
Deterministic and Stochastic Analysis of Deep Reinforcement Learning
for Low Dimensional Sensing-based Navigation of Mobile Robots

Ricardo B. Grando1,2, Junior C. de Jesus2, Victor A. Kich3, Alisson H. Kolling3,
Rodrigo S. Guerra3, Paulo L. J. Drews-Jr2

Abstract— Deterministic and Stochastic techniques in Deep
Reinforcement Learning (Deep-RL) have become a promising
solution to improve motion control and the decision-making
tasks for a wide variety of robots. Previous works showed
that these Deep-RL algorithms can be applied to perform
mapless navigation of mobile robots in general. However,
they tend to use simple sensing strategies since it has been
shown that they perform poorly with a high dimensional state
spaces, such as the ones yielded from image-based sensing.
This paper presents a comparative analysis of two Deep-RL
techniques - Deep Deterministic Policy Gradients (DDPG) and
Soft Actor-Critic (SAC) - when performing tasks of mapless
navigation for mobile robots. We aim to contribute by showing
how the neural network architecture influences the learning
itself, presenting quantitative results based on the time and
distance of navigation of aerial mobile robots for each approach.
Overall, our analysis of six distinct architectures highlights
that the stochastic approach (SAC) better suits with deeper
architectures, while the opposite happens with the deterministic
approach (DDPG).

SUPPLEMENTARY MATERIAL
I. INTRODUCTION

Many problems in robotics can be expressed as Reinforce-
ment Learning (RL) problems. RL techniques allow a robot
to learn progressively to excel in a distinct task, such as
motion-based tasks. Through trial-and-error interactions with
an environment, an agent gets feedback in terms of a scalar
objective function that guides it step-by-step towards the
learning [1]. This can be approached by many policies of
learning, which can framed into two groups: deterministic
and stochastic.

More recently, RL techniques have been further improved
by using deep neural networks. In this case, the agent of
Deep Reinforcement Learning (Deep-RL) becomes a neural
network that escalates its ability to learn complex behaviors,
such as the behavior needed to perform navigation tasks in
complex environments. The techniques based on Deep-RL
have been used extensively to improve navigation-related tasks
for a range of mobile vehicles, including terrestrial mobile
robots [2], [3], aerial robots [4], [5] and underwater robots [6].
These approaches diverge on the choice of an ANN, ranging
from Multi-Layer Perceptron (MLP) network structures to

1Ricardo B. Grando is with the Technological University of Uruguay.
E-mail: ricardo.bedin@utec.edu.uy

2Ricardo B. Grando, Junior C. de Jesus and P. L. J. Drews-Jr are
with NAUTEC - Intelligent Robotics and Automation Group, Center for
Computational Science, Federal University of Rio Grande - FURG, RS,
Brazil. E-mail: paulodrews@furg.br

3Victor A. Kich, Alisson H. Kolling and Rodrigo S. Guerra are with
the Universidade Federal de Santa Maria - UFSM, RS, Brazil. E-mail:
rodrigo.guerra@ufsm.br

Convolutional Neural Networks (CNN). Most of them have
achieved interesting results not only in performing mapless
navigation-related tasks but also in obstacle avoidance and
even media transitioning for hybrid vehicles [7], [8]. However,
the choice of the learning method can be affected not only
by the selection of the Deep-RL technique but also by the
agent’s ANN structure.

In this work, we further explore the use of distinct Deep
ANN architectures for two state-of-art Deep-RL algorithms:
Deep Deterministic Policy Gradient (DDPG) [9] and Soft
Actor-Critic (SAC) [10]; a deterministic one and a stochastic
one. We perform a study showing how the deep network
structure and the depth of the network impact the agent’s
learning. We perform an evaluation using an Unmanned Aerial
Vehicle (ANN) in tasks related to goal-oriented mapless
navigation using low-dimensional data. We perform a two-fold
evaluation, taking into account navigation time and distance
navigated to enrich the results.

This work contains the following main contributions:
• We present comparative analyses of how the agent’s

deep neural network affects deterministic and stochastic
algorithms’ performance for mapless navigation-related
tasks of mobile robots.

• We show that low dimensional sensing is better suited to
use in Deep-RL for continuous control tasks in general

• We also show that the depth increases the performance of
deterministic approaches in general, while the opposite
tends to happen with stochastic approaches.

• We provide a framework with a simulation and en-
vironment and two approaches based on state-of-the-
art actor-critic Deep-RL algorithms with a range of
structures that can be successfully adapted to perform
mapless navigation of mobile robots, using only range
data readings and the vehicles’ relative localization data.

