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Abstract— Unmanned Aerial Vehicles (UAV) have been stand-
ing out due to the wide range of applications in which they can
be used autonomously. However, they need intelligent systems
capable of providing a greater understanding of what they
perceive to perform several tasks. They become more challeng-
ing in complex environments since there is a need to perceive
the environment and act under environmental uncertainties to
make a decision. In this context, a system that uses active
perception can improve performance by seeking the best next
view through the recognition of targets while displacement
occurs. This work aims to contribute to the active perception
of UAVs by tackling the problem of tracking and recognizing
water surface structures to perform a dynamic landing. We
show that our system with classical image processing techniques
and a simple Deep Reinforcement Learning (Deep-RL) agent
is capable of perceiving the environment and dealing with
uncertainties without making the use of complex Convolutional
Neural Networks (CNN) or Contrastive Learning (CL).

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are one of the types of
autonomous vehicles that have been gaining more and more
space due to the versatility in their possible applications.
Some of them face problems that involve acting on the
water to perform their respective tasks, in the different areas
of hydrological monitoring [1], mainly in remote sensing
applications [2]. A problem that also arises in search and
rescue missions with the recognition of victims on the water
surface [3], joint navigation between autonomous boats and
UAVs [4] and reconnaissance and pollution monitoring by
detecting litter on the sea surface [5]. The challenges of
detecting, tracking, and following a static or moving target of
interest are critical for these applications. The recognition of
these targets becomes much more complex compared to acting
on solid terrains, considering that the reflectance of light
suffered by ripples on the water surface and other different
influences of the incidence of light impairs the optical flow
captured in the images during the flight.

The need to combine the information contained in the
images and in the reading of other sensors during the flight
for the decision-making of the vehicle is often a complex
problem since the readings are directly affected by the current
positioning and the future positioning affected by the current
reading. Thus, bringing the demand to perform the movement,
always seeking the greatest gain of information or the next
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best view (NBV), and thus properly characterizing an active
perception [6].

In this context, this work proposes to deal with the
problem of acting on the water by performing tracking and
displacement, actively perceiving the environment for the
completion of the landing on a base arranged on the surface of
the water. We adopted the AirSim plugin of Unreal Engine [7],
aiming to use the photorealistic environments, combined
with a Deep Reinforcement Learning approach (Deep-RL)
through the support provided to this type of approach. With
the analysis of the Deep-RL approach, we found that the
algorithms tend not to converge with long observation input,
where the use of images as a means of observing the agent
corresponds to this problem. By simplifying the processing,
we focus on converting the raw image data in the distances
in pixels referring to the axes x and y to the target. Thus,
leading the algorithm to converge without the requirement of
complex convolutional neural networks (CNN) or contrastive
learning (CL) even within a highly realistic environment,
allowing its usage in real-world embedded systems.

This work contains the following main contributions:

o Realistic simulation using the plugin AirSim with the
application of the algorithm of Deep-RL Deep Deter-
ministic Policy Gradients - DDPG using an encoder
in order to solve the high dimension space problem of
observations.

e Active vision system based on Deep-RL and image
processing for allowing autonomous landing in a boat,
a challenging environment.

The organization of this work is given as follows: Section
II discusses the related works, followed by the presentation
of the proposed active vision method in Section III. Next, the
results are presented in Section IV. Finally, the conclusions
are future work are drawn in Section V.

II. RELATED WORK

The concept of an active observer, pre-established both
by [8] and by [6], is given when the observer performs
some type of activity whose purpose is to control the
geometric parameters of the sensory apparatus. The purpose
is to manipulate the constraints underlying the observed
phenomena to improve the quality of the perceptual results.
That is, active perception occurs when an observer changes its
position and/or the position of its sensors in order to obtain
the greatest amount of information about the environment in
which it is inserted. Also defined as the union of intelligent
control or active control and visual perception or active vision.



This concept is much explored in applications that seek to
somehow reconstruct the environment or the scene itself, as
in [9]and [10], where the estimation of NBV is a little more
critical in optimization terms. In situations closer to real-world
applications, some adaptations occur, such as in relation to the
positioning of the visual sensor, but the principle is still the
same as in [11], [12] and [13]. There are mainly approaches
related to the problem of flying over and detecting targets on
the surface of the water with the displacement, such as the
recognition and differentiation of terrain [14] and [15] and
the search for specific targets on the surface like em [3] and
[16].

