
Practical Sliding Window Recoder: Design,
Analysis, and Usecases

Vipindev Adat Vasudevan1, Tarun Soni2, and Muriel Médard1

1Massachusetts Institute of Technology, Cambridge, MA, USA
{vipindev,medard}@mit.edu

2Northrop Grumman Corporation, USA
Tarun.Soni@ngc.com

Abstract—Network coding has been widely used as a tech-
nology to ensure efficient and reliable communication. The
ability to recode packets at the intermediate nodes is a major
benefit of network coding implementations. This allows the
intermediate nodes to choose a different code rate and fine-tune
the outgoing transmission to the channel conditions, decoupling
the requirement for the source node to compensate for cumulative
losses over a multi-hop network. Block network coding solutions
already have practical recoders but an on-the-fly recoder for
sliding window network coding has not been studied in detail. In
this paper, we present the implementation details of a practical
recoder for sliding window network coding for the first time
along with a comprehensive performance analysis of a multi-hop
network using the recoder. The sliding window recoder ensures
that the network performs closest to its capacity and that each
node can use its outgoing links efficiently.

I. INTRODUCTION

One of the key advantages of network coding [1] is its abil-
ity to mitigate the effects of packet loss, which can frequently
occur in wireless and congested networks. Further, it allows
the intermediate nodes to 'recode', mix the packets in the
incoming links and send them over on the outgoing links. In
Random Linear Network Coding (RLNC) [2], which is one of
the most popular and widely used network coding techniques,
each coded packet is a combination of multiple packets mixed
together with random coefficients and the receiving node
can decode the packets once it has enough innovative coded
packets. Having a recoder reduces the number of transmissions
required since the source can stop transmitting when the
recoder has enough packets to regenerate more coded packets,
thus achieving min-cut capacity. The losses in a multihop
network are not cumulative anymore and each node has to
compensate only for the losses in its outgoing links. Thus
in a multi-hop network, network coding further improves the
performance by reducing the need for retransmissions and
improving end-to-end goodput and in-order delivery delay.

Practical block RLNC implementations already have effi-
cient recoder modules proposed and implemented efficiently.
However, more advanced network coding techniques such as
a sliding window network coding (SWNC) [3], [4] scheme, to

This is a slightly modified and extended version of a paper that will be
presented at the IEEE LANMAN 2023. This work is supported by the SNOB-
5G project under the MIT Portugal Program and by Northrop Grumman
Corporation (NGC).

the best of our knowledge, have no efficient recoder modules
implemented. This is partially due to the difficulty in managing
the window size over multiple hops and partially due to the fact
that an on-the-fly block recoder module can be reconfigured
to work as a simple relay module for the incoming traffic.
However, such a scheme can have no significant improve-
ment in performance rather than ensuring the availability of
innovative packets at the receiver. Further, such systems will
require the source node to encode the packets at a rate that
can compensate for the cumulative losses in the channel.
Instead, an on-the-fly sliding window recoder can allow the
intermediate node to recode over different window sizes and
thus adapt to the different loss rates in the links. In this work,
we propose the design of a novel sliding window recoder that
can work efficiently over the links with varying loss rates
and allow each intermediate node to code at a different rate
required for their outgoing links. Comprehensive performance
analysis of the recoder compared to an end-to-end network
coding scenario as well as selective repeat ARQ (SR-ARQ)
in a multi-hop network is discussed. Further, we present a
few practical use cases and considerations in the design.
Section II describes this network model with practical aspects.
Section III discusses the proposed design followed by the
implementation and results in section IV and V respectively.
Section VI discusses some of the most interesting use cases of
the proposed approach. Section VII concludes the paper and
discusses potential extensions of the work.

II. NETWORK MODEL

Figure 1 shows the different network scenarios for transmit-
ting information from a source to a receiver that we consider.
The first scenario (a) is a traditional network with a source, a
relay node, and a receiver. The second scenario (b) depicts an
SWNC-enabled network, but only the end nodes are capable
of encoding/decoding. The third case, Fig. 1 (c) represents
the case of SWNC with a source, a recoder node, and a
receiver. In this scenario, the recoder node uses linear network
coding to combine packets from the source and create a new
packet that is sent to the receiver. The recoder node has
its own packet buffer, which is used to temporarily store
packets received from the source node. It has the ability to
recode with a new code rate, to compensate for a different

ar
X

iv
:2

30
6.

