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Abstract—This work presents a study on parallel and dis-
tributional deep reinforcement learning applied to the mapless
navigation of UAVs. For this, we developed an approach based
on the Soft Actor-Critic method, producing a distributed and
distributional variant named PDSAC, and compared it with a
second one based on the traditional SAC algorithm. In addition,
we also embodied a prioritized memory system into them. The
UAV used in the study is based on the Hydrone vehicle, a hybrid
quadrotor operating solely in the air. The inputs for the system
are 23 range findings from a Lidar sensor and the distance
and angles towards a desired goal, while the outputs consist of
the linear, angular, and, altitude velocities. The methods were
trained in environments of varying complexity, from obstacle-
free environments to environments with multiple obstacles in
three dimensions. The results obtained, demonstrate a concise
improvement in the navigation capabilities by the proposed
approach when compared to the agent based on the SAC for
the same amount of training steps. In summary, this work
presented a study on deep reinforcement learning applied to
mapless navigation of drones in three dimensions, with promising
results and potential applications in various contexts related to
robotics and autonomous air navigation with distributed and
distributional variants.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), commonly called drones,
are already found significantly in everyday applications in the
civil area, commercial, and military areas [1]. This is because
it does not have a human operator or pilot in person, enabling
the operation of these systems economically in previously
unfeasible and dangerous locations and conditions. With the
increase in the use of these unmanned systems, some challenges

arise, mainly in developing the level of autonomy of these
systems.

The growth in the number of autonomous systems requires
a series of developments in artificial intelligence and decision-
making. One of the methods that stand out in solving this
problem is Deep Reinforcement Learning (DRL). DRL provides
a learning framework that enables agents to perform optimally
through sequential interactions with their environment. By
incorporating deep neural networks, it can defeat human experts
playing various Atari [2], Starcraft II [3] and Dota-2 [4] video
games, proving the effectiveness of such methods and showing
the possibility of their application in the most diverse areas that
require the control of an agent. These features of DRL have led
to many research efforts on their application in autonomous
vehicles. DRL has been mainly applied to control system
tasks that regulate the speed, attitude, and navigation of many
UAVs [5]–[9].

Overall, these methods have great potential for application
for autonomous aerial vehicles, as they are used in complex en-
vironments where classic methods exhibit difficulties. However,
DRL methods need some time to train their neural networks and
reach their maximum performance and tend to present problems
related to catastrophic forgetting given the complexity that some
neural networks may present [10], [11]. Thus, wishing to speed
up the training and present more stable DRL agents, a parallel
version of the Distributional Soft Actor-Critic (DSAC) method
- named Parallel Distributional Soft Actor-Critic (PDSAC) -
is presented in this work. We compare with the method Soft
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Actor-Critic (SAC) to exemplify those improvements. With
this, this work shows the following contributions as results:

• We develop a new distributed distributional DRL method,
named PDSAC.

• We managed to reduce the training time of DRL agents
by utilizing parallel agents during training.

• We aim to improve the robustness of the agents by
employing distributional critics.

II. RELATED WORKS

The area of DRL has received some attention recently due
to the progress and the great results obtained when applying
DRL techniques to problems in Robotics. Some examples of
this advance would be the results obtained in electronic games
and board games, where techniques have decisively overcome
human beings, as demonstrated by Mnih et al. in [12]. Another
example would be the use in controlling robots, with Jesus et
al. in [13] demonstrating similar and superior results to those
of classical techniques.

In the application of DRL to UAVs, some works can be
highlighted. The work of Rodriguez et al. [14] is highlighted,
who employed a DRL algorithm called Deep Deterministic
Policy Gradient (DDPG) to allow an advanced autonomous
drone to maneuver and land on a mobile platform. The authors
integrate the DDPG algorithm into their reinforcement learning
simulation framework implemented using Gazebo and Robot
Operating System (ROS). Another work that has a lot of
influence on this one is that of Grando et al. [5], where he
evaluates DRL methods in aerial and aquatic navigation of a
hybrid drone. The employed methods consist of stochastic and
deterministic methods. The hybrid drone simulated model used
in our work is the same used by Grando et al., but only for
aerial navigation.

