arXiv:1809.09751v2 [cs.NI] 2 Oct 2018

Pulser: Fast Congestion Response using Explicit
Incast Notifications for Datacenter Networks

Hamidreza Almasi

Hamed Rezaei

Muhammad Usama Chaudhry

Balajee Vamanan
University of Illinois at Chicago

ABSTRACT

Datacenter applications frequently cause incast congestion,
which degrades both flow completion times of short flows
and throughput of long flows. Without isolating incast, ex-
isting congestion control schemes (e.g., DCTCP) rely on ex-
isting ECN signal to react to general congestion, and they
lose performance due to their slow, cautious, and inaccurate
reaction to incast. We propose to isolate incast using Explicit
Incast Notifications (EIN) that are generated by switches,
similar to ECN. Our incast detection is fast and accurate. Fur-
ther, we present our congestion control scheme, called Pulser,
which drastically backs off during incast based on EIN, but
restores sending rate once incast ends. Our real experiments
and ns-3 simulations show that Pulser outperforms prior
schemes, DCTCP and ICTCP, in both flow completion times
and throughput.

1 INTRODUCTION

Datacenters provide fast, curated access to vast amounts
of Internet data. Today’s datacenters host a mix of applica-
tions — foreground applications perform distributed lookup
in response to user queries and background applications
perform data update and reorganization. While foreground
applications predominantly generate short flows and the na-
ture of distributed lookup implies that their performance is
sensitive to higher percentiles (i.e., tail) of short-flow comple-
tion times [9], background applications generate long lasting
flows and require high throughput. Therefore, today’s data-
center networks optimize short-flow completion times and
long-flow throughput.

The key to optimizing both flow completion times (of short
flows) and the throughput (of long flows) fundamentally lies
in accurately and quickly responding to congestion. Tradi-
tional TCP uses packet loss to modulate its sending rate and
relies on duplicate ACKs and timeouts to infer packet loss.
Because packet loss is often a late indication of congestion,
today’s datacenter networks leverage some form of Active
Queue Management (AQM) such as Explicit Congestion No-
tification (ECN), to quickly infer congestion. Current state-
of-the-art datacenter networks use variants of DCTCP [2],
which leverages ECN. ECN-enabled routers mark packets
if their instantaneous queue length exceeds a predefined

threshold and DCTCP senders modulates their sending rate
proportional to the fraction of observed ECN marks in the
ACK packets.

While DCTCP senders respond to congestion faster than
traditional TCP using early network feedback (i.e., ECN),
DCTCP incurs packet drops when network queues buildup
at a much faster rate than DCTCP senders can respond; we
show this phenomenon later in our results. Indeed, many
foreground datacenter applications that, by design, perform
distributed lookup for small data items spread across hun-
dreds or thousands of servers, and, therefore, cause frequent
incasts (i.e., data from many input ports converges to one
output port and cause rapid queue buildup). Today’s incast-
heavy applications (e.g., Web Search) and high-bandwidth
network topologies (e.g., fat-trees with low over-subscription
factors) imply that congestion often happens due to incasts
at the network edge, as reported by Google [22] and Mi-
crosoft [15]. Because incast causes a rapid queue buildup
in a short time, DCTCP’s iterative, gradual window adapta-
tion might not prevent buffer overflow. A more aggressive
window adaptation algorithm or lower ECN threshold at the
switch would cause throughput loss [5].

In this paper, we make the case for isolating incast from
other general cases of congestion. Because incast congestion
is the common case, accurate detection and timely response
to incast can significantly improve network performance, as
our results show. Because detecting incasts at the end-hosts
would require multiple roundtrips and would be significantly
less efficient due to the short incast time scales, we argue
for detecting incasts at switches, as opposed to detecting
at end-hosts. We present a novel algorithm for detecting
incasts in a short time interval by monitoring the gradient
of queue length over small time windows. Similar to ECN,
switches set an Explicit Incast Notification (EIN) mark upon
detecting incasts. Switches detect incast per output port and
mark packets traversing through those ports.