10
13

5v
1

 [
cs

.N
I]

 1
6

Ju
n

20
23

Fig. 1: The three different scenarios considered in this study.

loss rate in its forward channel. In this paper, we will focus
on the single-path scenario with only one recoder, but the
recoding mechanism can be directly extended to multi-path
and/or multi-hop scenarios as well.

The code rate is generally defined as the ratio of the number
of information packets to the total number of packets sent,
so if the sender creates n − k repair packets for every k
innovative packets, the code rate is (k/n). To address potential
channel errors, it is ideal to set the code rate slightly lower
than (1−ϵ), where ϵ is the expected error for the channel. The
difference between (1−ϵ) and k/n is referred to as the delay-
goodput trade-off criterion (γ) in this case. A higher value of γ
means more repair packets will be sent, which may decrease
goodput but guarantee minimum in-order delivery delay. It
also ensures reliable communication, as a higher γ value
represents a higher number of repair packets to compensate
for the erasures. In the sliding window, the window size is not
fixed, but the introduction of repair packets is controlled by
fixing the code rate. This means that the packets being coded
together to create the repair packets are limited by the window
size. The code rate and window size are decided considering
the error probability and the round trip time in the immediate
link. Considering the error probability in the first hop and the
second hop as pch1 and pch2 respectively, the code rates at
each node are chosen such that the redundant packets will
compensate for the errors in it’s forwarding channel only.
This means that the code rate at the intermediate node can
be different from that at the source and possibly lower than
the source when pch2 > pch1. This reduces the total number of

packet transmissions required in the network as each node will
only be sending enough packets such that the next hop is able
to get all innovative packets. On the other hand, if we do not
consider the intermediate node capable of recoding, the code
rate at the source requires to compensate for the losses in the
cascaded channel, pcombined. If an End-to-End coding option
is chosen, without recoding at the intermediate node, the code
rate can be at most (1−pcombined). However, it is evident from
the min-cut max-flow principles that the true capacity of the
network is higher, at min(1−pch1, 1−pch2). This is achievable
with a recoder, instead of a repeater, at the intermediate node.
This shows immediate improvement in the performance using
the sliding window recoder at the intermediate node.

III. SYSTEM DESIGN

The focus of this work is on the design of a sliding window
recoder, capable of adapting to different channel rates at
its incoming and outgoing channels and compensating for
the losses in the outgoing channels without incurring any
additional retransmissions to the sources of its incoming links.
A sliding window random linear network coding (SW RLNC)
is employed to achieve low latency and reliable communica-
tion in the network. A practical implementation of a sliding
window recoder has never been studied in the literature. The
SW RLNC operates with a fixed code rate, which means
that after a certain number of new packets are sent, a set
number of Forward Erasure Correction (FEC) packets will
be transmitted as well. The recoder allows each node to set
its code rate to account for errors on its outgoing link. In
exceptional cases of extreme error bursts where apriori repair
packets are insufficient, feedback-based FEC can be utilized.
This may reduce the code rate slightly but ensures all packets
are transmitted reliably.

The sliding window at the sender and receiver end is very
similar to the base description in the literature [5]. However,
at the intermediate node, it is important to consider that
the packets sent out of it have innovative packets capable
of overcoming the extra losses at its outgoing channel. The
recoder should be 'carefully' mixing the packets and the
original window sizes are maintained on the forward packets.
An example scenario is presented in Fig. 2 and explained step
by step in the appendix for more details.

A. Recoding Process

The packets received from incoming links are stored in a
buffer along with their respective window information. At the
slot for sending a packet in the forward channel, the recoder
selects the window size from available packets and combines
them into a single packet. The recoder starts by selecting the
first packet in the window, adding it to the recoding set, and
using its opening window slot as the opening window slot
of the outgoing packet. The recoder continues to add packets
until the desired window size is reached. The closing window
of the last included packet becomes the closing window value
of the recoded packet. It is important to note that the window
size at the recoder may not match the difference between the

Fig. 2: An example case of a 2-hop network with SWNC.
The red-colored transmissions are lost in the channel.

end values of the window associated with the recoded packet,
as the window is maintained based on the windows of the
incoming packets.

The next concern at the recoder after managing the window
properly is to handle the coefficients. The outgoing packets
should have coefficients that will allow the decoder to decode
the packet. This is accomplished by adding the coefficients to
the packet payload. The recoder performs the coding operation
on both the packet payload and the incoming coefficients.
Once the decoder has enough packets, it separates the received
coefficients, calculates their inverse matrix, and decodes the
message. This results in an increase in the payload size that
consists of the actual payload length and the number of added
coefficients, so a small reduction in the maximum payload size
that can be used at the source node. However, it is important
to note that the number of coefficients does not increase as
the packet travel through the network and is bounded by the
maximum window size at the encoder. The recoding algorithm
is presented in alg. 1.