Deep-RL or DRL techniques are traditionally based on single-
value expectations. However, Bellemare et al. [15] introduced
a distributional approach that models return expectations as
probabilistic distributions. Duan et al. [16] extended this idea
to the SAC algorithm [17], inspiring the approaches in this
paper. Distributed Deep-RL accelerates training by distributing
computation and data acquisition. Mnih et al. [12] used
asynchronous actor-critic methods, while Horgan et al. [18]
proposed Ape-X, which distributed data sampling and extended
experience replay. Barth-Maron et al. [19] improved DDPG
with Ape-X concepts.

Overall, this work introduces a novel combination of
parallelism and distributional RL techniques, aiming to advance
the capabilities of the SAC algorithm in solving complex
reinforcement learning problems with continuous action spaces.
This work differs from the previous ones by bringing the
parallel methodology from Ape-X to the distributional version
of SAC. It seeks to enhance the exploration-exploitation
trade-off by employing multiple actors in parallel, while also
capturing the distributional nature of the action-value function
to handle uncertainties and optimize performance.

III. METHODOLOGY

A. Deep Reinforcement Learning

Reinforcement learning is an area of machine learning
that studies the mapping of actions to situations in order to
maximize a reward signal. Currently, reinforcement learning
methods are employed in the areas of control, robotics, and
recommendation systems, and have been very successful in
board games and electronic games.

B. SAC

The Soft Actor-Critic (SAC) [17] is a DRL algorithm that
optimizes a stochastic policy in an off-policy manner. The
method employs concepts from actor-critic methods, having
a network to learn the policy, another to estimate the state-
action value function, and a last one to estimate the state-value
function. However, it uses the trick of the double critic, having
two critic networks compete to find the best estimate of the
value function.

The policy is trained with the objective of maximizing the
expected return and entropy at the same time:

J(θ) =
T

∑
t=1

E(st ,at)∼ ρπθ [r(st ,at)+αH (πθ (·|st))] (1)

where H (.) is the entropy measure and controls the
importance of the entropy term, known as the temperature
parameter α . Maximizing entropy leads to policies that can
explore more and capture multiple modes of near-optimal
strategies (i.e., if several options seem to be equally good, the
policy should assign each one the same probability of being
chosen).

The state-value function is optimized by minimizing the
mean squared error between the value estimated by the network
and the value calculated using the state-action value function:

JV (ψ) = Est ∼ D
[1

2

(
V ψ(st)−Eat ∼ πθ(·|st)[Qw(st ,at)−

−α logπθ (at |st)]
)2]

(2)
The state-action value function aims to minimize the Bellman

residual or temporal difference:

JQ(w) = E(st ,at)∼ D
[1

2

(
Qw(st ,at)−

(
r(st ,at)+

+ γEst+1 ∼ ρπ(s)[Vψ̄(st+1)]
))2] (3)

where D is the set of training transitions and ψ̄ is the target
network for the state-value function.

C. DSAC

The Distributional Soft Actor-Critic (DSAC) [16] is an ex-
tension of the Soft Actor-Critic (SAC) that adds a distributional
layer to the value network to learn the distribution of the Q-
function instead of its mean value. This allows the algorithm



to handle ambiguities in the estimation of the value function,
for example, in scenarios with multiple optimal solutions. The
goal of DSAC is to maximize the weighted sum of future
rewards and policy entropy.

The policy is represented by a neural network that maps a
state s to a probability distribution over actions a, πθ (a|s). The
state-action value function Q is represented by a neural network
that maps a state s and action a to a probability distribution
over future rewards r. The value network uses a set of atoms to
represent the probability distribution, instead of a single mean
value. Each atom zi represents a possible future reward, and
the distribution is formed by a probability mass pi. The set of
atoms is defined a priori, usually using a uniform distribution
over a range of values.

The optimization objective is to maximize the expected
reward and policy entropy while minimizing the KL divergence
between the current distribution of Q and the target distribution
of Q. The objective of the value function is to minimize the
mean squared error between the current state value and the
expected state value.