This paper is organized as follows: the related works
section (Sec. II) is presented in the sequence. We show our
methodology in Sec. III and the results are presented in Sec.
IV; both are complemented in Sec. V. For last, we highlight
our contributions and present future works in Sec. VI.

II. RELATED WORK

A couple of Deep-RL works in robotics have already
been presented, discussing how efficiently these methods
can be used in problems related to motion control with low
dimensional sensing information [7], [11]. For a terrestrial
mobile robot, Tai et al. [11] used ten samples of range findings
and the relative distance of the vehicle to a target to perform

ar
X

iv
:2

20
9.

06
32

8v
1

 [
cs

.R
O

]
 1

3
Se

p
20

22

navigation through obstacles. The DDPG algorithm used
learned effectively to navigate to a target. Recently, deep-RL
methods have also been successfully used in robotics by De
Jesus et al.. Also, [3], [12] and others accomplished mapless
navigation-related tasks for terrestrial mobile robots using
simple information.

Singh and Thongam [13] show that a Multi-Layer Percep-
tron (MLP) can be used for mapless navigation of terrestrial
mobile robots in dynamic environments. Their method used
MLP and Recurrent Neural Networks to decide the robot’s
speed for each motion. They concluded that the approach is
efficient in guiding the robot to a target position.

For aerial mobile robots, the use of Deep-RL is still limited.
Rodriguez et al. [14] used a DDPG-based approach to teach
an agent to land on a moving platform. Their approach used
information from images, but it was fed with simplified
information to the agent. It used Deep-RL in simulation with
the RotorS framework [15] and with the Gazebo simulator.
Grando et al. [16] presented a DDPG and a SAC approach
on Gazebo for 2D UAV navigation. Recently, double critic-
based Deep-RL has also been used for UAVs [5]. All of
them use information from ranging sensors in a simple state
information model for the agent.

Two works have recently tackled the navigation problem
with the medium transition of hybrid mobile robots [8], [7].
Grando et al. [7] presented Deep-RL approaches with a
MLP architecture. It was developed using distance sensing
information for aerial and underwater navigation. De Jesus et
al. [8] tackled the problem of motion for this kind of vehicle
using image information, but it was used with contrasting
learning that takes into account a decoder to simplify the
image information to feed the agent.

Based on these works that used simple state information, we
present a comparative analysis of how the agent’s deep neural
network affects the performance of Deep-RL for continuous
motion tasks in mobile robots. We aim to provide the best
architecture for each kind of algorithm. The environment
used for the testing is the Gazebo simulator with a described
real-world aerial mobile robot.

III. METHODOLOGY

In this section, we discuss the Deep-RL approaches used
in this work and the mobile aerial robot used. We detail the
structure of all networks used to perform the comparison for
both deterministic and stochastic agents.

A. Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) [9] has two
main deep neural networks: an actor network that provides
the real value of a chosen action and a second deep neural
network to learn a target function that gives stability to the
learning process [9]. The observation of the current state is
the input of the actor-network. The actor network provides a
continuous action space value chosen by the policy. At the
same time, the critic network uses the current state and the
agent’s action to provide the Q value for the agent.

This method provides good performance for continuous
control but has a challenging problem related to exploration.
Since it is deterministic, DDPG needs some exploration policy
µ′ to avoid learning stagnation. This can be solved by adding
a noise process N to the actor policy. This noise adding
process can be defined as:

µ′ = µ(st) +N (1)

where N is a noise chosen. The Ornstein-Uhlenbeck process
[17] is typically used and provides good exploration.

B. Soft Actor Critic (SAC)

We also developed a stochastic approach for comparison.
It was based on the Soft Actor-Critic algorithm [10]. It also
consists of an actor-critic system that combines off-policy
updates but with a stochastic actor-critic method to learn
continuous action space policies. It does so by using neural
networks as an approximation function to learn a policy.
However, in the SAC algorithm, the current stochastic policy
is used instead of the noise used in DDPG. By acting without
noise, it tends to provide better stability and performance.
The learning speed also tends to be higher since the algorithm
encourages the agent to explore new states. It uses the Bellman
equation with neural networks as a function approximation
to maximize the entropy.