B. Feedback Mechanism

Network coding-based approaches do not rely on the arrival
order or sequence number of packets. Instead, any coded
packet can replace a lost packet within its coding window. The
source node uses feedback from the destination to move the
window forward, taking into account the number of innovative
packets received at the decoder. This feedback is designed
such that it includes both fully decoded packets and partially
decoded packets in the coding window that still need additional
packets for complete decoding.

The window at each node is advanced based on the feedback
received. The feedback value is compared to the window
closing value of the packets, and any packet that does not
contain an innovative packet (i.e., a packet with a value higher

than the feedback value) is removed from the coding window.
If there is a large burst of errors, the window will continue to
grow until it reaches its maximum capacity. Different decision-
making criteria can be used if the window reaches its capacity.
For example, if every packet is critical, the window can be kept
at that length and more repair packets can be sent. However,
in many practical scenarios, the freshness of the packet is a
crucial factor, such as in live video streaming where some
lost packets may not be worth retransmitting. In such cases,
the oldest packets may be dropped from the window to keep
it sliding [5].

IV. IMPLEMENTATION

The KODO library by Steinwurf ApS [6] optimizes network
coding implementations. Although it has been one of the major
building blocks of network coding implementations and is
available in various programming languages, a straightforward
sliding window recoder is not yet available within KODO. This
work modifies the sliding window APIs in the library to create
a recoder, which was not a feature previously considered even
in SWNC standardization efforts [7]. The first step was to
define the coding header and payload structures. As they are
common in packet networks, headers often include additional
information about the message such as source and destination
IPs and flags. In network coding implementations, the header
also includes information necessary for decoding the message.
This section also discusses the network coding-related header
values and flags.

In a sliding window mechanism, the size and opening point
of the window are crucial factors and are therefore included
in the coding header. The size of the window is represented
by 1 byte, while the opening point size is represented by 2
bytes. The number of coefficients is limited by the window
size, which is also included in the coding header (1 byte). To
distinguish between repair packets and packets with innovative
data compared to the previous packet, a single bit, 0 or 1, is

Algorithm 1: Recoder’s Process
Input: Incoming packet and coding headers
Output: Outgoing packet and coding headers
Step 1: Identify min and max window values and

coded payload
Step 2: if the incoming packet is innovative then

Add the incoming packet to buffer
else

Discard the packet

Step 3: if slot to send a new packet then
Add the next packet in buffer to the window

Step 4: Generate coefficients for the current window
and create a recoded packet

Step 5: Add the min window of first packet and the
max window of last packet in the recoding window
as the min and max of the outgoing packet’s window

Step 6: Send the outgoing packet with window limits

added. In multi-hop systems, two flags are used to distinguish
repair packets: the 'source FEC flag', which is set to 1 by the
source node when generating a repair packet, and the 'last FEC
flag', which is changed by each node and set to 1 when a node
generates a repair packet. Both flags are set to 1 in the source
node but may be different in other nodes. The coding header
is 5 bytes, with the last 6 bits kept null.

The essence of network coding is the possibility of creating
new packets from a combination of original packets using
random coefficients. These coefficients are necessary for de-
coding at the receiver; so they are either attached to the packet
payload or header. The size of the coefficients is determined
by the number of packets included in the coding window. In
end-to-end coding schemes, where coding is performed only
at the source and decoding occurs at the sink, the coefficients
can be shared by sharing the seed value used to generate them,
along with the window size, instead of sharing the coefficients
themselves.

However, when recoding is performed, the coefficients must
reflect the corresponding operations. Simply sharing the seed
and recreating the original coefficients is not ideal for a net-
work that wants to use network coding optimally by recoding
at intermediate nodes. To ensure that recoding operations
are reflected in the coding coefficients, we propose a simple
change to the packet payload. The source node performs the
encoding and attaches the coding coefficients to the payload,
resulting in a payload size slightly larger than the original
packet size. This simplifies the recoding process for nodes,
as they can simply recode the packet payload using locally
generated coefficients. The sink node can then disassemble
the original payload and coefficients and decode correctly
using the received coefficients. It’s worth mentioning that the
size of the payload does not increase as it travels through
the network. The payload length is determined only by the
maximum coding window and recoder nodes simply perform
the recoding without adding their own coefficients to the
payload.