We propose a DCTCP variant, called Pulser, which lever-
ages EIN for window adaptation. Pulser resets the congestion
window to a small value upon observing EIN marked ACKs.
While incasts last only for a short time and contribute to
a small fraction of the overall network load, drastically re-
setting the congestion window only to ramp-up soon after

would cause throughput loss. Therefore, Pulser restores the
congestion window to its pre-incast value if subsequently
received ACKs do not have EIN marks. The net effect is that
Pulser has a braking phase when EIN marks are observed,
which only lasts for a short time; after the incast episode,
Pulser restores its pre-incast sending rate instead of a gradual
increase. Fast and accurate incast detection is key to Pulser’s
design, and without such detection, Pulser (or DCTCP) would
lose throughput. ICTCP [25] addresses incast at the receiver
without adding network support. Consequently, ICTCP’s
end-host detection is slow and Pulser outperforms ICTCP
(see section 5).
In summary, we make the following contributions:

e We propose a combination of in-network and end-host
mechanisms that specifically target incast congestion,
which is common but not efficiently handled by exist-
ing proposals.

e We introduce a novel, gradient-based incast detection
logic in switches, which is fast and accurate.

e We propose a congestion control scheme that uniquely
leverages our incast detection to improve both short-
flow completion times and long-flow throughput.

Using a combination of real testbed and ns-3 [21] simu-
lations, we show that Pulser improves both 99*-percentile
short-flow completion times and long-flow throughput:
With simulations, Pulser:

e achieves 10% (1.12x) reduction in median and 50% (2x)
reduction in 99'" percentile FCT than DCTCP and
ICTCP, on average, for loads greater than 20%. At
higher loads, Pulser achieves up to 25% and 70% reduc-
tion in median and 99" percentile FCT, respectively.

e achieves 20% higher long-flow throughput than DCTCP
and ICTCP, on average, for loads greater than 20%.
Pulser achieves up to 50% higher throughput at higher
loads.

With real testbed, Pulser:

e outperforms DCTCP by about 26% in 99*" percentile
flow completion times.

o achieves about 25% higher throughput than DCTCP.

The remainder of the paper is as follows. We start the mo-
tivation for our paper in section 2, following by our design in
section 3. Sections 5 and 6 present our experimental method-
ology and results. We discuss related work in section 7 and
conclude in section 8.

2 MOTIVATION

DCTCP is a pioneering work that made a key insight that an
accurate, proportional response to congestion using ECN
could improve both flow completion times and through-
put. DCTCP assembles 1-bit ECN marks at the end-host
for a sequence of packets to infer accurate queue length at

——Queue length — —DCTCP lowest CWND

250 Fomm AN _;. ___________
5200 ___ _!
g /

5150 __ ,‘ -
g 100 F-J-mmimm e m e m ,E -
(<]

10 Time (us) 210
Figure 1: Incast detection in DCTCP using ECN

the bottleneck switch and uses the information to modulate
the sending window [3] accordingly. DCTCP performs well
for long flows or when incast is somewhat mild. However,
DCTCP’s performs poorly with an incast-heavy traffic with
many short flows. The queue size would increase rapidly
during incast, and therefore, it is essential to drastically slow
down all senders in order to avoid packet loss. However,
DCTCP’s proportional response would require a few round-
trips (RTTs), which is sub-optimal for incast.

Our at-scale ns-3 simulations capture this behavior. Fig-
ure ?? shows the evolution of a specific switch’s queue length
(red line) over time (X-axis). Figure ?? also shows DCTCP’s
reaction (green line), which is either 0 (DCTCP does not slow
down) or 1 (DCTCP slows down due to ECN). We clearly see
that even though incast starts at time = 10, DCTCP does not
react until time = 210 when it is too late (i.e., DCTCP does
not reduce its congestion window to the desired level until
time = 210). Please see section 5 for topology and workload
details. While one could think of reducing ECN threshold
to improve DCTCP’s reaction to incasts, past papers have
shown that smaller ECN thresholds detect incast spuriously
and cause throughput loss [2, 5]. Later, we show that Pulser
is able to react much faster than DCTCP (section 5).