To update the policy, the gradient can be calculated as:

∇θ J(θ)≈ 1
B

B

∑
i=1

∇θ logπθ (ai|si)(Q
si,ai
θ

−V si
θ
) (4)

To update the value function, the gradient can be calculated
as:

∇θ JV (θ)≈
1
B

B

∑
i=1

∇θ

1
2
||Qsi,ai

θ
−T si,ai

θ
||2 (5)

And to update the distribution of Q, the gradient can be
calculated as:

∇θ JQ(θ)≈
1
B

B

∑
i=1

∇θ DKL(Q
si,ai
θ

||T si,ai
θ

) (6)

In summary, the Distributional Soft Actor-Critic algorithm
uses the distribution of Q instead of the value of Q to
learn the policy. This allows the policy to better explore
multiple near-optimal strategies and maximize policy entropy
to ensure exploration. Additionally, the algorithm uses a target
distribution to update the distribution of Q rather than a target
value, which increases the stability of the Q-update.

IV. EXPERIMENTAL SETUP

A. Training setup

The Robotic Operational System (ROS) acts as an inter-
mediary, managing connections between developed methods,
software, and simulated robots. Gazebo and RotorS provide
a comprehensive drone simulation environment [20], while
PyTorch is utilized for developing DRL algorithms. The aerial
vehicle used in this work is based on the Hydrone model [5],
[21], controlled by linear and angular velocities in six degrees
of freedom (x,y,z,roll, pitch,yaw). In the left Figure 1 you
can see the vehicle presented in the simulation.

Three training environments were developed, which can be
seen in Figure 2.

Drone
Lidar

Obstacle

Goal

Wall

Altitude
Vel.

 Linear
Vel.

 Angular
Vel.

Fig. 1: Drone movement.

(a) First. (b) Second. (c) Third.

Fig. 2: Training environments.

In the first environment, Figure 2a, the room is empty with
only the outer walls as obstacles. The second environment,
Figure 2b, introduces four additional obstacles inside the room,
increasing the challenge for the robot to navigate around them.
The last environment, Figure 2c, presents a complex navigation
scenario with obstacles extending in three dimensions, requiring
the robot to consider altitude during navigation. The goal is for
the vehicle to autonomously navigate this environment without
collisions.

B. Reward Function

A DRL method relies on a reward function for feedback
and improvement. The reward system reinforces actions with
high returns and penalizes those with low returns, enabling
learning. Developing an effective reward system is empirical
and relies on problem-specific knowledge. The implemented
reward system is provided below:

r(st ,at) =


rarr se dt < cd

rcoll if minx < co or minz < 0.2 or maxz > 4.0
ridle se minx >= co e dt >= cd

(7)
Three types of rewards were used in the experiment. The

agent received a reward of 200 (rarr) when it successfully
reached the target within a margin of 0.85 meters (cd). In
case of a collision with an obstacle or when reaching the
scenario limits, a negative reward of −20 (rcoll) was given.
To encourage exploration, an additional reward (ridle) was
implemented, motivating the robot to move and attempt to
reach the goal within the 500 steps. Collisions were detected if
the distance sensor readings were below 0.65 meters (co), which
was determined based on the drone’s dimensions. Negative
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Fig. 3: Neural networks structure.

rewards were also assigned for altitudes below 0.2 meters and
above 4.0 meters.

C. Network Structures

The networks of our proposed SAC and PDSAC approaches
have three fully connected hidden layers with 256 neurons
each, connected through the activation of ReLU. The hyper-
parameters in this work were based on previous works on the
topic [5], [13]. The action varies between −1 and 1, and the
hyperbolic tangent function (Tanh) was used as the activation
function for the policy network. Outputs scale from −0.25
to 0.25 meters per second for linear velocity, from −0.1m/s
to 0.1m/s for angular velocity, and −0.25m/s and 0.25m/s
for altitude change. For both approaches, the Q value of the
current state is predicted in the critical network, while the
actor-network predicts the action from the current state. Five
agents were used in the training phase for parallel approaches:
one for evaluation and four for exploration, as can be seen in
Figure 3.