C. Simulated Environments

The algorithms were implemented in simulation together
with ROS and the Gazebo simulator. We used the aerial
mobile vehicle presented at [5]. This vehicle was described
using the framework RotorS [15] and was based on the real
vehicle presented at [18]. Its low dimensional sensing was
given by a simulated LIDAR. The described LIDAR is based
on the UST 10LX model. It provides a 10 meters distance
sensing with 270° range and 0.25° of resolution.

We developed two environments with dimensions of
10×10×6 meters. The first one is a simple environment
that has no obstacles. It only has walls that limit the scenario.
Our idea for using this scenario was to guarantee that all the
versions of the ANNs used were able to learn to perform the
task of navigating to a target point to have a fair comparison.
The second one has a few obstacles added to it to make it
more difficult to learn and test the ability of the agent in
avoiding obstacles.

D. Reward Function

A simple binary rewarding function was used: a positive
reward is given if the agent reaches the goal, or a negative
reward is given if the robot collides with the walls or does
not reach the goal in less than a 500 steps limit. The function
can be described as follows:

r(st, at) =

{
rarrive if dt < cd

rcollide if minx < co || ep = 500
(2)

The reward rarrive is 100, while the negative reward
rcollide is -10. Both cd and co distances were set to 0.5
meters.

Actor Critic

(a) MLP 2.

Actor Critic

(b) MLP 3.

Actor Critic

(c) MLP 4.

Actor Critic

(d) MLP 5.

Actor Critic

(e) LSTM.

Actor Critic

(f) CONVNET.

Fig. 1: Networks structures used in our comparison study.

E. Networks Structure

The input for the networks has a total of 26 values, 20
samples for the distance sensors, the three previous actions
and three values related to the target goal, which are the
vehicle’s relative position to the target and the relative angle
to the target in the x-y plane and z-distance plane. The
only exception was used in the CNN architecture, where
270 samples from the sensor were used instead of 20. The
network outputs are the linear velocity and the variation of
the vehicle’s yaw (∆ yaw) that will be sent to the robot.
The actions are normalized between 0 and 0.25 m/s for the
linear velocity and from −0.25 to 0.25 rad for the ∆ yaw.
All network structures were developed inspired by related
works that deal with low-dimensional sensing data as inputs.

We used six distinct ANN architectures, four of them based
on the MLP fully connected architecture, one based on the
LSTM architecture and one based on a CNN architecture. For
all actor-critic network structures, we fixed the critic network
with a standard of three hidden layers with 512 neurons each,
while the actor-network varies, as shown in Figure 1. The
main idea is to evaluate the impact of the network structure
on the agent’s ability to provide the actions, not to evaluate
if the agent is capable of learning, which is the main goal of
the critic network. For the last, we used ReLU activation in
the hidden layers and Tanh activation in the output layer.

IV. EXPERIMENTAL RESULTS

For training, we generated target goals in a random manner,
towards which the agent should navigate. Five hundred steps

was the limit defined for each episode, which could end first
if the agent collided with an obstacle or with the scenario
border. A new goal in the same episode was generated if the
agent reached the goal before finishing the 500 steps limit.
In this case, the total amount of reward could exceed the
maximum value of 100.A learning rate of 10−3 was used,
with a minibatch of 256 samples and the Adam optimizer for
all approaches. In the first scenario, we limited the number
of episodes to be trained to 1000, while the agent was trained
for 1500 episodes in the second. These respective limits for
the episode number are used based on the stagnation of the
maximum average reward received.

A. Results

In this section, the results obtained during our evaluation
are shown. For each scenario and model, an extensive amount
of statistics are collected. The evaluation was done in a two-
fold manner, with goal-oriented navigation and a waypoint
navigation manner. These two-fold tasks were performed for
100 trials and the total of successful trials are recorded. Also,
the average navigation time with its standard deviation is
recorded.

V. DISCUSSION

In general, the extensive validation of the various models
created and tested shows that both agents are flexible
regarding the type of ANNs used. It can be concluded that
the DDPG-based approach performs better in an unhindered
scenario, while the opposite occurs with the SAC-based

TABLE I: Statistics of goal-oriented navigation 2D

Env Algorithm Rate Average Time (s)