Though datacenter traffic is heavy tailed with a small
fraction of long flows accounting for the majority of bytes
transferred, the growing popularity of online services (e.g.,
Google Search, Facebook) implies that the fraction of short
flows and the intensity of incast is bound to increase. While
the performance of all end-to-end rate control schemes de-
grade as the fraction of short flows increase, we contend that
an AQM scheme that is customized for incast detection and
a congestion control algorithm that leverages the scheme
could substantially improve performance over the current
state-of-the-art.

3 PULSER

Pulser consists of two parts: (1) fast and accurate incast de-
tection and (2) end-to-end congestion control that leverages
incast detection. We describe our novel incast detection in
section 3.1 and our congestion control in section 3.2.

3.1 Explicit Incast Notifications (EIN)

Algorithm 1: EIN generation at switches

Result: Set or Reset EIN
Input :Qlen
Output:EIN

1 for Each packet “P” at dequeue do

2 Gradient = (Qlen — Qlenyreo)/(T — Tyrev)
3 Qleny ey = Qlen
4 Tprev =T
5 Store Gradient in a sliding window
6 Calculate Average Gradient for “N” samples
7 if Average Gradient > EIN;presnholq then
8 Set EIN
9 EINpreo = 1
10 else
11 if EINy,e, == 1 then
12 if Qlen > HighWater Mark then
13 | Set EIN
14 end
15 else
16 Reset EIN
17 EINprey =0
18 end
19 end
20 end

During incast, data from multiple input ports (e.g., > 8) gets
forwarded to the same output port within a switch, which
cause a steep increase in the output port’s queue length.
Therefore, our incast detection logic uses the gradient of
queue length as opposed to the queue length itself.

Similar to most ECN implementations, we perform incast
detection at the dequeue side. At a high level, we calculate
the gradient during each dequeue event w.r.t to previous
event (i.e., slope between two consecutive packets that were
dequeued). We maintain a sliding window of past N samples
of gradient, where N is configurable. If the average gradient
is more than a configurable threshold, then we mark outgo-
ing packets by setting the new Explicit Incast Notification
(EIN) bit. EIN requires one additional bit in the IP header
(similar to CE bit for ECN), which is set by the switches and
another bit in the TCP header for notify senders (similar to
ECE for ECN).

Algorithm 1 shows our complete algorithm. In our imple-
mentation, we also set EIN when the current queue length
exceeds a configurable HighWater Mark, which serves as
hysteresis (see lines 11-18). We set HighWaterMark to be

higher than ECN threshold to avoid throughput loss. Our in-
cast detection has two main parameters, N and EIN;p,eshold-
We empirically found that using N = 50 and EIN;p,eshold =
0.25 X Line Rate provides optimal performance. Intuitively,
our parameter settings mean that if the queue is building
at the rate of 0.25 X Line Rate for the past 50 samples on
average, then we detect an incast episode. Consequently, we
detect incast if either the queue builds up steeply in a very
short time window or if the queue consistently builds up
over a long time window. In either case, it is is desirable to
react strongly by setting the EIN bit to avoid buffer overflow.
We also performed an exhaustive sensitivity study but do
not show due to space constraints. Our incast detection is
fast and accurate, as we show in section 5.