The feedback packet is also defined slightly differently from
a simple TCP-style packet, with a minor modification. Instead
of sending the sequence number of the last correctly received
packet, our approach requires the receiver to send two values:
the number of correctly decoded packets and the number of
partially decoded packets. Partially decoded packets refer to
packets with innovative information that have not yet been
fully decoded because there are not enough packets available
compared to the window size of the arrived packet. These
packets can be completely decoded as soon as a repair packet
arrives that completes the window for decoding. This is a
critical aspect of network coding that reduces the delay in
in-order delivery.

V. ANALYSIS AND RESULTS

The sliding API of the KODO-Python library was utilized
to create a recoder, which was then tested using a multi-hop
network to verify that the intermediate nodes could perform
recoding operations. The recoder’s performance was compared

to an end-to-end SWNC approach. The channels are modeled
as binary erasure channels. We expect the feedback channels
to be error-free. The study also incorporated an SR-ARQ
implementation as the baseline scenario. These three distinct
scenarios were examined to evaluate the approach’s efficacy.
In the end-to-end network coding scenario, the cumulative
channel loss was calculated, and the code rate was adjusted
accordingly. We ran trials by sending 100 packets of 100 bytes
each over a 2-hop network, with different error rates and RTTs
fixed in the simulation.

Three performance metrics are being assessed: completion
time of information exchange, number of transmissions re-
quired, and the success ratio of packet transmission. The
completion time of information exchange is calculated by
measuring the number of time slots needed to receive all the
packets at the receiver and acknowledge their receipt at the
source. This corresponds to the active time of the network and
resource utilization. The number of transmissions is the total
number of forward transmissions that occur throughout the
network. This metric can be related to the transmission energy
spent while the information exchange. The success ratio is
measured as an indicator of the user’s quality of experience.
In the scope of this work, we define success ratio in terms
of packets and time slots; as the ratio between the number
of useful data packets received by the destination node to
the number of slots. As a general convention, the solid lines
correspond to the scenario of SWNC with recoder while the
dotted lines correspond to the case of SWNC without recoder,
and the dashed lines show traditional SR ARQ.

The sliding window recoder offers a significant advantage
in terms of reducing completion time in the network. As
previously mentioned, the recoder enables the use of different
code rates at each node, and the source can stop transmitting
once the immediate intermediate node has received sufficient
packets to reconstruct all the packets. This approach can
also be extended to other intermediate nodes in a multi-hop
network, allowing each node to halt transmissions once enough
packets have been received by the next node. This considerably
reduces the number of transmissions in the system compared
to end-to-end SWNC, where the source and all intermediate
nodes transmit duplicate packets in case of a lost packet (Fig.
3 and Fig. 4). However, SR ARQ still has the least number of
transmissions unless the error rate goes much higher since the
retransmissions are only happening when a NACK is received.
The SWNC with recoder has a slightly higher number of
transmissions because it sends more repair packets till the
acknowledgments for all packets are received. However, it is
to be noted that the network coding implementations are more
reliable about completion as for any given RTT and loss rate,
the performance can be guaranteed with very low variations.
SR ARQ performance will largely depend on the loss patterns
and such guarantees can not be provided. In fact, in many trials
with higher RTT or loss rate, the transmission of 100 packets
where not completed within 500 slots, and that is reflected in
the figures 5 and 6. Furthermore, experimental trials conducted
at different loss rates and round-trip times confirm that the

Fig. 3: Total transmissions till the successful reception of
100 packets when ϵ1 = 0.05 and ϵ2 = 0.15

Fig. 4: Total transmissions till the successful reception of 100
packets when RTT is 20 slots and ϵ1 = 0.05, but ϵ2 varies

advantage of using a recoder increases with increasing loss
rate and RTT, and its performance benefits multiply as the
number of hops increases.