1 DDPG 2 100% 18.54± 1.21
1 DDPG 3 100% 13.48± 0.46
1 DDPG 4 100% 13.442± 0.96
1 DDPG 5 0% 102.812± 10.849
1 DDPG LSTM 95% 58.657± 65.295
1 DDPG CONV 84% 48.329± 48.522
2 DDPG 2 65% 30.711± 11.343
2 DDPG 3 35% 28.13± 11.06
2 DDPG 4 39% 29.9± 14.62
2 DDPG 5 0% 92.547± 17.86
2 DDPG LSTM 21% 44.06± 26.49
2 DDPG CONV 0% 98.77± 82.11
1 SAC 2 100% 18.38± 1.05
1 SAC 3 93% 32.2± 14.52
1 SAC 4 100% 16.16± 1.63
1 SAC 5 97% 24.87± 14.896
1 SAC LSTM 100% 19.22± 4.37
1 SAC CONV 100% 15.233± 1.023
2 SAC 2 13% 39.99± 26.32
2 SAC 3 74% 35.617± 12.79
2 SAC 4 60% 33.978± 11.84
2 SAC 5 32% 25.011± 12.29
2 SAC LSTM 35% 39.87± 20.71
2 SAC CONV 0% 34.01± 14.67

TABLE II: Statistics of waypoint goal-oriented navigation
2D

Env Algorithm Rate Average Time (s) % Distance

1 DDPG 2 100% 97.22± 1.79 100%
1 DDPG 3 100% 99.37± 3.89 100%
1 DDPG 4 95% 135.84± 29.146 97.376%
1 DDPG 5 0% 203.168± 1.849 0%
1 DDPG LSTM 84% 248.04± 167.75 87.75%
1 DDPG CONV 39% 382.637± 211.715 67.89%
2 DDPG 2 1% 118.278± 75.77 46.734%
2 DDPG 3 7% 55.43± 44.319 20.816%
2 DDPG 4 0% 45.09± 35.45 10%
2 DDPG 5 0% 97.54± 16.79 0%
2 DDPG LSTM 0% 75.06± 53.6 7.142%
2 DDPG CONV 0% 127.50± 74.74 0.61%
1 SAC 2 2% 131.07± 88.29 32.21%
1 SAC 3 54% 164.18± 43.89 73.76%
1 SAC 4 68% 155.54± 40.36 83.09%
1 SAC 5 48% 152.418± 50.384 74.63%
1 SAC LSTM 100% 118.55± 11.16 100%
1 SAC CONV 0% 209.74± 2.051 50.43%
2 SAC 2 0% 53.379± 39.343 11.224%
2 SAC 3 0% 36.611± 16.65 12.65%
2 SAC 4 0% 54.508± 42.59 14.285%
2 SAC 5 9% 73.56± 59.489 28.775%
2 SAC LSTM 1% 62.92± 46.63 12.85%
2 SAC CONV 0% 35.6± 15.30 0.204%

approaches. Figure 2 shows the final reward of each model
in each context and scenario.

It can be observed that the larger and more complex the
network, the greater the average reinforcement tends to be,
as, for example, for the models with LSTM and CNN. It is
important to note that this is due to the fact that a greater
number of navigations are performed in each episode and
not that the models are better or worse. All models with an
average reinforcement greater than 100 can be considered
functional. The higher number of navigations is due to the

TABLE III: Statistics of goal-oriented navigation 3D

Env Algorithm Rate Average Time (s)

1 DDPG 2 100% 13.54± 1.00
1 DDPG 3 100% 13.697± 0.85
1 DDPG 4 100% 13.735±−0.941
1 DDPG 5 0% 20.21± 13.93
1 DDPG LSTM 100% 13.81± 1.22
1 DDPG CONV 0% 26.66± 17.83
2 DDPG 2 8% 23.187± 10.30
2 DDPG 3 17% 49.276± 38.32
2 DDPG 4 24% 29.76± 15.85
2 DDPG 5 0% 17.93± 5.727
2 DDPG LSTM 61% 31.26± 16.43
2 DDPG CONV 0% 18.56± 10.57
1 SAC 2 100% 25.89± 10.39
1 SAC 3 100% 27.038± 18.673
1 SAC 4 91% 26.008± 15.20
1 SAC 5 100% 16.706± 2.674
1 SAC LSTM 100% 56.48± 25.71
1 SAC CONV 0% 68.75± 51.81
2 SAC 2 5% 28.218± 16.553
2 SAC 3 19% 39.43± 22.21
2 SAC 4 29% 50.373± 40.765
2 SAC 5 8% 51.58± 23.25
2 SAC LSTM 5% 37.44± 24.72
2 SAC CONV 0% 32.78± 17.62