D. Parallelism

The difference between the proposed methods is the use of
K agents, which are executed simultaneously, thus reducing the
time required for training the methods. PDSAC employs the
principles for parallel agents proposed by Dan Horgan [18].

Parallel methods work by separating action from learning.
For this, there are K processes executing agents that interact
with the environments. These agents receive a network copy
of the policy through memory queues and are thus able to
perform the desired actions. The experiences obtained by the
agents are sent to the replay buffer, which serves as a memory
for learning. In a separate process, you have neural network
learning taking place. This process performs the learning,
receiving the experiences from the replay buffer, calculating the
errors, updating the networks, and sending the weights of the
networks to the agents. To create multiple processes, we used
the multiprocessing Python library and its version of PyTorch.
It was also necessary to parallelize the environments so that

Parallel Training System

Actor network
weights

Environment

Experience

Actions

Experiences Replay Buffer

Learner

Agents

Sampled
Experiences Priorities

Fig. 4: Parallelism structure.

each agent has its environment. For this purpose, different
simulations with ROS and Gazebo were performed on the
agents’ K processes. This is possible by modifying the TCP/IP
address of the master ROS in each process.

E. Prioritized memory

The memory of an off-policy DRL method consists of
a replay buffer containing the experiences obtained by the
agent. Using the experience stored in the memory during the
method training, it becomes possible to break the temporal
correlations. One way to improve this memory is to prioritize
certain experiences that favor learning [22]. To decide which
experiences to prioritize, we use the time difference error, which
measures how far the reward value is from your estimate. For
this, this algorithm stores the last time difference error found
along with each transition in the replay memory. The transition
with the largest absolute time difference error is replayed from
memory the most times. In this work, the prioritized memory
model is based on the one developed by Schaul et al. [22]
called proportional prioritization.

V. RESULTS

The training progress was demonstrated through reward
graphs for each environment and the effectiveness of the
methods showed through three-dimensional navigation trials.
First, the rewards achieved by the evaluation agent were plotted
to analyze the progress of the training (Fig. 5a). The y-axis
represents the moving average of rewards, while the x-axis
represents the number of thousands of network update steps.
The temporal metric used was the number of steps, as the
agents’ episodes varied due to parallelization and the training
duration averaged 12 hours for non-prioritized methods and
48 hours for prioritized methods. The training and evaluation
were done on an NVidia RTX 2080 GPU, an Intel I7-7700k
CPU with 8 cores, 16 threads, and 32 GB of RAM.

The first environment, being simply an empty space, present
few difficulties to the methods. We can observe in Fig. 5a,
that just the parallel method was able to converge in the
defined training steps. The fact that SAC does not converge
demonstrates a certain lack of ability by the agents to control
their actions, especially the altitude. Analyzing the graph it can



be seen that the methods using prioritized memory converged
faster and showed greater stability.

The rewards for training in the second environment are
represented in Figure 5b. In the second environment, obstacles
were introduced in the form of four pillars, making it difficult
for agents to navigate. Even so, it can be observed that our
method converges, but this time with greater difficulty. In Figure
5b it can be seen that PDSAC presents great performance
while navigating in this environment. On the contrary, both
SAC and its prioritized form still lack the necessary learning
to successfully reach the goals.

The third environment has a higher complexity than the pre-
vious two, having several obstacles in all dimensions blocking
the passage of the drone in certain directions. Consequently,
the results obtained by the agents were lower than the others,
reaching only half of the total rewards achieved. Figure 5c
portrays the rewards obtained during the training of methods
in the third environment.

The results obtained presented in Figure 5c, by the agents
were inferior to the others, reaching only half of the total
possible rewards. These results are also due to the use of
random targets, placing them in difficult-to-access positions.
In this environment, it is also noticed that the methods have
some difficulty in controlling altitude, a fact that is amplified
by the lack of an altitude sensor. It also demonstrated a lot
of difficulty in avoiding irregular obstacles, pointing out, even
more, the need for sensors that go beyond two dimensions.

