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Abstract—Approximate matrix inversion based methods is
widely used for linear massive multiple-input multiple-output
(MIMO) received symbol vector detection. Such detectors typi-
cally utilize the diagonally dominant channel matrix of a massive
MIMO system. Instead of diagonal matrix, a stair matrix can
be utilized to improve the error-rate performance of a massive
MIMO detector. In this paper, we present very large-scale
integration (VLSI) architecture and field programmable gate
array (FPGA) implementation of a stair matrix based iterative
detection algorithm. The architecture supports a base station with
128 antennas, 8 users with single antenna, and 256 quadrature
amplitude modulation (QAM). The stair matrix based detector
can deliver a 142.34 Mbps data rate and reach a clock frequency
of 258 MHz in a Xilinx Virtex-7 FPGA. The detector provides
superior error-rate performance and higher scaled throughput
than most contemporary massive MIMO detectors.

Index Terms—Massive MIMO, approximate matrix inversion,
stair matrix, Gauss Seidel, Neumann Series, MIMO detection,
FPGA, VLSI.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a key
technology for fifth generation (5G) systems to enhance spec-
tral and energy efficiency, coverage and mobility within the
available radio spectrum. Massive MIMO is the successor
of conventional small-scale MIMO, where the number of
antennas at the base station (BS) and the number of users
is relatively high [1]. Despite all the benefits of massive
MIMO, the technology also suffers from higher computational
complexity. MIMO detection in the uplink is one of the most
complex part of a massive MIMO BS due to the increasing
number of users and BS antennas. The complexity of massive
MIMO detectors increase so rapidly that conventional exact
inversion-based linear massive MIMO detection might be too
complex for certain BS products. In consequence, a new class
of detectors based on approximate inversion based methods
have become a popular choice among the large-scale integra-
tion (VLSI) community over the past decade. Approximate
inversion based detectors are based on the principle that
for certain antenna configurations, the equalization matrix of
linear detection is diagonally dominant. Several approximate
inversion based detectors, which utilize a diagonal matrix can
be found in the literature, such as Neumann series approxi-
mation (NSA) [2], Gauss Seidel (GS) [3], conjugate gradient
(CG) [4], Richardson method [5] etc.

Instead of diagonal matrix, a stair matrix can be utilized
for massive MIMO detection [6]. With a small additional
complexity, the stair matrix based detectors can accelerate
convergence rate of an approximate inversion based detectors,
such as NSA. In addition, a stair matrix can also be used
to develop novel low-complexity massive MIMO detection
methods. In this paper, we propose FPGA implementation
for such a stair matrix based detection method. We present
simulation results to demonstrate superior error-rate perfor-
mance of stair matrix based detection and also determine
necessary word length for the circuit. We develop an iterative
and time-shared architecture for the detector using VHSIC
Hardware Description Language (VHDL) and mapped on a
Xilinx Virtex-7 FPGA. The architecture supports a base station
with 128 antennas, 8 users and 256 quadrature amplitude
modulation (QAM). The stair matrix based detector provides
142.34 Mbps detection rate at a 258 MHz clock frequency.
The rest of the paper is organized in the following way: In
Section II, a massive MIMO system and detection methods
are discussed. In Section III, the stair matrix based detection
algorithm and its complexity is presented. Fixed and floating-
point performance of the detector are presented in Section IV.
Proposed VLSI architecture and FPGA implementation are
presented in Section 3 and VI, respectively. The conclusion
is drawn in Section VII.

II. SYSTEM MODEL AND DETECTION METHODS

We assume, a total of U single antenna users are transmit-
ting towards a massive MIMO BS with N antennas, where
U ≤ N . Assuming a frequency flat channel between the users
and BS, the transmit and receive vector relationship can be
characterized as

y = Hx+ n, (1)

where y ∈ CB is a received signal vector, x ∈ CU is a transmit
symbol vector, H ∈ CB×U is a channel matrix, and n ∈ CB

is a circularly symmetric complex white Gaussian noise vector
with zero mean and σ2 noise variance. In Fig. 1, a massive
MIMO system model is presented.