TABLE IV: Statistics of waypoint goal-oriented navigation
3D

Env Algorithm Rate Average Time (s) % Distance

1 DDPG 2 100% 72.90± 2.21 100%
1 DDPG 3 77% 76.99± 29.23 86.44%
1 DDPG 4 99% 90.120± 19.90 98.396%
1 DDPG 5 0% 19.529± 20.32 1.02%
1 DDPG LSTM 99% 90.44± 6.02 98.97%
1 DDPG CONV 0% 20.53± 11.1790 0.62%
2 DDPG 2 0% 29.194± 23.434 2.24%
2 DDPG 3 0% 39.8± 28.85 2.24%
2 DDPG 4 0% 38.41± 31.38 4.897%
2 DDPG 5 0% 17.95± 6.486 0%
2 DDPG LSTM 0% 34.9± 25.37 8.36%
2 DDPG CONV 0% 21.01± 18.51 0%
1 SAC 2 0% 114.01± 67.66 37.463%
1 SAC 3 10% 135.220± 61.154 47.084%
1 SAC 4 52% 140.94± 50.30 68.22%
1 SAC 5 26% 173.124± 48.973 55.685%
1 SAC LSTM 94% 155.82± 60.69 95.34%
1 SAC CON 0% 121.21± 73.98 1.603%
2 SAC 2 0% 25.054± 15.52 0.204%
2 SAC 3 0% 42.44± 31.20 3.469 %
2 SAC 4 3% 61.382± 55.434 16.938%
2 SAC 5 1% 57.499± 28.62 3.06%
2 SAC LSTM 0% 34.9± 25.37 1.224%
2 SAC CONV 0% 29.46± 12.94 0%

slower step with more complex networks, allowing the task
to be completed and optimized with a smaller number of
actions. This further reinforces the importance of focusing on
a simple reward system like the one proposed in this work.

In Figure 3 it is possible to observe the comparison of the
average time to perform the first one in the 2D context, the
context where the approaches presented average results close
to the maximum possible for all structures. It is interesting
to observe in Figure 3 the characteristics of each approach in
more detail. It is possible to observe that the SAC approach

(a) Reward 2D Navigation Scenario 1. (b) Reward 2D Navigation Scenario 2.

(c) Reward 3D Navigation Scenario 1. (d) Reward 2D Navigation Scenario 2.

Fig. 2: Comparative Reward.

has a similar average time between the structures, while the
DDPG-based approach varies with greater intensity. This is
due to the greater generalization capability that the stochastic
biased method, such as SAC provides, while DDPG can be
very good for specific structures. In general, with respect
to time, it is possible to conclude that the approach based
on SAC tends to be, on average, a little longer and more
predictable, while the opposite occurs with approaches based
on DDPG.

In Figure 4 it is also possible to observe the average
distance for the second task in the second scenario, also in
the 2D context, as it is more generally stable between the
structures. From this illustration, it is interesting to observe
in more detail the characteristics of each approach. It can be
seen how the DDPG-based approach performs better with two
layers and how the performance drops with increasing network
complexity. Meanwhile, the SAC approach presents better
results with more complex network structures, increasing
performance as the number of layers increases, for example.
This is due to the ability to generalize and create greater
gradients than the method based on stochastic bias SAC has.
In general, it can be concluded that the larger the network,

Fig. 3: Comparison of average time for 2D navigation in the
first scenario (more stable).

the better the performance of agents based on SAC tends to
be, while the opposite occurs with DDPG.

The limit for complexity, however, appears to be close to
the proposed convolutional model. As can be seen in Figure
4 and also in the results for the 3D context, both approaches
with CNN failed to learn to perform the tasks. The solution

Fig. 4: Comparison of average time for 2D waypoint naviga-
tion in the first scenario (more stable).

to this can be contrastive networks [8]. The use of contrastive
networks with Deep-RL can be a way not only to solve this
problem with CNNs, but also to optimize the problem of the
work as a whole.

VI. CONCLUSIONS

In this paper, we presented a comparative analysis of
deterministic and stochastic algorithms for low-dimensional
sensing-based mapless navigation-related tasks for mobile
robots. We discussed how the agent’s deep neural network
affects performance while executing the tasks. We can
conclude that the depth of the neural network increases the
inefficiency of deterministic approaches in general, while the
opposite tends to happen with stochastic approaches. We can
also conclude that low-dimensional sensing is better suited
to use in Deep-RL for continuous control tasks in general.
Overall, future work related to the effect of the critic’s neural
network will be conducted as well to evaluate how it impacts
the learning of the policy itself.

ACKNOWLEDGMENT

The authors would like to thank the VersusAI team. This
work was partly supported by the CAPES, CNPq and PRH-
ANP.