With the analysis of these works, it is possible to perceive
the use of several algorithms to estimate and carry out the
positioning of the UAV. In order to take advantage of the
support of AirSim and given the broad concept of active
perception in relation to the algorithms and their estimates,
references were searched for using Deep-RL algorithms
focused on displacement based on the visual perception.
Many works were analyzed where it was proposed to use
the algorithm of Deep-RL called Deep Deterministic Policy
Gradients (DDPG) applied to the search and rescue task
in a closed environment. This same algorithm was used
by [17], focusing on recognizing and avoiding targets. It
was also approached by [18] where the use of DDPG was
proposed to perform the landing on a mobile base. The
three cited references make use of both simulated data
(Gazebo) and real data, in addition to validating the method
in both environments. Differently from them, we focus
on an active perception approach based on Deep-RL to
achieve autonomous landing based on the vision in a boat, a
challenging target.

III. METHODOLOGY
A. Simulation Environment

The choice of plugin AirSim was made seeking a significant
improvement in the quality of the environment in which the
UAV would act. The simulator is developed aiming at the costs
of developing and testing algorithms for autonomous vehicles
in the real world. AirSim provides an interface to define the
vehicle as a rigid body that can have an arbitrary number
of actuators generating forces and torques. The generation
of all mathematical models focused on vehicle physics and
its sensors was estimated based on real vehicles, bringing a
very close result between the simulation and the performance
of a real UAV as described by [19]. AirSim was developed
for the Unreal Engine (https://www.unrealengine.com), being
developed and maintained by the game developer Epic Games
which is responsible for the development of several famous
games in the market. The great quality presented in the
graphics provided by the engine has been bringing new
horizons to its use, were on its own platform. In this way,
the use of simulation for real vehicles has been growing and
having implications as flight and driving simulators where
the similarity with a real environment is of high importance.

In this work, the engine version 4.25 was adopted together
with the environment called Landscape Mountain provided by

the engine development market, along with a water surface
(https://free3d.com/3d- model/ocan-1761.html) and a fishing
boat (https://free3d.com/3d-model/boat-6219.html) shown in
Fig [T} The vehicle used by AirSim is a model AirDrone with
a wide range of possible sensors that can be added to its
structure, such as GPS, Lidar, magnetometer, barometer and
more than one camera with some image formats beyond the
conventional RGB. These settings can all be modified through
a .xml file with the respective parameters of each sensor. Thus,
in the present work, only the barometer and a camera were
used with the conventional capture allocated in the center of
the vehicle directed downwards in the same way as in [11].

Fig. 1: Sample images of the simulation environment com-
posed of a lake, boat(target), and a drone.

B. Active Perception System

”»

A ROS package (https://www.ros.org/) called “ac-
tive_perception” was developed, where two nodes are imple-
mented, respectively seeking detection and landing. The node
in charge of detection is called “cam_listener”, responsible for
reading the camera and publishing in the topic “vision” the
message with the target distances in pixels on the axes x and
y. And the landing node is responsible for the displacement
decisions and the proper landing based on the readings of
the "vision” topic. The code will be freely available in case
of acceptance.

1) Image Detection: In order to detect the boat in a simple
and efficient way, the search is divided into two steps. Firstly,
we analyze the reflection of light on the surface of the water
and then the search for the boat. For the light detection,
the original image captured by the camera is converted to
grayscale and then Gaussian Blur (1) is applied, evaluating
the variance of pixels in both directions and saving the first
processed frame. From the second frame, the optical flow in
the image is analyzed using the Lucas-Kanade [20] method.
A comparison is made in the displacement of pixels based on
the distance from the neighbors, looking for changes having
the parameters adapted for the reflection of the light.
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Based on the points where modifications were found, the
centroid of the region generated by the points is calculated,
and then a mask is created from it to be applied over the
grayscale image as shown in Fig[2] (a) . With it, the Canny
algorithm [21] is applied to detect possible edges by analyzing
both the width and the length of the image.

Finally, a morphological transformation is applied to the
image. As a dilation followed by erosion in search of the
contour with the largest area, resulting in Fig [2] (b) and by
calculating the center of the contour, the distances in pixels
from the target in the axes x and y and published in the
topic ”\vision”. Thus, visually the result of the two analyzes
happens as shown in Fig 2] (c) with the highlighting of the
target and the visualization of the reflection on the surface
by the optical flow analysis.

c)

Fig. 2: Agent’s obtained scene view through the cam.