The task of a MIMO symbol detector is to determine the
transmitted symbol vector x from the received signal vector
y. Two recurrent linear detection methods are based on zero-
forcing (ZF) and linear minimum mean-square error (MMSE)
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Fig. 1: Massive MIMO system model.

equalization. ZF inverts the channel matrix H to determine the
transmitted vector and does not consider the effect of noise
vector n, which can be expressed as

x̃ZF = H†y = (HHH)−1HHy, (2)

where H† is a pseudo-inverse of H. The ZF detector requires
an inversion of the Gramian matrix, G, where GZF = HHH.
The MMSE detector takes noise into account and provides
better performance than ZF. MMSE detection can be expressed
as

x̃MMSE = (HHH+ σ2IU )
−1HHy, (3)

where IU is the U×U identity matrix. The Gramian matrix is
modified with a regularization by noise variance for MMSE,
i.e., GMMSE = HHH+ σ2IU .

For small-scale MIMO detection, the inversion of a
Gramian was based on exact matrix inversion methods. How-
ever, the exact inversion can be complex as the number of
users increases. For example, Gramian of a 16 users system
(U = 16) will be a 16×16 matrix. Therefore, the approximate
inversion based detection methods are usually used by the
VLSI community. These detection mechanisms are iterative
and they heavily utilize the diagonal matrix. For example, in
GS method, G is decomposed as

G = D+ L+R, (4)

where D, L and R are the diagonal component, the strictly
lower triangular component, and strictly upper triangular com-
ponent, respectively. The GS can be used to estimate the
transmitted signal vector x̂ as

x̂t = (D+ L)
−1

(x̂MF −Rx̂t−1) , (5)

where x̂MF = HHy is a matched filter [3].

III. STAIR MATRIX BASED GAUSS-SEIDEL METHOD

A stair matrix is a special tri-diagonal matrix where the
off-diagonal elements on either the even or the odd row are
zeros [6]. Matrix S is considered as a stair matrix if one of
the following conditions is satisfied:

- S(i,i−1) = 0,S(i,i+1) = 0 where i = 2, 4, ..., 2
⌊
K
2

⌋
- S(i,i−1) = 0,S(i,i+1) = 0 where i = 1, 3, ..., 2

⌊
K−1
2

⌋
+1

Algorithm 1 Inversion of a Stair Matrix

input: S
outputs: S−1

1: for i = 1 : 1 : U
2: S−1i,i = 1/Si,i

3: end
4: for i = 2 : 2 : 2 bU/2c
5: S−1(i,i−1) = −G(i,i−1)S

−1
i,i S

−1
(i−1,i−1)

6: S−1(i,i+1) = −G(i,i+1)S
−1
i,i S

−1
(i+1,i+1)

7: end

TABLE I: Complexity comparison

Algorithm Computational complexity

CG (K + 1)(4U2 + 20U )

NSA (K − 1)(2U3 + 2U2 − 2U)

GS 6KU2

Stair Matrix K(4U2 − 2U)

The stair matrix S is essentially a diagonal matrix D with
some additional off-diagonal elements. A 6 × 6 stair matrix
can be expressed with either of the following forms:

S =


× ×
×
× × ×

×
× × ×

×

 or S =


×
× × ×

×
× × ×

×
× ×


The stair matrix S can be extracted from the Gramian by

only extracting the cross shaped values shown here. The in-
version of a stair matrix can be calculated in a straightforward
manner, which is presented in Algorithm 1. The diagonal
elements are computed with reciprocals and the off-diagonal
elements require a couple of multiplications. An iterative
detection method based on stair matrix is proposed in [6]. In
their proposed method, the initial solution is based on inverse
of stair matrix and matched filter.

x̂(0) = S−1x̂MF. (6)

This solution is updated with each iteration in the following
way:

x̂t = S−1 ((S−G)x̂t−1 + x̂MF) (7)

It is evident that the solution only requires an inversion of the
stair matrix, which is already presented in Algorithm 1. The
rest of the algorithm requires a matrix inversion and addition
with matched filter. The stair matrix based detection method
requires a total of U number of divisions and t(4U2 − 2U)
number of real multiplications. In Table I, the complexity of
the stair matrix based detection algorithm is compared to three
most popular approximate inversion based detection methods.
The comparison is based on the number of real multiplication
required for each detection mechanism. It is evident from the
table that stair matrix based detection method is less complex
than most approximate inversion based detectors.
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IV. SIMULATION RESULTS