Practical implementations validate that the code rate achiev-
able with the recoder is generally better than the code rate
required for successful transmissions in end-to-end SWNC.
When the code rate is the same, the performance remains
almost unchanged, as observed by comparing instances of
ϵ2 = 0.10 and ϵ2 = 0.15 where the same code rate is em-
ployed at the recoder, from Fig.7. It is worth noting that failure
to employ recoding would result in the source bearing all
losses between the source and destination, making it necessary
to have a higher redundancy at the source. This results in
reducing the success ratio since more transmissions will be
required to complete a specific number of packets compared
to the case with recoder. Our experimentally obtained values,
as shown in Fig. 7, exhibit a decline in the large RTT case,
given that the RTT is of the same order of magnitude as
the total number of packets. However, theoretical analysis of
the success ratio, when the number of packets is infinite or
when the number of packets is significantly higher than the
RTT, reveals that it will remain unchanged for different RTTs,
provided that there are enough repair packets to complete
transmissions within a bounded time and negligible variance.
These analyses show that using a recoder offers several
advantages over an end-to-end coding solution, including a
shorter bound for completion time (as seen in the completion
time analysis) and improved performance on multiple fronts.

Fig. 5: Completion time for 100 packets when ϵ1 = 0.05 and
ϵ2 = 0.15

Fig. 6: Completion time for 100 packets when RTT is 20
slots and ϵ1 = 0.05, but ϵ2 varies

VI. USECASES

A. Underwater Communication

As communication networks get extended to the underwater,
wireless communications started to explore different types of
propagation technologies such as acoustic and visible light
in order to address the differences from over-the-air RF
transmission in the underwater scenario. While the acoustic-
based transmission is mostly limited by the transmission rate
and delay, recent underwater optical wireless communication
(UOWC) trials have shown high attenuation even for a short

Fig. 7: Success ratio observed by simulation compared to the
theoretical maximum for varying RTT.

Fig. 8: Success ratio observed by simulation and the
theoretical maximum for varying error rate and fixed RTT.

distance communication [8]. With the terrestrial networks
being transformed to the 5G standards, a low delay, high
throughput, and reliable underwater communication is becom-
ing a bottleneck in many applications. Further, the physical
boundaries of the network are fading as the devices in the
network spread across terrestrial and underwater locations.
Different technologies such as visible light communication
and laser-based communication are being tested to provide
smooth single-mode communication in such networks. On the
other hand, the combination of different technologies, such as
RF above water level and acoustic channel underwater [9] are
also examined to utilize the best possible situations on both
sides. However, such a system demands an intermediate node
capable of converting the signals from one form to another
at the intersection of the two mediums. A buoy or a boat on
the sea can support such hardware. However, the underwater
channel still has more losses than the RF channels on air. A
sliding window recoder at the buoy, instead of a conventional
store and forward repeater, can bring significant improvements
in the performance of the network.

B. D2D Multihop Networks

In 5G and beyond networks, Device-to-device (D2D) com-
munication is expected to play a critical role in enabling new
services and applications. One of the key benefits of D2D
communication is the potential to reduce network congestion
and improve spectral efficiency by enabling direct communi-
cation between user equipments without going through a base
station. This can lead to reduced latency, higher throughput,
and improved energy efficiency. In D2D multihop network,
using a sliding window recoder can significantly improve the
network’s performance compared to end-to-end SWNC. The
probability of packet loss increases with the number of hops
in such a network and end-to-end network coding requires all
nodes in the path to transmit the same packets they receive,
leading to redundant transmissions and increased congestion.
With a sliding window recoder, each recoder allows for
different code rates to be used at each node, enabling the
optimization of each link’s performance. Additionally, as the
number of hops increases, the network efficiency also increases
with SWNC recoder. Overall, using a sliding window recoder

in a D2D multi-hop network can improve the network’s
reliability and efficiency while reducing congestion and energy
consumption.

C. IoT Networks

Another potential use case for sliding window recoder is
in Internet of Things (IoT) networks. IoT networks typically
consist of a large number of low-power devices with limited
processing and communication capabilities. These devices
often operate in harsh environments with high packet loss
rates, which can result in poor network performance and
reliability. Furthermore, these devices may be spread out over
a large area, and may not always have a direct connection
to the gateway. With a sliding window recoder, each inter-
mediate node can perform recoding operations on the packets
it receives before forwarding them to the next hop, reducing
the number of transmissions required to deliver the packets
to the destination. This can save energy and reduce latency,
which are critical factors in IoT networks. Moreover, IoT
networks often require real-time data processing and analysis,
and a sliding window recoder can ensure that the packets are
delivered in a timely and reliable manner. Thus, the sliding
window recoder has the potential to improve the reliability,
efficiency, and performance of IoT networks, making it a
promising technology for the future of IoT.

