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Abstract—In the context of Mobile Robotics, the efficient
resolution of the Path Planning problem is a key task. The
model of the environment and the search algorithm are basic
issues in the resolution of the problem. This paper highlights
the main features of Path Planning proposal for mobile robots
in static environments. In our proposal, the path planning is
based on Voronoi diagrams, where obstacles in the environment
are considered as the generating points of the diagram, and a
genetic algorithm is used to find a path without collisions from
the robot initial to target position. This work combines some ideas
presented by Roque and Doering, who use Voronoi diagrams for
modelling the environment, and other ideas presented by Zhang
et al. who adopt a genetic algorithm for computing paths on
a regular grid based environment, considering certain quality
attributes. The main results were probed both in simulated and
real environments.

Index Terms—Autonomous Mobile Robots, Path Planning,
Voronoi diagrams, Genetic Algorithms.

I. INTRODUCTION

The autonomous mobile robotics has been developed pri-
marily to enable high-level tasks to be performed by machines
without human control. Therefore, robots should be able to
move properly in the real world, and consequently, the path
planning becomes one of the most important problems to be
solved in the design of autonomous mobile robots. It usually
involves modeling of geometric areas, incomplete knowledge,
treatment of uncertainty in measurements, avoiding moving
obstacles, unpredictability and kinematics of bodies, handling
multiple robots or goals. However, the effective resolution of
this problem can result in saving of working time, reduced
concern about the robot and investments of funds and often is
usually the basis for the development of other skills. In this
context and for these reasons, the path planning is a very active
area of research where an impressive range of approaches have
been proposed.

Generally, this task consist in finding optimal or quasi-
optimal paths from an initial state (origin) and a final state
(target) following a certain criteria for evaluating the optimal-
ity of the paths. The most frequently used criteria are traveled
distance, energy saving, smoothness and path’s safety.

In this regard, and in order to provide robust, flexible, toler-
ant to changes in the environment, reliable and computation-
ally efficient solutions, many different approaches have been
proposed to address this problem, including neural networks
[1], reinforcement learning [2], bioinspired methods [3], [4],

graphs [5], [6], [7], evolutionary algorithms [8], [9], [10], [11],
[12], [13], [14], among others [15], [16], [17].

This paper presents a proposal for path planning in static
environments. Our approach is based on Voronoi diagrams
(VD), where obstacles in the environment are considered as the
generating points of the diagram, and a genetic algorithm is
used to find a collision-free path between the initial and target
position of the robot. This work combines ideas presented by
Roque and Doering [6], where VD are used to represent the
environment, running a shortest path algorithm on the Voronoi
points, and the ideas presented by Zhang et al. [14], which
uses a genetic algorithm for computing paths on a regular
grid based environment, considering certain quality attributes
(length, safety and smoothness).

The main motivation for this combination is to provide, to
the path planning algorithm based on genetic algorithm, an
environment model that is computationally more efficient and
better adapted to the context of mobile robots than regular
grids. The results obtained in a large set of simulated experi-
ments show that our proposal improves both the quality as well
as the execution time. Finally, the best instances of paths were
executed in a real environment making our approach promising
for practical applicability in mobile robotic systems.

The paper is organized as follows. Section II present a
briefly introduction to Voronoi diagrams and evolutionary
algorithms, respectively. A description of the approach to
model the environment and the application of GA is carried
out in Section III while Section IV describes the case studies,
presenting a comparative analysis among the proposal and pre-
vious. Finally, we close with a discussion and some directions
in Section V.

II. BACKGROUND
A. Voronoi Diagrams

Voronoi diagrams are one of the main structures in the
computational geometry area, commonly used as visibility
graphs and for finding networks collision-free paths, they
are also one of the most common techniques for building
trajectory maps [5].

Given S a set of geometric entities in R? and a distance
metric, the Voronoi diagram for S is the partition of R in the
maximum number of regions, such that the points belonging
to each Voronoi region are closer to a single entity of S than
to the other ones [7].




