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Abstract—This paper proposes a novel foreground lineariza-
tion scheme for a high-speed current-steering (CS) digital-to-
analog converter (DAC). The technique leverages neural networks
(NNs) to derive a lookup-table (LUT) that maps the inverse of the
DAC transfer characteristic onto the input codes. The algorithm
is shown to improve conventional methods by at least 6dB in
terms of intermodulation (IM) performance for frequencies up to
9GHz on a state-of-the-art 10-bit CS-DAC operating at 40.96GS/s
(gigasamples-per-second) in 14nm CMOS.

I. INTRODUCTION

Data converters are now operating at several GS/s with
high resolution in compact deep-submicron processes. This is
paving the way for commercial applications such as 5G cellu-
lar communication and automotive radar [1], [2]. However, it
is well known that data converter performance degrades due
to nonlinear distortion [3], [4], which makes modeling and
linearization critical. In this paper, we focus on linearization
for a high-speed CS-DAC.

Although there are several DAC architectures available, the
CS-DAC is regarded as the “de-facto solution” at gigahertz
frequencies [4]. A block diagram for the M -bit CS-DAC is
shown in Figure 1. It is modeled as an array of binary-
weighted current drivers with complementary switching. In
reality, the current sources shown in Figure 1 differ from their
ideal binary weights, and mismatch between them causes large
discontinuities in the transfer characteristic thus degrading
linearity [4].

In general, the CS-DAC has both static and dynamic errors.
However, in this paper, we consider modern time-interleaved
architectures that suppress dynamic errors by hiding code
transitions from the output [5]. The work in [6] provides
a machine learning-based procedure to calibrate interleaving
effects for such architectures.

The focus of this paper is on static nonlinearity, which is
mainly attributable to current source mismatch and nonlinear
behavior associated with the current drivers. A common rem-
edy is dynamic element matching (DEM) which involves ran-
domization over the current drivers to average out mismatch,
but this also raises the noise floor. An alternative that does
not raise the noise floor is digital pre-distortion (DPD). This
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technique cancels out the nonlinearity by mapping the inverse
of the transfer characteristic onto the input codes.

In this paper, we propose a novel DPD scheme that is
tailored to the discontinuities of the CS-DAC transfer char-
acteristic. We begin by exciting the DAC with an input
waveform, and then capturing its output with an analog-to-
digital converter (ADC). Since our scheme is not intended
to update in the background, the DAC input signal can be
designed. We use the term background to refer to a scheme
that runs during normal operation using DAC input data driven
by the application. This is in contrast to a foreground scheme
which runs offline calibration and allows one to select the
DAC input data to be used for system identification. In our
approach, we design the DAC input signal so that it does not
stimulate the dynamic effects in the DAC output driver and
measurement path from the DAC output to the ADC input.
Thus, only the static transfer characteristic will be identified
using the resulting captured input-output pairs. Specifically,
we excite the DAC with a low-frequency sine wave so that
the static nonlinearity is extracted directly. The static transfer
characteristic is then learned by training a NN using a dataset
of input-output pairs from this DAC-to-ADC system. Lastly,
the inverse of this transfer characteristic is then mapped onto
the input codes using a LUT, thus linearizing the DAC.
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Fig. 1: Circuit diagram of the M -bit CS DAC with output
current Iout := Ip − In.

The technique is described in Section II and then simulated
in Section III. In Section IV, it is experimentally verified using
a state-of-the-art, commercially developed DAC operating at
40.96GS/s in 14nm CMOS, to be deployed in end markets
such as 5G wireless and advanced radar. Our technique shows
an improvement of at least 6dB in terms of IM performance978-1-7281-7670-3/21/$31.00 ©2021 IEEE
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compared to conventional DEM and polynomial-based DPD
for frequencies up to 9GHz. We conclude the paper in Section
V by summarizing the results.

II. SYSTEM IDENTIFICATION

Mapping the DAC input codes using DPD in order to
remedy static nonlinearity has been investigated in [7], [8].
The main idea is illustrated in Figure 2, where a LUT maps
input codes xn to x̃n = F−1(xn), which linearizes the
DAC by inverting its static transfer characteristic F (·). The
static nonlinearity is modeled as a time-invariant, memoryless
system. We use the term transfer characteristic to describe
the input-output relationship for this memoryless nonlinearity.
Data from the DAC output is required in order to estimate
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Fig. 2: Block diagram illustrating the DPD concept, where the
inverse of the DAC static transfer characteristic is stored in a
LUT.