With the trained methods, their performances in carrying out
navigation with obstacle avoidance to targets in predetermined
fixed positions were evaluated. 100 trials were performed, 25
for each target. First, evaluate them in Environment 1, which
has no obstacles. In Table I, the percentage data of the success
rate in the evaluations, the average rewards obtained and their
standard deviation can be observed.

It can be noted that only the methods without parallelization
were not able to obtain 100% of success. This occurred because
during training these methods were unstable and did not reach
the desired reward values.

Table II presents the data obtained during the evaluation in
the second environment. For this environment, with obstacles,
it was found that only the PDSAC method with prioritized
memory achieved all objectives. In the methods with random
memory, the PDSAC obtained 81% of success. With 4 obstacles
in this environment, the difficulty was higher when compared
to the first one.

The worst results were obtained in the third environment,
as demonstrated in training. Table III presents this data. The
method that obtained the best results was the PDSAC with

TABLE I: Test results for environment 1.

Method Success rate (%) Average reward (µ)

SAC 50.00% 88.88±110.55
SAC-P 50.00% 88.88±110.55
PDSAC 100.00% 200.00±0.00
PDSAC-P 100.00% 200.00±0.00

prioritized memory, again confirming the superiority of this
memory model and the parallel methods. The disparity of
results in this environment can be explained by its complexity,
which ended up harming all methods similarly. In addition,
it was noted that the methods began to memorize the best
trajectories during training and repeated these during the
evaluations. Thus, in this environment, a significantly better
method was not obtained. The results obtained through the
methods used in the third environment were inferior to the
others. It is believed that this inferiority is attributed mainly to
the complexity of the environment in question, which presents
obstacles in all directions and at variable altitudes.

To better assess the performance of the methods, we
provide the trajectory executed on the evaluation of the
second environment. As seen in Figure 6, the targets are
behind the obstacles, providing a greater range of decisions
for agents. As the drone is capable of changing altitude, in
this environment it is verified that the methods can fly over
obstacles, a circumstance portrayed by the trajectories crossing
obstacles. Analyzing the trajectories, it was concluded that the
two versions of the PDSAC were able to fly over the obstacles,
a fact that occurred due to the ability to gather greater amounts
of data reducing the occurrence of catastrophic forgetting.

VI. CONCLUSION

This study explored the use of DRL methods in UAV
navigation, specifically introducing the PDSAC method that
leverages parallelization and distributional capabilities. By
employing multiple agents in parallel, training time was
significantly reduced. Critical networks and prioritized memory
were utilized to enhance performance, achieving the study’s
objectives and providing insights for further improvements.
PDSAC outperformed previous methods, showcasing scalability,
sample efficiency, and better representation of the value-action
function. The fact that SAC had a bad performance exemplifies
the occurrence of catastrophic forgetting. While with the
parallel method, we have more data diversity ensuring that
catastrophic forgetting is unlikely to occur. The incorporation of
prioritized memory facilitated faster reward attainment during
training in some cases, but more studies are necessary.

Future works include the addition of a vertical sensor
for obstacle detection in building and simulating drones.
Additionally, the application of these methods in real drones
is also highlighted as a possible area for future research, thus
proving the effectiveness of the methods in real scenarios.

AKNOWLEDGEMENT

The authors would like to thank the VersusAI team. This
work was partly founded by the Technological University of

TABLE II: Test results for environment 2.

Method Success rate (%) Average reward (µ)

SAC 0.00% −10.10±10.05
SAC-P 25.25% 35.75±95.97
PDSAC 81.81% 160.00±85.28
PDSAC-P 100.00% 200.00±0.00
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Fig. 5: Training rewards for all methods in the three environments.

TABLE III: Test results for environment 3.

Method Success rate (%) Average reward (µ)

SAC 0.00% −14.74±8.84
SAC-P 0.00% −18.38±5.47
PDSAC 50.50% 101.01±100.50
PDSAC-P 61.61% 120.80±101.01
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