VD have been usually applied to mobile robotics considering
the R? space, the Euclidean distance between points and the
nearest neighbour principle. Given P = {p1,pa,...,pn} a set
of points not aligned in the plane and d (p;, p;) the Euclidean
distance between points p; and p;, the Voronoi region R (p;)
generated by the point p; is defined by Equation 1:

R(p;) ={peR%d(p,p;) <d(p,p;),Vj#i} (1)

The points p; are called Voronoi generators while the set
of all Voronoi regions R (p1), R (p2),...., R (pn), is called
Voronoi diagram of P. In addition, a frontier between two
regions and an intersection of three or more edges are called
Voronoi edge and Voronoi vertex, respectively. Figure 1
presents a diagram where the regions are shown in shades
of gray, while the edges and the generating points are shown
in black.

Figure 1: Voronoi diagram.

Voronoi diagrams have two interesting properties in the
context of path planning with mobile robots:

1) every Voronoi edge belongs to the bisector of the line
segment determined by the two generating points of the
regions that determine the edge.

2) every Voronoi vertex is located exactly at the circum-
center of the polygon defined by the generating points
of the regions that determine the vertex.

These properties make the Voronoi diagrams a good alternative
for computing maps of paths with maximum security. Another
advantage it is that these diagrams could be easily general-
ized, defining non-points generators with geometric shapes
representative of real world obstacles. Therefore, it would be
possible to define a generator with a line segment to represent
a wall or with a polygon to represent the orthogonal projection
onto the plane of another robot, and other types of obstacles
that often occur in real environments.

B. Evolutionary Algorithms

Evolutionary algorithms (EAs) are stochastic search tech-
niques inspired in the natural process evolution of species
guided by the principle of survival of the fittest [18], [19].
EAs iteratively evolve a population of individuals representing
candidate solutions of the optimization problem. The evolution
process involves the probabilistic application of operators to
find better solutions.

The initial population is usually randomly generated. Each
iteration of the algorithm is divided in four stages. In the
first stage, every individual in the population is associated
with a fitness value that measures the quality of the candidate

solution. Later, the solutions are selected from the population
based on their fitness value, usually giving higher priority to
higher quality solutions. In the third stage, new solutions are
constructed applying evolutionary operators to the selected
solutions. Typically, the evolutionary operators used are the
crossover (recombination of parts of two individuals) and the
mutation (random changes in a single individual). Finally, in
the fourth stage, the new population is created, by replacing
the worse adapted individuals with solutions generated in
the iteration. This process is repeated until the population
converges to good quality solutions, where the best individual
has a good chance of representing an optimal solution or near-
optimal.

One of the most classical and widely known types of EA
are: Genetic Algorithms (GAs).

III. OUR PROPOSAL

In this work we combine ideas from two different previous
works. On the one hand, Roque and Doering [6] used VD
to represent the environment, considering a single attribute
for path planning (distance traveled using a shortest path
algorithm), because security is guaranteed by the properties
of the geometric construction used. On the other hand, Zhang
et al. [14] used a genetic algorithm on a regular grid based
environment model that considered several quality attributes
(distance, security and smoothness). Our approach combines
both ideas considering quality attributes not taken into account
by Roque and Doering, and using a better representation of
the environment that the one used by Zhang et al.

The rest of this section describes the major aspects of the
environment representation and the genetic algorithm used to
find the paths.

A. World modeling

The world model consists in a regular grid in which each
cell can be a free zone or represent an obstacle. A Voronoi di-
agram is generated from the set of points located in the center
of each obstacle. Thus, the center of each cell that represents
a barrier will also be a Voronoi generator. Figure 2 shows a
typical scenario modeled according to this representation.

Figure 2: A world model example.

The relationship between the variables that determine the
number of rows, columns and the side of each cell reproduces
the relationship between the size of the robot, obstacles and the
total area where the robot can move. So, the representation and
the algorithms consider the robot as a single particle (point). To
some extent, this relationship can be established as a simplified



implementation of the proposal of Wein et al. [7], regarding
the model of the environment and more specifically, how to
consider the robot as a point without loss of proportionality
between the areas occupied by different objects and the total
area of the environment.

B. Genetic Algorithm for path planning

The objective pursued with the implementation of the GA is
to find a path free from obstacles, specially considering the fol-
lowing attributes: length, smoothness and safety. To this end,
the GA should be able to properly explore the search domain
in the early stages, considering the restrictions imposed by
the environment and avoiding premature convergence. In the
final stages, the GA can benefit from the knowledge acquired
during the search process in order to reach a final result as
close as possible to the optimum.