VII. CONCLUSIONS

In this paper, we designed the sliding window recoder
modifying sliding window API of KODO-Python. As far as
we know, this is the first practical implementation of the
sliding window recoder. The SWNC can play a crucial role
in achieving ultra-reliable low-latency communication and a
recoder ensures that the optimal performance over multi-
hop networks is achieved. The proposed approach is tested
and compared against end-to-end SWNC and SR-ARQ to
showcase the benefits of the sliding window recoder. We have
also provided an example scenario and various use cases of
the sliding window recoder, highlighting its potential to be
applied in different network scenarios. The results of this study
reiterate that the recoder can significantly improve network
performance and achieve the benefits of network coding at its
best.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on information theory, vol. 46, no. 4, pp. 1204–
1216, 2000.

[2] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,” IEEE
Transactions on Information Theory, vol. 52, no. 10, pp. 4413–4430,
2006.

[3] P. Karafillis, K. Fouli, A. ParandehGheibi, and M. Médard, “An algorithm
for improving sliding window network coding in tcp,” in 2013 47th
Annual Conference on Information Sciences and Systems (CISS). IEEE,
2013, pp. 1–5.

[4] S. Wunderlich, F. Gabriel, S. Pandi, F. H. Fitzek, and M. Reisslein,
“Caterpillar rlnc (crlnc): A practical finite sliding window rlnc approach,”
IEEE Access, vol. 5, pp. 20 183–20 197, 2017.

[5] J. Cloud and M. Médard, “Network coding over satcom: Lessons learned,”
in Wireless and Satellite Systems: 7th International Conference, WiSATS
2015, Bradford, UK, July 6-7, 2015. Revised Selected Papers 7. Springer,
2015, pp. 272–285.

[6] M. V. Pedersen, J. Heide, and F. H. Fitzek, “Kodo: An open and research
oriented network coding library,” in International Conference on Research
in Networking. Springer, 2011, pp. 145–152.

[7] V. Roca and B. Teibi, “Rfc 8681 sliding window random linear code (rlc)
forward erasure correction (fec) schemes for fecframe,” 2020.

[8] T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue laser
diode enables underwater communication at 12.4 gbps,” Scientific reports,
vol. 7, no. 1, pp. 1–10, 2017.

[9] F. Tonolini and F. Adib, “Networking across boundaries: enabling wireless
communication through the water-air interface,” in Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communi-
cation, 2018, pp. 117–131.

APPENDIX

Here we are going to explain the working of recoder with
the help of an example. We consider the source to have a
code rate of (4/5) while the recoder to have a code rate of
(3/4). Fig. 2 shows the slots in which transmissions occur.
We consider the packets to be delivered to the next hop
with a delay of 1 slot while the feedback is received at the
corresponding source node after 3 slots of receiving a packet.
An original packet is denoted as Pi while the packets received
and stored at the recoder are denoted as Ri. ΣPi defines the
coded packet including packets up to Pi. The red packets in
the transition are lost before reaching their destination. Now
we will explain some of the interesting incidents in the system.

1. At slot 4, the recoder sent a coded packet including the
first three packets, but it gets lost in transition. However, the
next packet is a repair packet from the recoder which will
compensate for the lost packet.

2. At slot 6, the recoder receives a coded packet that includes
original packets up to P4. However, the recoder already has
4 coded packets and this new packet does not provide any
additional degrees of freedom for the recoder. Thus this packet
is discarded at the recoder.

3. At slot 9, the packet coded over packets P4 to P7 is
lost in channel 1. The next packet which includes P8 will be
received at the next slot and will be added as the 7th packet
at the recoder (marked as R7). Thus in slot 10, where the
recoder is including R7 to the coding window, the outgoing
packet has information up to the original packet P8 as you can
see in the packets in transit at channel 2. This packet arrives
at the receiver at slot 11 and now the receiver has 6 packets
decoded completely, 1 packet partially decoded, and 1 packet
missing to be completely decoded.

4. At slot 10, the source sends a repair packet which can
compensate for the loss in slot 7. This gets stored as R8 and
included in the coding window of the recoder and helps to
decode all packets up to P8.

5. It is to be noted that the window indicated for the
outgoing packet of the recoder is the same as the minimum of
the opening window of any packet and the maximum of the
closing window of any packet included in its coding window.
The sliding window is moved either by the feedback or when
the buffer capacity of the node is reached.

	Introduction
	Network Model
	System design
	Recoding Process
	Feedback Mechanism

	Implementation
	Analysis and results
	Usecases
	Underwater Communication
	D2D Multihop Networks
	IoT Networks

	Conclusions
	References