3.2 Congestion control

We design Pulser’s congestion control by leveraging EIN.
If a Pulser sender gets a packet with EIN mark, the sender
reduces its congestion window to a configurable, safe value
after saving the current congestion window. Such a drastic
response to incast congestion would likely ease congestion.
Once incast finishes, the sender would stop receiving EIN
marks. If the sender doesn’t not observe any EIN marked
packets for the current batch of packets, then the sender
restores the window to its previous saved value. Equations 1
and 2 show how we modify the congestion window at the
beginning and end of an incast episode, which we infer via
EIN marks.

cwndpreo < cwnd

(1)

cwnd < cwndggfe

cwnd «— cwndpreo (2)

We empirically found out that setting cwnds,r, = 4XMSS
provides optimal performance. We did a sensitivity study
but do not show due to lack of space. As you can see, our
congestion control is only a handful lines of code change
over existing DCTCP implementation and is deployment
friendly.

4 SIMULATION METHODOLOGY

We use ns-3 [21] to simulate a leaf-spine datacenter topology,
which is commonly used in today’s datacenters [1]. In our
topology, the fabric interconnects 400 servers using 20 leaf
switches with each leaf switch connecting to 20 servers. The
leaf switches are connected to 10 spines, resulting in an
over-subscription factor of 2. The servers and switches are
connected by 10 Gbps links with an unloaded link delay of
10 ps; the unloaded Round-Trip Time (RTT) for the longest
path (i.e., 4 hops) is 80 ps.

We model our workloads based on reported results [6],
with a mix of short and long flows. Flow arrivals follow
a Poisson distribution and the source and destination for
each flow is chosen uniformly randomly. Our short flows’
sizes are randomly chosen from 8 KB to 32 KB and we set
long flow sizes to 1 MB. As as typical, long flows contribute
to 30 % of the overall network load, which we vary in our
experiments [4]. We also model incast traffic as per [24]. The
flows and their destinations are chosen randomly and are
varied during the experiment. Our default incast degree is
24 but vary it in our sensitivity analysis 5.4.

We compare four schemes: DCTCP, ICTCP, Pulser, and
Ideal. Our DCTCP and ICTCP implementations use their
recommended parameter settings (e.g, ECN threshold) and
our results match their reported numbers. We implemented
Pulser on top of DCTCP [2]. We implemented algorithm 1
in switches and our congestion control in end-hosts. We set:
cwndsafe = 4 X MSS, EINtpreshola = 0.25 X Line Rate, and
N =50 as default, after sensitivity studies (not shown due to
lack of space). We also implemented an Ideal congestion con-
trol scheme where senders have oracular global knowledge
and send at optimal sending rate. While the Ideal scheme
is not practical, we show its results to set reasonable upper
bounds on performance.

5 SIMULATION RESULTS

We summarize our evaluation of Pulser as follows:

e Flow Completion Time (FCT): We compare the me-
dian and 99*" percentile short-flow completion times
of Pulser with DCTCP, ICTCP, and Ideal. Pulser achieves
10% (1.12x) reduction in median and 50% (2x) reduc-
tion in 99" percentile FCT than DCTCP and ICTCP,
on average, for loads greater than 20%. At higher loads,
Pulser achieves up to 25% and 70% reduction in median
and 99" percentile FCT, respectively.

e Throughput: We compare the long-flow throughput
of Pulser with DCTCP, ICTCP, and Ideal. Pulser achieves
20% higher long-flow throughput than DCTCP and
ICTCP, on average, for loads greater than 20%. Pulser
achieves up to 50% higher throughput at higher loads.

e Queue length analysis: We analyzed how the queues
buildup in Pulser and DCTCP. Pulser reduces queue
lengths drastically (by up to 2x) compared to DCTCP.

e Sensitivity to incast: Pulser’s improvements increase
with increasing incast degree and is robust across a
range of typical incast degrees.

We provide a more exhaustive analysis below.

5.1 Flow Completion Time

Figure 2 and figure 3 compare the median and tail (99" per-

centile) flow completion times of DCTCP, ICTCP, Pulser, and

—4-DCTCP ——-ICTCP ~e-Pulser ~=-IDEAL

\

Load

Figure 2: Median flow completion time

—4-DCTCP ——ICTCP. ~e-Pulser -@-IDEAL

45
40 //
35 —?.