1) GA encoding: Each individual represents a path consist-
ing in a variable length sequence of free cells, which begins
with the cell where the robot is originally located and ends
with the cell defined as the path destination.

It is important to note that this representation, as in [14], is
valid for individuals that represent both feasible and unfeasible
(no obstacle-free) paths. This aspect is relevant because the
fitness function has to be able to compute fitness for unfeasible
solutions. Although it may involve a higher computational
effort, working on genetically richer populations can contribute
to not bias the search process in early stages. The unfeasible
paths are composed of unfeasible and feasible sections. The
latter are important and should not be lost because they can,
at least potentially, contain valuable information that could be
helpful for building good solutions. In summary, incorporating
the management of unfeasible solutions in the GA tries to
avoid falling into local optima at the expense of increasing
the effort of the search process.

2) Fitness function: The fitness function measures the qual-
ity of a path, ensuring that unfeasible paths have always a
lower value than a feasible path.

Feasible paths: The Equations [2, 3, 4 and 5] presents the
fitness function for feasible paths considering the length, safety
and smoothness of the path. In this case, maxPathLength,
minPathLength, maxPathSafety and avePathSmooth values are
considered as upper and lower bounds and average for length,
safety and smoothness, respectively.

d _ maxPathLength — pathLength @)
term = maxPathLength — minPathLength

_ pathSafety
Sdterm = maxPathSafety )

pathSmooth + avePathSmooth
avePathSmooth

“)

SMterm =

ff = Wq * dterm + Wsa * SGterm + Wsm * SMterm (5)

Unfeasible paths: The Equations [2, 6, 7 and 8] presents
the fitness function for unfeasible paths considering the length,
the rate of infeasibility (the ratio between the number of
unfeasible edges and total number of edges) and the degree
of infeasibility (the ratio between the sum of the lengths of
the unfeasible sections and the total length of the path). In
this case, maxPathCrossDepth value is considered as an upper
bounds for cross depth weight of the paths.

UTterm = 1 — pathUR 6)

cdw _ maxPathCrossDepth — pathCrossDepth @
term = maxPathCrossDepth

fu = Wgq * dterm + Wyr * UTterm + Wedw * dete'rm (8)

3) Genetic Operators: This subsection describes the ge-
netic operators applied to individuals during evolution.

Crossover: The crossover operator is applied to each indi-
vidual of the population (pwy;) with probability p. and consist
in drawing another individual from the population (pwp),
drawing a cell or cross position (i) and generating two new
children using the genetic information of the parents (pwy; and
pwp), as it is shown in Equations 9 and 10. Figure 3a presents
an example of application of the crossover operator.

pws; = {[pws 1, ..., PO, [PWR+1, -y PWA] } 9)

pws = {lpwp.r, ..., pwpil; [Pwpiss, - Pwpm] } (10)

Mutation: The mutation operator is applied to each individ-
ual with probability p,, and consists in drawing a cell of the
path, pw;, and replaces it with another cell belonging to the
section defined by the predecessor pw; ; and successor pw;, ;.
Figure 3b presents an example of application of the mutation
operator.

Smooth: An ad-hoc smooth operator is used to provide
a mechanism for removing cells from paths. This operator
allows building shorter and softer paths and can help to factibi-
lize infeasible solutions. It also has another positive effect that
is the elimination of redundant cells (cells belonging to the
line segment determined by the cells immediate predecessor
and successor). The operator is applied to each individual,
with probability ps and consists in drawing a cell from the
path, pw;, and removing it. Figure 3c presents an example of
application of the ad-hoc smooth operator.

4) Selection: In order to be consistent with previous de-
cisions and preserve genetic diversity in the early stages of
the evolution process, we used a moderately elitist selection
operator. While this mechanism ensures that the 5% of best
individuals are selected for the next generation, the rest of the
population is drawn without taking into account the associated
fitness value and thus enabling the selection of feasible and
unfeasible individuals with equal probability.
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Figure 3: Example of genetic operators application.

5) Initialization of the Population: Based on the ideas
of the related works, the initial population in our work is
generated as follows:

1) Generate a Voronoi diagram from the set of points of
the centers of the obstacles in the environment.