We present error-rate performance of different detection
mechanism in Fig. 2. We simulate NSA, GS, MMSE, CG
and Richardson methods to compare with the stair matrix
based detection. Here, we used 10,000 Monte-Carlo trials for
all simulations. The modulation scheme for these simulations
is 256-QAM. We consider an i.i.d. Rayleigh fading channel
between the BS and users. In Fig. 2, we simulate the de-
tectors for 8 users transmitting to a BS equipped with 128
antennas. The number of iterations used for all the algorithms
is t = 2. GS and stair matrix based detectors reach near
MMSE performance for this scenario. The stair matrix based
detector outperforms NSA, Richardson and CG methods by a
significant margin.
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Fig. 2: Detector performance for 128 BS antennas and 8 users
with 256-QAM.

We also present the fixed-point simulation performance of
stair matrix in Fig. 2. We curve of the stair matrix based
detector with fixed word lengths is denoted by FP. The
Gramian matrix is set to a total of 12 bits with 8 bits for
fraction, while the matched filter inputs are set to a total of
15 bits with 10 bits of fraction. The output of the inverse
of S is set to 17 bits. The outputs of multiplication between
(S−G) and x̂ are set to 20 bits with 16 bits of fraction. The
values of x̂ are set to 12 bits with 8 bits of fraction in the
entire simulation. These optimal word lengths are found after
numerous simulations in the Matlab environment. Wrapping
and rounding mechanisms are used in the simulations for
quantizing the integer and fractional parts, respectively. Fig. 2
shows that the fixed-point version of a stair matrix based
detector coincides with its floating-point counterpart.

V. VLSI ARCHITECTURE

We present an iterative and time-shared VLSI architecture
for the stair matrix based massive MIMO detection. The VLSI
architecture is designed for maximum utilization of a complex
multiplier array, which is the crux of the detector operation.
A VLSI architecture based on a systolic array with numerous
multiply-and-accumulate (MAC) processing elements (PE) is

another candidate for such a detector. However, we prefer the
proposed time-shared architecture due to the iterative nature
of our algorithm.

A high level block diagram of the proposed VLSI archi-
tecture is presented in Fig. 3. We assume the Gramian and
matched filters are computed during pre-processing stage and
we focus only on the detection part in this paper. The inputs
of the architecture comes from subtraction of the stair matrix
from the Gramian matrix (S−G), diagonal elements of (G),
non-diagonal elements (G), and matched filter. A 13 bits input
where 9 bits are fraction is used for G matrix. Even though
12 bits are sufficient for G according to Fig. 2, we relax the
word length by one bit to avoid any unexpected quantization
errors. The memory part is depicted in green, while the logic
parts in blue in Fig. 3. It should be noted that the size of the
blocks in Fig. 3 is not proportional to the actual area they
occupy in the FPGA die.
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Fig. 3: High level architecture of the VLSI architecture for
stair matrix based detection.

According to Fig. 2, the entire architecture can be divided
in four major parts: (1) a Newton-Raphson divider, (2) a
multiplier array, (3) an adder tree and an adder array, and
(4) control logic. The main memories involved with the
architecture is related to S −G, and register arrays to store
incoming matched filter, diagonal and non-diagonals of S−1,
and an array at the output. We require to store 64 elements
of S−G because the Gramian becomes 8× 8 for an 8 users
massive MIMO system. We use a memory which stores 8
elements of S − G in each address to utilize the multiplier
array properly. Thus, each word in the memory is 26× 8 bits
wide. However, the values of S−G is assumed to be written
one at a time, and therefore, we require a separate register
array and associated logic to concatenate the 8 elements into
a longer word of 26×8 bits and write into the S−G memory.
A few points to be noted here: (1) S−G do not require any
subtraction, because the non-zero elements of S comes straight
away from G, and the subtraction output will be zero for those
elements. (2) Due to the symmetric nature, it is possible to
store only the upper or lower triangular part of G. However,
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writing and reading from a triangular memory will require
more complex logic. (3) We assume the chip select, write
enable, write address and write data comes as an input to the
architecture.

