an algorithm for
generalized assignment problem,” in 11th International Symposium
on Electronics and Telecommunications, ser. ISETC, 2014.

[10] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” IEEE Communications
Magazine, vol. 51, no. 11, pp. 24–31, Nov 2013.

[11] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. K. Ramakr-
ishnan, and T. Wood, “Virtual function placement and traffic steering
in flexible and dynamic software defined networks,” in 21st IEEE
International Workshop on Local and Metropolitan Area Networks,
ser. LANMAN, April 2015.

[12] T. Wood, K. K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang,
“Toward a software-based network: integrating software defined net-
working and network function virtualization,” IEEE Network, vol. 29,
no. 3, pp. 36–41, May 2015.

[13] F. Lemma, J. Schad, and C. Fetzer, “Dynamic replication technique for
micro-clouds based distributed storage system,” in 2013 International
Conference on Cloud and Green Computing, ser. CGC, 2013.

[14] I. Narayanan, A. Kansal, A. Sivasubramaniam, B. Urgaonkar, and
S. Govindan, “Towards a leaner geo-distributed cloud infrastructure,”
in 6th USENIX Workshop on Hot Topics in Cloud Computing, ser.
HotCloud, 2014.

[15] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated data placement for geo-distributed cloud services,”
in 7th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI, 2010.

[16] Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-Peris, “En-
hancing edge computing with database replication,” in 26th IEEE Intl.
Symp. on Reliable Distributed Systems, ser. SRDS, 2007.

[17] M. S. Ardekani and D. B. Terry, “A self-configurable geo-replicated
cloud storage system,” in 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI, 2014.

[18] P. N. Shankaranarayanan, A. Sivakumar, S. Rao, and M. Tawarmalani,
“Performance sensitive replication in geo-distributed cloud datastores,”
in 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, ser. DSN, 2014.

[19] J. Sommers, P. Barford, and W. Willinger, “A proposed framework
for calibration of available bandwidth estimation tools,” in 11th IEEE
Symposium on Computers and Communications, ser. ISCC, 2006.

[20] O. Gurewitz and M. Sidi, “Estimating one-way delays from cyclic-path
delay measurements,” in 20th Annual Joint Conference of the IEEE
Computer and Communications Societies, ser. INFOCOM, 2001.

[21] A. Taut, I.-A. Ivanciu, E. Luchian, and V. Dobrota, “Active mea-
surement of the latency in cloud-based networks,” ACTA TECHNICA
NAPOCENSIS, Electronics and Telecommunications, vol. 58, no. 1,
2017.

[22] W. Zhang, G. Liu, A. Mohammadkhan, J. Hwang, K. K. Ramakrishnan,
and T. Wood, “SDNFV: Flexible and dynamic software defined control
of an application- and flow-aware data plane,” in 17th International
Middleware Conference, ser. Middleware, 2016.