2) Identify the regions R, and R, that contain the origin and
destination points of the path planning, respectively.

3) Compute shortest paths for each pair of vertices (vg,
v.) on the underlying graph (vertices and edges of the
Voronoi diagram), where v, and v, belong to the set of
vertices of the regions R, and R,, respectively. We used
an ad-hoc implementation of Dijkstra’s algorithm [20]
to compute the shortest paths.

4) Draw a random number of paths from the set of paths
generated in step 3.

5) For each path selected in step 4, calculate the sequence
of cells that represents it on the underlying regular grid.

6) Eliminate a random number of cells from each sequence
of cells calculated in step 5.

Although step 6 involves the loss of information, this effect
should be compensated during the evolution process by the
application of the crossover operator. The elimination of cells
from the set of paths aims to remove redundant cells and
generate an initial population with individuals representing
shortest and softer paths, although the paths may be less secure
and even unfeasible.

6) Termination conditions: To stop running the algorithm
the following termination criteria were defined:

Convergence: This criterion determines when the evolution
does not provide best individuals or the improvement is not
significant enough to continue to invest resources in it. Is
determined by controlling the maximum number of evolution-
ary steps without register the best individual variations nor
significant variations in the average population fitness.

The following values were used: {Minimum number of
evolutions=5ev, Maximum number of changes with no change
in the fittest individual=5ev, Minimum percentage of improve-
ment in the average fitness of the population=0.08%}.

Maximum number of evolutionary steps: Is used as a
preventive mechanism that guarantees the end of the algorithm.
The number of steps was set at 155ev.

IV. EXPERIMENTAL RESULTS

This section describe simulated and real test environments,
presenting the platforms used for experimentation, and the
results obtained, both in assessing the GA as to compare them
against previous proposals.

A. Platforms

This section details the technical specification of hardware
and software tools and the arena used for the experiments.
1) Simulated environment:

o Hardware: {CPU=Intel Pentium Dual Core E2140 -
1.60GHz, RAM=2GB DDR}

o Software: {OS=GNU/Linux - Xubuntu 2.6.31-22,
Programming Language=Java 1.6, GA Library=JGAP
3.3.3, Graph Library=JGrapht 0.8.1,  Voronoi
Library=Quickhull3d 1.4, Visor Processing 1.0.7}

2) Real environment:

e Arena: {An 1680x1680 milimeters square area over a
FIRA Mirosot field [21]}

e Vision System: {Doraemon [22]}

« Robot: {Kheperalll + KoreBot II [23]}

« Resources and media: {available online [24]}

(a) Scenario. (b) Robot in action.

Figure 4: Moving in a real environment.

B. Parameters settings and used scenarios

An extensive configuration analysis has been carried out for
calibrating the parameters of the proposed GA. The parameters
studied were population size, mutation, crossover and smooth
operator probabilities, on 18 cases repeated 10 times each. The
range of values considered were: 170-40 for the population
size, 0.02-0.01 for the mutation probability, 0.62-0.50 for the
crossover probability and 0.50-0.25 for the smooth operator
probability. The best parameters values determined using sev-
eral different scenarios and finally used in this work were:
{ps=142, p,,=0.0139,p,=0.51 and p,=0.33}.

Two different studies were conducted to evaluate the al-
gorithm proposed in this work. The first one was performed
in order to evaluate the quality of the obtained solutions
and the performance of the algorithm. The second study
was performed in order to compare our proposal with the
previous work [14]. For the first study were considered 10x10



dimension scenarios where the amount and location of the
obstacles were determined at random. For the second one, it
was considered a scenario identical to the one used in the
previous work to allow a fair comparison.

Figure 5a presents the average fitness and standard deviation
on the 50 independent runs for 10x10 size scenarios. From
these results, it is possible to draw the following conclusions:

1. the algorithm does not converge prematurely, but manages
to evolve quality solutions. Similarly, this result is repeated for
different sizes of scenarios.

2. whereas the generation of the scenarios was carried
out at random and the maximum fitness value is 1, we can
conclude that for a large number of situations reach high
quality solutions.