F (·), and this is typically provided by an ADC. A block
diagram of a representative DAC-to-ADC system is shown
in Figure 3(a), where the measurement path from the DAC
output to the ADC input is modeled as a lowpass filter. Our
approach is to obtain an estimate F̂ (· ; θ), where θ are the
model parameters. We refer to this as system identification,
and this is depicted in Figure 3(b) where model parameters θ
are found using a dataset of input-output pairs from the DAC-
to-ADC system: DTRAIN := {(xn, yn), n = 1, . . . , N}.
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Fig. 3: (a) Block diagram of the DAC-to-ADC system, (b)
System identification using a dataset to determine model
parameters θ, (c) DAC-to-ADC system model with input xn
and output ŷn.

The DAC stimulus used for system identification in [7], [8]
is uniformly distributed random codes. This is done because

the proposed algorithms in this case are intended to run in
the background, and random codes share spectral properties
with the signals encountered during normal operation. In
contrast, we consider a foreground linearization scheme and,
consequently, we leverage our choice of input stimulus in order
to isolate the static nonlinearity. Specifically, we excite the
DAC using a sine wave with frequency fsig � fs, where fs
is the DAC sample rate. This avoids stimulating the dynamic
effects inherent in the DAC output driver and measurement
path. Therefore, we seek a memoryless model ŷn = F̂ (xn; θ)
as depicted in Figure 3(c). Furthermore, we assume the ADC
in Figure 3(a) is sufficiently linear so that the DAC-to-ADC
system accurately captures the nonlinearity of the standalone
DAC.

The choice of the regression model F̂ is critical, and
depends on the problem at hand. In [7] and [8] this model
is a polynomial, which is a suitable choice since the proposed
DAC architecture exhibits only weakly nonlinear behavior.
For CS architectures, which are the focus of this paper, this
model should be selected carefully. This is because the CS-
DAC transfer characteristic is prone to large discontinuities
[4]. For example, referring to Figure 1, if all current sources
are ideal, incrementing the binary input code by 1 produces
an output current increase of Iu in all cases. However, if,
for example, the current source corresponding to the most
significant bit is 2M−2Iu (1+ε), the transition from input code
011 · · · 1 to 100 · · · 0 will produce a change in output current
of Iu (1+ ε2M−1) instead of the ideal value of Iu. This is the
source of jump discontinuities in the transfer characteristic for
CS-DACs.

Although polynomials are a popular choice for a regression
model, they are ineffective at fitting discontinuities – i.e.,
they fit the abrupt transition poorly and exhibit oscillatory
behavior [9]. In contrast, NN regression models are powerful,
universal approximators and are a good choice for fitting a
transfer characteristic with jump discontinuities as well as
other, smooth, nonlinear effects. This is illustrated in the
example shown in Figure 4 where we have focused on a
region of the CS-DAC transfer characteristic containing a jump
discontinuity.

Fig. 4: Polynomial vs. NN regression in the vicinity of a
discontinuity for a CS-DAC behavioral model.

Note how the NN fits this region well while the polynomial
exhibits both poor fitting near the discontinuity and oscillatory



behavior. For this reason, we approach system identification
using NNs. The NNs considered in this paper are feedforward
multi-layer-perceptrons (MLPs). An example of an MLP with
a single hidden layer is shown in Figure 5, and the output ŷn
for this architecture with nonlinear activation h : RH → RH

is given by

ŷn = w(1)> h
(
w(0) xn + b(0)

)
+ b(1) (1)

where the set of trainable parameters θ is defined as

θ :=
{
w(0),w(1), b(0), b(1)

}
(2)

with dimensions w(0) ∈ RH , w(1) ∈ RH , b(0) ∈ RH , b(1) ∈
R.
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Fig. 5: Single layer MLP with 1 input node, H hidden nodes,
and 1 output node.

III. SIMULATION RESULTS

In this section, dataset DTRAIN is obtained using 10-bit DAC
and ADC behavioral models operating at fs = 40.96GS/s.
These MATLAB-based models accurately reflect the behavior
of the DAC and ADC used in Section IV. We model the
measurement path in Figure 3(a) as a 2nd order Butterworth
lowpass filter with 20GHz cutoff. The Fast Fourier Transform
(FFT) of a two-tone waveform without any linearization is
illustrated by the blue spectrum in Figure 6. Note that current
source errors result in IM products, and the linearization
objective is to suppress these as much as possible.