2) Landing: In the DDPG [22] algorithm, the actor directly
maps states to actions instead of generating the probability
distribution in a discrete action space as is originally done by
other algorithms of the same model. The other two networks
are destination networks, being time-delayed copies of their

original networks that smoothly track the learned networks.

The use of target value networks greatly improves stability
in learning, since the main network update equations are
dependent on the values calculated by themselves making
them prone to divergence.

DDPG also uses a repeating buffer to sample the experience
and update the neural network parameters. In reinforcement
learning for discrete action spaces, exploration is done through
the probabilistic selection of a random action. For continuous
action spaces, exploration is done by adding noise to the
action itself, as it was used in the work, and can also be used

in the state. One of the most used methods is the Ornstein-
Uhlenbeck [23] process to add noise to the output. It is
correlated with the previous noise in order to prevent the
noise from canceling out the overall dynamics created by the
Actor.

Our model is built using a similar structure of the network
[18] as shown in Fig. [3] but changed the dimensions of the
hidden layers to 300 and 200 units due to the simplicity
proposed for the inputs.
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Fig. 3: Actor and Critic neural networks.

For the action space, the same principle was maintained,
using only the linear velocities in  and y with the velocity
in z being constant. In the state space, the z and y distances
in pixels read through the publication in the topic "vision’
made with the image processing are passed to the agent. For
the implication of the actions, considering that the output
of the Ator network varies between -1 and 1 because it
is a hyperbolic tangent function, after the noise Ornstein-
Uhlenbeck is increased, normalization between -0.25m/s and
0.25 is performed. m/s to be passed as speeds to the vehicle’s
low-level control. A reward function was developed where d;
is obtained through the module of distances = and y in pixels
(4), resulting in function (5) that evaluates the distances to
send the appropriate reward to the agent. Rewards are given
based on completion of the landing with the highest reward,
a minimum reward for decreasing the distance, no reward
for an increase in the distance to the target, and finally a
negative reward for when the target is lost from sight.

dtzw/d%"‘d% (4)

250 if d; <=10

0.1 ifd;<d;q

0 if dp >=dy—1
—10 if d; = 1000000.0
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The structure of the final system characterizing the active
perception is presented in Fig. [4} leading then to the analysis
of the results obtained by the algorithm presented in the next
section.
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Fig. 4: Proposed active perception system.

IV. EXPERIMENTAL RESULTS

The system is implemented using the operating system
Ubuntu 20.04 LTS, with the language C++ for image
processing in version 9.3.0 and the language Python used for
agent training through the Pyforch module in version 3.8.10.
Considering the possibility of acceleration by hardware
(GPU) through the Unreal Engine and also its demand in
graphics processing, a GPU model RTX 2080 Ti with version
10.1 supporting CUDA parallel processing is adopted. A CPU
Intel Core i7-7700k is used for the main processing, also
counting on 32 GB of memory RAM.

A. Training

For the training phase, the situation imposed on the agent
consists of the analysis of the distance to the boat through the
reward function previously demonstrated in (5). If the agent
gets the maximum reward within an episode, the environment
is restarted and the episode ends. For the other rewards, such
as if the agent loses sight of the boat and gets a negative
reward, only the simulation is restarted. In constant rewards,
there is no restart of the simulation, only the attribution of
the reward. The agent parameters are defined based on the
parameters used by [18], being the state space (4), the action
space (2), the repetition buffer (50000), the gamma factor
( 0.99), the actor-network learning rate (le~%), the critic
network learning rate (1e=3), and the update factor for the
target networks ( 1e=3). It was defined to use 1000 steps
within each episode, leading to the use of batches of 512
samples to be saved in memory. 1800 episodes equivalent to
more than 24 hours of training, looking for a policy capable
of making the landing. In the first training phase, a target is
arranged in a single position, as shown in Fig. 2] and in the

second with positions vary randomly in case there is a landing.