Figure 5b shows the standard deviation of the average fitness
obtained for each of the scenarios. The standard deviation
remained bounded by low values in most cases, showing that
the algorithm has a very good stability to globally converge
to high quality solutions.

o 1 22 32 4w 5 6 7 8 % 100 0 2

(a) Average fitness. (b) Standard deviation.

Figure 5: Average fitness and standard deviation.

Figure 6a shows the number of generations required to
reach the stop condition while Figure 6b shows the execution
time required for solving each of the scenarios. It can be
concluded that the algorithm is extremely stable in the number
of generations required for solving each scenario, as well as
in the time required for solving each scenario.

000

3000
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(a) Generations. (b) Execution Time.

Figure 6: Evolution Generations & Execution Time.

C. Comparative analysis

In order to compare our proposal with the previous work,
we studied the quality of the solutions obtained and the
performance of the algorithms. .

Table I presents the results of 1000 independent runs of the
GA based on the Digital Potential Field method (DPF) and
VD.

GA over DPF GA over VD
Environment generation (ms) 1632 1305
GA evolution (ms) 275.79 223
Average number of generations 12.51 15
Average Fitness 0.82990 0.83437
Standard deviation 0.01067 0.01376
Best Fitness 0.84583 0.85433
Deviation from the fittest 0.01267 0.01996
Average length 656.27 662.44
Average safety 253.58 291.19
Average smoothness 0.29111 0.29058

Table I: Numerical comparison.

The results obtained show that it is possible to maintain
the quality of the solutions while significantly reducing the
computation time. The GA based on DPF approach requires
a 25.05% more time in the initial phase of building the envi-
ronment. Also, when considering the quality of the solutions
obtained, the GA based on VD achieves better solutions, find-
ing safer paths with similar values for the length and smooth.
It also shows a higher level of stability in the sense that
converges to populations whose members are more similar.

On the other hand, Figure 7 presents graphically the solu-
tions obtained by each of the variants implemented. Figure
7a to be seen as the resulting path is reasonably smooth and
straightforward but, in comparison with Figure 7b that throws
the proposal based on VD, is less secure.

Once the questions previously raised were answered and
considering the practical application of both approaches in the
control of a real robot able of performing multiple tasks in an
environment, it should be studied the effect of assigning mul-
tiple tasks sequentially in different zones of the environment
for each approach.

(a) GA over DPF. (b) GA over VD.

Figure 7: Visual comparison.

The environment must be generated for DPF each time a
new path has to be calculated when the robot has changed its
position because the coding of paths depends on the initial
position of the robot. That is to say, if the robot has to
perform a sequence of n tasks in k different zones of the
environment, it should be generated k different environments,
one for each different zone. On the contrary, the coding of
paths is independent of the initial position of the robot in VD
approach thereby the generation of the environment, which is



the most computationally intensive part of the algorithm, is
performed only once.

The difference concerning the computational efficiency be-
tween the two proposals considering a static environment and
multiple tasks is presented in Figure 8.
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Figure 8: Multiple tasks execution time.

V. CONCLUSION AND FUTURE WORK

In this work we tackled the path planning problem in static
environments using a genetic algorithm based on Voronoi di-
agrams for representing the environment. The obtained results
show that our proposal is promising from a methodological
point of view and also considering its practical applicabil-
ity in mobile robotic systems, due to its short execution
time; our proposal improves both the quality as well as
the computational time of the solutions compared with the
proposal based on DPF [14]. This last aspect is not caused
by a better computational efficiency of the algorithm, but
also because the representation based on VD overcomes the
limitation established by the representation based on DPF,
which requires regenerating the environment every time the
robot needs to plan a new path, having changed its original
position.

On the other hand, we couldn’t find a public implementation
of the Visibility Pathway proposal presented by Roque and
Doering [6], in order to compare results.

It should be noted that Zhang et al. [14], work on dynamic
and real environments, and, along this line, the proposal
presented by Roque and Doering [6] simulate dynamic en-
vironments obtaining response times appropriate for working
with real robots.

Our future work will take into account the dynamic aspect,
so that we can evaluate the applicability of this alternative to
path planning in a more complex and realistic environments
with further restrictions. Therefore, we shall consider the
applicability of a multi-objective GA in order to balance the
objectives of minimizing the distance, maximize safety and
smoothness of solutions.
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