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” IJRR, vol. 32, no. 11, pp. 1238–1274, 2013.

[2] K. Ota, Y. Sasaki, D. K. Jha, Y. Yoshiyasu, and A. Kanezaki, “Efficient
exploration in constrained environments with goal-oriented reference
path,” in IEEE/RSJ IROS, 2020, pp. 6061–6068.

[3] J. C. de Jesus, V. A. Kich, A. H. Kolling, R. B. Grando, M. A. d.
S. L. Cuadros, and D. F. T. Gamarra, “Soft actor-critic for navigation
of mobile robots,” Journal of Intelligent & Robotic Systems, vol. 102,
no. 2, pp. 1–11, 2021.

[4] G. Tong, N. Jiang, L. Biyue, Z. Xi, W. Ya, and D. Wenbo, “UAV
navigation in high dynamic environments: A deep reinforcement
learning approach,” Chinese Journal of Aeronautics, vol. 34, no. 2, pp.
479–489, 2021.

[5] R. B. Grando, J. C. de Jesus, V. A. Kich, A. H. Kolling, and P. L. J.
Drews-Jr, “Double critic deep reinforcement learning for mapless 3d
navigation of unmanned aerial vehicles,” Journal of Intelligent &
Robotic Systems, vol. 104, no. 2, pp. 1–14, 2022.

[6] I. Carlucho, M. De Paula, S. Wang, B. V. Menna, Y. R. Petillot, and
G. G. Acosta, “Auv position tracking control using end-to-end deep
reinforcement learning,” in MTS/IEEE OCEANS, 2018.

[7] R. B. Grando, J. C. de Jesus, V. A. Kich, A. H. Kolling, N. P.
Bortoluzzi, P. M. Pinheiro, A. Alves Neto, and P. L. J. Drews-Jr,
“Deep reinforcement learning for mapless navigation of a hybrid aerial
underwater vehicle with medium transition,” in IEEE ICRA, 2021, pp.
1088–1094.

[8] J. C. de Jesus, V. A. Kich, A. H. Kolling, R. B. Grando, R. d. S.
Guerra, and P. L. J. Drews Jr, “Depth-cuprl: Depth-imaged contrastive
unsupervised prioritized representations in reinforcement learning
for mapless navigation of unmanned aerial vehicles,” arXiv preprint
arXiv:2206.15211, 2022.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in ICLR, 2016.

[10] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in ICML, vol. 80, 2018, pp. 1861–1870.

[11] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in IEEE/RSJ IROS, 2017, pp. 31–36.

[12] J. C. de Jesus, J. A. Bottega, M. A. Cuadros, and D. F. Gamarra,
“Deep deterministic policy gradient for navigation of mobile robots in
simulated environments,” in 19th ICAR, 2019, pp. 362–367.

[13] N. H. Singh and K. Thongam, “Mobile robot navigation using mlp-bp
approaches in dynamic environments.” Arabian Journal for Science &
Engineering, vol. 43, p. 8013–8028, 2018.

[14] A. Rodriguez-Ramos, C. Sampedro, H. Bavle, I. G. Moreno, and
P. Campoy, “A deep reinforcement learning technique for vision-based
autonomous multirotor landing on a moving platform,” in IEEE/RSJ
IROS, 2018, pp. 1010–1017.

[15] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular
gazebo mav simulator framework,” in Robot Operating System (ROS),
2016, pp. 595–625.

[16] R. B. Grando, J. C. de Jesus, and P. L. Drews-Jr, “Deep reinforcement
learning for mapless navigation of unmanned aerial vehicles,” in IEEE
LARS/SBR, 2020, pp. 1–6.

[17] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion,” Physical review, vol. 36, no. 5, p. 823, 1930.

[18] R. B. Grando, P. M. Pinheiro, N. P. Bortoluzzi, C. B. da Silva, O. F.
Zauk, M. O. Piñeiro, V. M. Aoki, A. L. Kelbouscas, Y. B. Lima, P. L.
Drews-Jr, and A. A. Neto, “Visual-based autonomous unmanned aerial
vehicle for inspection in indoor environments,” in IEEE LARS/SBR,
2020, pp. 1–6.

	I Introduction
	II Related Work
	III Methodology
	III-A Deep Deterministic Policy Gradient
	III-B Soft Actor Critic (SAC)
	III-C Simulated Environments
	III-D Reward Function
	III-E Networks Structure

	IV Experimental Results
	IV-A Results

	V Discussion
	VI Conclusions
	References