730 =

£ 7

G20 -

15 —t . .
10 %———0——-

5

o -

10% 20% 30% 40% 50% 60% 70% 80%
Load

Figure 3: 99" %-ile flow completion times

e
o

SDCTCP =ICTCP =Pulser

N
A
\
R
N
\
\ .
10% 20% 30% 40%
Load

Figure 4: Throughput comparisons

Throughput (Gbps)

N

50% 60% 70% 80%

Ideal. We show flow completion times along Y-axis versus
network load on X-axis. As load increases, all schemes incur
more queuing and their FCTs degrade. While Pulser achieves
reduction in both median and tail FCT, Pulser’s achieves bet-
ter reduction in tail flow completion times than in median
flow completion times. Because datacenter applications are
more sensitive to tail FCT than median, Pulser’s makes the
right trade-off.

Compared to DCTCP, Pulser reduces tail flow completion
time of about 51% for loads greater than 40% (typical operat-
ing point of most datacenters). Compared to ICTCP, Pulser
reduces flow completion time by about 46% at higher loads.
Because incast congestion is not an issue at lower loads,
Pulser does not significantly outperform at lower loads. Ideal
method outperforms all other schemes, which shows that
there is significant improvement to be achieved.

400 p— o ——Pulser ---DCTCP
J et
350 ' e
8 i SN
: 300 ; 2
5250 / <
! 2
5 200 . e N b
o / e
$ 150 / NG i
9 100 4 N
s s N
;
0 <

-
ERN

40
53
66
79
92
05
18
31
a
57
70
83
9%
09
222
235
208
261
74
87
00
13
26
39
52
65

Time (us)

Figure 5: Queue length over time

45

40 - ——Pulser ---DCTCP

35 o
g3 I /-
<25 /'" / A 3]
s, LAV L A
£20 1] AR AR
O15 e P 1—_ !

10 I e vand i |

5

L]

NNNNNNNNNNNNNNNNNNNNNNN

Time (us)

Figure 6: Congestion window at a long flow sender

5.2 Throughput

In this section we compare Pulser’s throughput with ICTCP,
DCTCP and ideal scheme. Long flow throughput suffers for
all schemes at higher loads due to increased (incast) con-
gestion at higher loads. As we can see from figure 4, Pulser
achieves higher throughput across all loads: First, Pulser
reduces the number of packet drops of those background
flows that share links that experience high incast congestion,
as compared to other schemes. Second, when incast is fin-
ished, Pulser uses the last congestion window before incast
as the new congestion window, without resorting to gradual
window increase (e.g., slow start). Pulser’s ON/OFF window
modulation helps senders to restore their pre-incast send-
ing rate pretty quickly.Pulser achieves 16% and 22% higher
throughput compared to ICTCP and DCTCP respectively (in
40% load and beyond).

5.3 Queue length

In this section, we analyze the queuing behavior of Pulser
and relate it to Pulser’s congestion control (i.e., evolution
of congestion window over time). For this experiment, we
run our workload with 60% load. Figure 5 shows the queue
length at an aggregator switch’s output port (Y-axis) over
time (X-axis). We analyze DCTCP (red) vs. Pulser (green).
We see that, Pulser reduces the queue buildup by as much as
50% (2x).

To connect Pulser’s queuing behavior to our congestion
control, we compare the congestion window evolution ver-
sus time (at the sender) for DCTCP and Pulser in figure 6.

sDCTCP 2ICTCP =Pulser

Throughput (Gbps)
w
S

Load

Figure 7: Sensitivity of 99'"

times to incast degree

percentile flow completion

At time = 120us, incast starts. While DCTCP gradually re-
duces the congestion window and oscillates around due to
the absence of a precise signal that indicates incast, Pulser
leverages a more precise EIN to backup almost instantly.
When the incast finishes at time = 300us, Pulser instantly
recovers. By instantly backing off, the Pulser’s long-flow
sender minimizes queuing delay, which helps short flows. By
restoring its previous sending rate after incast, Pulser sender
achieves better throughput.