We approach system identification in a NN framework by
minimizing the following mean squared error (MSE) cost
function

Cmodel =
1

N

N∑
n=1

(ŷn − yn)2 (3)

by an appropriate selection of θ, H , and h(·). Conventionally,
hyperparameters H , h(·), and the number of hidden layers are
chosen heuristically. However, in this paper, we leverage Deep-
n-Cheap (DnC), an automated framework for low complexity
deep learning applications [10]. This results in single layer NN
with rectified linear unit (ReLu) activation [11] and H = 271
hidden nodes. Model parameters θ are then obtained using an
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Fig. 6: Two-tone FFT comparison before and after NN-based
DPD. The signal frequencies are f1 = 3.1GHz, f2 = 3.2GHz
with amplitudes -12dBFS/tone and the DAC is sampling at
fs = 40.96GS/s.

extended version of stochastic gradient descent (SGD) [12],
which completes system identification for the static transfer
characteristic. The inverse of this transfer characteristic is then
quantized to the 10-bit level and then stored in a LUT as shown
in Figure 2.

The performance of NN-based DPD on the behavioral
model is illustrated by the green spectrum in Figure 6, which
shows a reduction of 23.6dB, 19.8dB, and 17.9dB for IM3,
IM5, and IM7 respectively.

IV. MEASUREMENT RESULTS

In this section, we present results for NN-based DPD on
a twofold time-interleaved 10-bit CS-DAC operating at fs =
40.96GS/s in 14nm CMOS. Our motivation is to demonstrate
the ability to capture real-world nonlinearities and also avoid
capturing dynamic properties of the system. We do not intend
to compare the specific DAC used to state-of-the-art circuit
research.

Dataset DTRAIN is obtained by capturing the DAC output
using an on-chip 10-bit ADC synchronized to the same sample
rate as the DAC. The DAC is externally connected to the ADC
to avoid undesired signal attenuation and filtering effects. The
test setup is shown in Figure 7. Linearization was performed in
the same NN framework described in Section III using a sine
wave with frequency fsig = 100 MHz for system identification.

The results are illustrated in Figure 8 and Figure 9, where
we compare IM3/IM5/IM7 levels using two-tone signals cen-
tered at various frequencies across the first Nyquist zone.
System identification is performed with amplitude -6dBFS,
and performance is evaluated for both -6dBFS and -12dBFS.
We compare the proposed NN technique with DEM and 15th

order polynomial-based DPD. An on-chip randomizer is used
for the former, and coefficients for the latter are found by
applying linear regression with a Vandermonde matrix.

Based on Figure 9, it is evident that NN-based DPD
shows an improvement of at least 6dB for frequencies up to



Fig. 7: Test bench with the high-speed DAC and ADC test
board.

9GHz for -12dBFS inputs. This is significant for sub-6GHz
applications such as 5G. We suspect that pulse shape and
timing errors begin to dominate linearity performance above
9GHz. Evidence for this is based on the efficacy of DEM
above 9GHz, as it is proven to suppress such errors [13].

IM3 IM5 IM7
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Fig. 8: IM3/IM5/IM7 performance across Nyquist for two-tone
signals, -12dBFS/tone (-6dBFS total amplitude), 100 MHz
spacing.
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Fig. 9: IM3/IM5/IM7 performance across Nyquist for two-tone
signals, -18dBFS/tone (-12dBFS total amplitude), 100 MHz
spacing.

V. CONCLUSION

In this paper, we explored a novel linearization scheme for
high-speed current steering DACs using NNs. We showed that
simple MLPs are sufficient for system identification if low-
frequency sine waves are used for training. The NN archi-
tecture is selected using DnC and parameters are found using
SGD. The inverse of the transfer characteristic is then mapped
onto the input codes using a LUT. The final implementation
is a simple pre-distortion LUT with no NNs required.

A useful extension would be to make this scheme adaptive
with respect to temperature and supply voltage variation. This
may be accomplished by using sensors coupled with multiple
LUTs. Lastly, our approach demonstrates an improvement of
at least 6dB over conventional DEM and polynomial-based
DPD methods for frequencies up to 9GHz.
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