With the analysis of the results referring to the final part, a
significant improvement in the policy generalization learned
by the agent was noticed, leading to the conclusion that the
learning had been carried out. The figures Fig. [f] (a) and
Fig. [5] (b) illustrate the moving averages of the rewards, used
to smooth the discrepancies, collected from the two training
phases. In the figures Fig. [f] (a) and Fig. [f] (b) the moving

averages of the speeds that led to the rewards obtained during
training are presented.

a) b)

Fig. 5: a) Contains rewards from episode O to episode 1780
and b) Contains rewards from episode 1781 to episode 1800.
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Fig. 6: a) Contains speeds from episode O to episode 1780
and b) Contains speeds from episode 1781 to episode 1800.

During the training period, it was possible to assess that the
agent learned to develop trajectories, placing itself in positions
similar to the positioning represented by Fig [7] (a) and Fig [7]
(b). This is a consequence of the simultaneous implication of
the speeds at each step caused by the search for the greatest
accumulation of rewards, aiming at the rewards for reducing
the distance and also for the landing. The vehicle learned
to adjust to the deformation that occurred in the estimated
contour of the target by the effect of the light, which appeared
at certain angles taken, and also by the swerves. It was also
possible to analyze that the agent generalized the policy in
order to position itself placing the target always at the top
right of the image with an angle close to 45°, leading to
critical positions at the point (0, 0) of the camera reached in
the training periods with random positions.

For better visualization, the collection of the episode, time,
and reward obtained during the testing phase is presented. In
this way, the maximum rewards obtained in the tests where the
landing was performed is shown. Both for critical cases and
for others in which the agent’s objective was not completed
using the 10 episodes, we show the average value of the
reward obtained during the given test. For the time-based
graphics, the total time to complete the test is presented.
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Fig. 7: a) Side view from learned trajectory b) Top view from
learned trajectory.

B. Assessment of the policy learned

To validate the policy developed by the agent, parameters
similar to those of the training were used, varying only in
the number of steps per episode increased up to 2000 to
deal with long trajectories. The positioning of the boat in
relation to the UAV was dynamically changed, where random
positions and orientations were used within the camera’s field
of view. Thus, the boat’s positions were changed by up to
4m from the UAV’s position on the = and y axes and could
vary both in the positive and negative directions of each
axis. To evaluate the quality of the policy, 100 tests were
performed with random positions with the described interval,
with a limit of 10 episodes being defined for the landing to
be properly carried out. Thus, the rewards obtained by the
agent during each test performed were analyzed, as well as
the time required to complete it. In the figures Fig [§] (a) and
Bb) the rewards and the real-time for carrying out the test
are shown, respectively.
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Fig. 8: Reward and time elapsed during testing phase.

The representation of the graphs shows that in most cases
the agent managed to make the landing so that the worst
rewards characterize the problems generated by the frequent
loss of the target. During the training period, this factor
could be evaluated and during the tests, it was confirmed,
highlighting the problem encountered when landing on targets
close to the camera’s point (0.0). As a consequence of the

policy’s generalized trajectory towards the target, the target
was lost sight of in these cases. Failure to land in other not-
so-critical situations brings a large discrepancy with respect
to critical cases. But in terms of runtime, most of the non-
convergence cases performed a similar result so they needed
the 10 episodes to complete the test. Analyzing the cases in
which it was possible to effectively perform the landing as
shown in Fig [9] (a), Fig [0 (b) Fig 0] (¢) and Fig 9] (d), the
agent needed an average time equivalent to 30 seconds to
complete the task and then reach the highest reward.
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Fig. 9: Four random positions and orientation sampling
running.

Table [I] shows the relative and absolute percentages re-
ferring to the number of episodes needed to complete the
landing and a number of 0 for tests in which the task was
not performed. It can be concluded that the model developed
an accuracy equivalent to 85%, with most of them achieving
a landing in the first episode.

TABLE I: Results

Episodes Number | Relative Percentage | Absolute Percentage
0 0% 15%
1 100% 75%
2 50% 2%
3 33.33% 2%
4 25% 1%
[§ 16.66% 1%




V. CONCLUSIONS

We presented a simple image processing approach through
the extraction of features that is functional as a means
of feeding Deep-RL algorithms to perform tasks actively
perceiving the environment. It is capable to deal with noise
in the realistic simulation of the aquatic environment, affecting
little or nothing in learning with the approach used, resulting
in a new light system capable to be embedded in a UAV and
perming autonomous landing in boats.

Future works will be focused in evaluate the system with
a real environment operation using a real UAV. Furthermore,
other approaches for Deep-RL will be evaluated in the present
scenario.
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