5.4 Sensitivity to incast degree

We analyze the sensitivity of our results to different incast
degrees. For this study, we compare Pulser’s tail flow comple-
tion time to those of DCTCP and ICTCP for varying incast
degrees. We vary incast degree as 24 (default), 32, and 40.
Figure 7 shows the 99" percentile flow completion times for
varying incast degrees, normalized to our default case (i.e.,
incast degree of 24).

As expected for both incast degrees, all methods experi-
ence increasing tail flow completion time with load incre-
ments. In both cases, Pulser outperforms DCTCP and ICTCP
with a substantial margin of at least 2X for 60% and 80%
loads. Lower loads do not suffer from high incast congestion,
and, therefore, there is limited opportunity for improvement.
Similar to higher loads, higher incast degree provide more
opportunity for Pulser. Nevertheless, Pulser’s relative per-
formance improvement remains robust across varying loads
and incast degrees.

6 REAL IMPLEMENTATION

Our real testbed consists of three Dell 7040 Optiplex servers
with 32 GB of memory, Intel Quad core processors (3.4 GHz
i7) and 1 Gbps NICs. Two servers act as clients and generate
traffic to the third server, which acts as an aggregator (leaf
server). Because EIN requires switch support, we use another
server with two network interfaces as a software switch
(kernel version 4.4.0). The two client servers are connected
by a physical Netgear Prosafe switch to our software switch,
which connects to the aggregator. Further, to generate a
realistic incast scenario with only two servers, we place 8

Metric DCTCP | Pulser
Avg. flow completion time (s) 1.99 1.59
99th percentile flow completion time (s) 13.32 9.85
Throughput (Mbps) 28 35

Table 1: Real implementation results

VMs in each of the two client servers; the VMs run Ubuntu
12.04 LTS (kernel version 3.2.18) with 2GB of memory. We
rate limit the client VM’s NICs to 50 Mbps.The two client
machines each generate 50 X 8 = 400Mbps of traffic to the
physical switch, which connects to the software switch over
a 1 Gbps link (i.e., there is no bottleneck). However, the
link between the software switch and the aggregator is rate
limited to 50 Mbps, creating a realistic incast (i.e., there is
800 Mbps of incoming traffic into the software switch but
the outgoing port is only 50 Mbps, which creates a realistic
incast degree of 16). We use iperf3 to generate traffic. We
generate a background 40 MB long flow from one of the
client VMs. The other 15 client VMs generate synchronous
bursts of short 100KB flows, with random jitter. We run the
experiment for 80 minutes and measure the flow completion
times of short flows and throughput of long flows.

Table 1 shows the flow completion times — both average
(not median) and 99" percentile - and throughput compari-
son between DCTCP and Pulser in our real testbed. Our real
testbed is smaller in scale, and, therefore, the intensity of
incast and the corresponding tail effects are somewhat less
pronounced in our real testbed than in our at-scale simu-
lations. Nevertheless, Pulser outperforms DCTCP by about
20% and 26% in average and 99" percentile flow comple-
tion times, respectively. Similarly, Pulser achieves about 25%
higher throughput than DCTCP. While we do not have access
to a datacenter-scale testbed, our substantial performance
gains in the small testbed shows the potential of Pulser in a
more realistic setting.

7 RELATED WORK

While Internet Congestion control is a well-studied research
area, datacenter congestion control continues to garner in-
terest in the networking community and there are a number
of recent papers on datacenter congestion control. We have
discussed DCTCP and ICTCP in earlier sections. We will
summarize other related work in this area.