During first 64 cycles required to load the S−G memory,
we compute the inverse of the diagonal elements with Newton-
Raphson method [7]. The inverse 1/x can be computed in an
iterative manner with Newton-Raphson method as

xk+1 = 2xk − xx2k, (8)

where k is the number o iterations. The initial value x0 follows
the convergence criterion 0 < x0 < 2/x. The initial values
are typically stored in a look-up table (LUT). To control the
dynamic range, a shift operation is applied on x. This shift
operation ensures that the result lies in the range of [1/2, 1].
We use a 18 bit divider and store diag(G) in a register array.

The non-diagonal elements of S are stored in a separate
register array. To our convenience, we only have a total of
seven non-zero non-diagonal values of in a 8× 8 stair matrix.
The corresponding non-zero elements of 1/S can be computed
with only two multiplications according to Algorithm 1. We
store the non-diagonal elements of 1/S in a separate register
array. The main computation unit of the architecture is built
upon an array of eight complex multipliers and an adder
tree. As complex multipliers are costly, we re-use them in
a time shared manner to compute (1) initial value of x̂, (2)
matrix (S −G) and vector x̂ multiplication, (3) to compute
non-diagonal elements of 1/S and (4) the final multiplication
required between S−1 and ((S−G)x̂t−1 + x̂MF).

VI. FPGA IMPLEMENTATION AND COMPARISON

The VLSI architecture is developed with VHDL on register-
transfer level (RTL) and mapped on a Xilinx Virtex-7
XC7VX690T FPGA. For synthesis and implementation strat-
egy, Vivado default settings is used. The default mode is
selected for the -flatten_hierarchy option in Vivado
design tool to keep the same top level hierarchy after synthesis.
A total of 116 cycles are required to complete the two itera-
tions of the stair matrix based detector, where 25 cycles are
required for each iteration of the algorithm. The architecture
can reach 258 MHz of maximum clock frequency. Therefore,
the 8 users system can reach upto 142.34 Mbps throughput.
Several such VLSI circuits working in parallel on different
orthogonal frequency division multiplexing (OFDM) tone can
increase the throughput to Gbps, which is required for 5G
systems.

In Table II, we compare our FPGA implementation with
NSA implementation of [2] and GS implementations of [3]
and [8]. The NSA detector takes a significant amount of
LUT and FF slices compared to other implementations and
able to reach a high throughput value even after t = 3
iterations. As the implementation also takes a significant area,
the NSA implementations provide lower scaled throughput
compared to our implementation. The GS implementations are
both provided for t = 1 iterations. The GS implementation
of [3] provides lower throughput as well as lower scaled
throughput compared to our implementation. The throughput

TABLE II: Comparison of FPGA implementations for 8 users
massive MIMO detectors

Detection algorithm Stair Matrix NSA [2] GS [3] GS [8]
Modulation Scheme 256-QAM 64-QAM 64-QAM 64-QAM
Iteration 2 3 1 1

LUT slices 16211 148797 18976 17944
FF slices 15793 161934 15864 19750
DSP 112 1016 232 274

Clock freq. [MHz] 258 317 309 352
Throughput [Mbps] 142.34 621 48 127

Throughput/slicesa

(Mbps/K slices)
4.4481 2.0032 1.4118 3.4324

a Summation of LUT and FF slices.

will be further reduced for t = 2 iterations which we have
used in our Matlab simulations of Fig. 2. The improved GS
architecture proposed in [8] provides higher scaled throughput
than that of [3]. However, the scaled throughput is still lower
than our implementation and [8] also used only t = 1 iterations
for their result.

VII. CONCLUSION

In this paper, we proposed a VLSI architecture and FPGA
implementation of a stair matrix based massive MIMO de-
tection algorithm. The algorithm provides satisfactory perfor-
mance when the ratio between the numbers of BS antennas and
users is high. We presented the fixed-point simulations to find
the optimal word lengths for our architecture. The implemen-
tation reaches a maximum clock frequency of 258 MHz and
provides 142.34 Mbps. The architecture provides reasonably
higher throughput and better error-rate performance than most
other massive MIMO detectors. Thus, the proposed detector
is an attractive solution for 5G BS receiver implementation..
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