Rate Control Protocol (RCP) [10] is an alternative to window-
based TCP protocols in which switches directly inform the
senders of their fair share sending rate by observing the rates
of all intervening flows. But, RCP does not isolate incast, and
requires switch support, which is not available today. Simi-
lar to Pulser, TIMELY [17] uses a gradient-based approach.
However, unlike Pulser, TIMELY is RTT-based, its detection
logic is not customized for incast, and it is implemented
at end-hosts. Therefore, TIMELY’s detection is unlikely to

be as fast and as accurate as our approach. DCQCN [27]
leverages ECN for RDMA and performs rate-based conges-
tion control. Our incast detection and congestion control
ideas are complimentary to DCQCN and they would likely
improve DCQCN’s incast performance. QCN [19] provides
congestion control based on network feedback (similar to
DCTCP/ECN) but operated at the Ethernet layer and doesn’t
isolate incast. NumFabric [18] provides other more flexible
bandwidth allocations other than TCP’s fair share. Express-
Pass [8] and NDP [12] provide receiver-driven congestion
control; Pulser, in contrast, is switch-driven and isolates
incast congestion from other forms of congestion (e.g., con-
gestion in network caused by flow collisions). A number of
proposals [4, 7, 11, 14, 16, 23, 26] focus on flow scheduling
and prioritize critical flows (e.g., short flows) whereas our
main focus is on incast congestion control. Similarly, other
load balancing proposals [1, 13, 20] are complimentary to
Pulser.

8 CONCLUSION

Incast congestion is a dominant form of congestion in dat-
acenter networks. Prior approaches do not isolate and de-
tect incast in the network, and, therefore, existing end-host
congestion control could not aggressively respond to incast
without losing throughput. We proposed Explicit Incast No-
tification (EIN), a gradient-based incast detection at network
switches, which is both fast and accurate. Leveraging EIN,
we introduced our congestion control scheme, called Pulser,
which quickly backs off during incast for short time intervals
without hurting latency and ramps up soon after without
losing throughput. Using simulations and a real implementa-
tion, we showed that Pulser outperforms DCTCP and ICTCP.
As data and Internet traffic continue to grow exponentially,
incast is likely to become even more dominant in datacen-
ters, requiring an incast-specific AQM such as EIN and a
congestion-control schemes such as Pulser.

REFERENCES

[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA:
Distributed Congestion-aware Load Balancing for Datacenters. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14).
503-514.

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 conference (SIGCOMM °10). ACM, New York, NY, USA,
63-74. https://doi.org/lo.l145/1851182‘1851192

Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. 2011.
Analysis of DCTCP: Stability, Convergence, and Fairness. In Proceed-
ings of SIGMETRICS. 73-84.

[2

—

3

—_

https://doi.org/10.1145/1851182.1851192

[4] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick

[9

[10

[11

[12

(13

(14

(15

[16

[17

(18

[19

[20

]

[t

—

—

=

=

=

—

—

=

= =

McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Min-
imal Near-optimal Datacenter Transport. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM °13). ACM, New
York, NY, USA, 435-446. https://doi.org/10.1145/2486001.2486031
Wei Bai, Li Chen, Kai Chen, and Haitao Wu. 2016. Enabling ECN
in Multi-service Multi-queue Data Centers. In Proceedings of NSDL
537-549.

Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network
Traffic Characteristics of Data Centers in the Wild. In Proceedings of
IMC. 267-280.

Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh. 2016. Schedul-
ing Mix-flows in Commodity Datacenters with Karuna. In Proceedings
of the 2016 Conference on ACM SIGCOMM 2016 Conference (SIGCOMM
’16). 174-187.

Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-
Bounded Congestion Control for Datacenters. In Proceedings of SIG-
COMM. 239-252.

Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (Feb. 2013), 74-80. https://doi.org/10.1145/2408776.2408794
Nandita Dukkipati, Masayoshi Kobayashi, Rui Zhang-Shen, and Nick
McKeown. 2005. Processor Sharing Flows in the Internet. In Pro-
ceedings of the 13th International Conference on Quality of Service
(IWQo0S°05). Springer-Verlag, 271-285.

Peter X. Gao et al. 2015. pHost: Distributed Near-optimal Datacenter
Transport over Commodity Network Fabric. In Proceedings of CONEXT.
1:1-1:12.

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wojcik. 2017. Re-
architecting Datacenter Networks and Stacks for Low Latency and
High Performance. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SSIGCOMM ’17). ACM, 29-42.
Kegqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter,
and Aditya Akella. 2015. Presto: Edge-based Load Balancing for Fast
Datacenter Networks. In Proceedings of SSIGCOMM. 465—-478.

Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Fin-
ishing flows quickly with preemptive scheduling. In Proceedings of the
ACM SIGCOMM 2012 conference on Applications, technologies, architec-
tures, and protocols for computer communication (SSIGCOMM ’12). ACM,
127-138. https://doi.org/10.1145/2342356.2342389

Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Pa-
tel, and Ronnie Chaiken. 2009. The Nature of Data Center Traffic:
Measurements & Analysis. In Proceedings of IMC. 202-208.

Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
2016. Universal Packet Scheduling. In Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation (NSDI'16).
501-521.

Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-
all, and David Zats. 2015. TIMELY: RTT-based Congestion Control for
the Datacenter. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM ’15). ACM, 537-550.
Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali,
Mohammad Alizadeh, and Sachin Katti. 2016. NUMFabric: Fast and
Flexible Bandwidth Allocation in Datacenters. In Proceedings of the
2016 Conference on ACM SIGCOMM 2016 Conference (SIGCOMM ’16).
188-201.

R Pan, B Prabhakar, and A Laxmikantha. 2007. QCN: Quantized con-
gestion notification an overview.

Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh,
Damon Wischik, and Mark Handley. 2011. Improving datacenter
performance and robustness with multipath TCP. In Proceedings of the

[21]

[22]

[23]

[24]

[25]

[26]

[27]

ACM SIGCOMM 2011 conference (SIGCOMM °11). ACM, New York, NY,
USA, 266-277. https://doi.org/10.1145/2018436.2018467

George F Riley and Thomas R Henderson. 2010. The ns-3 network
simulator. In Modeling and tools for network simulation. Springer,
15-34.

Arjun Singh et al. 2015. Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network. In Proceedings
of SIGCOMM. 183-197.

Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. 2012.
Deadline-aware Datacenter TCP (D2TCP). In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SSIGCOMM ’12).

Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G
Andersen, Gregory R Ganger, Garth A Gibson, and Brian Mueller. 2009.
Safe and effective fine-grained TCP retransmissions for datacenter
communication. In ACM SIGCOMM computer communication review,
Vol. 39. ACM, 303-314.

Haitao Wu, Zhengian Feng, Chuanxiong Guo, and Yongguang Zhang.
2010. ICTCP: Incast Congestion Control for TCP in Data Center
Networks. In Proceedings of CONEXT. 13:1-13:12.

David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and
Randy Katz. 2012. DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks. In Proceedings of SIGCOMM. 139-150.

Yibo Zhu et al. 2015. Congestion Control for Large-Scale RDMA
Deployments. In Proceedings of SIGCOMM. 523-536.

https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2342356.2342389
https://doi.org/10.1145/2018436.2018467

	Abstract
	1 Introduction
	2 Motivation
	3 Pulser
	3.1 Explicit Incast Notifications (EIN)
	3.2 Congestion control

	4 Simulation Methodology
	5 Simulation Results
	5.1 Flow Completion Time
	5.2 Throughput
	5.3 Queue length
	5.4 Sensitivity to incast degree

	6 Real implementation
	7 Related work
	8 Conclusion
	References

