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Abstract—We argue in this paper that autonomic systems need
to make their integrated monitoring adaptive in order to improve
their “comprehensive” Quality of Service (QoS). We propose
to design this adaptation based on high level objectives (called
goals) related to the management of both the ”functional system
QoS” and the ”monitoring system QoS”. Starting from some
previous works suggesting a model-driven adaptable monitoring
framework composed of 3 layers (configurability, adaptability,
governability), we introduce a methodology to identify the
functional and monitoring high level goals (according to the
agreed Service Level Agreement - SLA) in order to drive
models’ instanciations. This proposal is first applied to a cloud
provider case study for which two high level goals are developed
(respect metrics freshness and minimize monitoring cost), and
then simulated to show how the quality of management decisions,
as well as intelligent monitoring of dynamic SLA, could be
improved.

I. INTRODUCTION

Autonomic systems that are implemented by virtue of their

four characteristics self-configuration, self-optimization, self-

healing, and self-protection, are serving the ultimate objective

of making them self-managed to achieve high level objectives

[1]. These objectives are strongly related to the QoS level

provided by autonomic systems. When large and complex

systems are targeted, the self-management characteristic (self-

*) is a key issue to deal with. Basically, self-management

is thought as the auto-adaptation capability that brings the

system to reach an absolute or preferable state. Concretely,

the four self-* characteristics are realized by implementing

the MAPE-K (Monitoring, Analyzing, Planning, Executing -

Knowledge) loop. This implementation is either integrated

within an equipment, or into a system.

In this loop, the Monitoring system plays a crucial role,

since wrong decisions might be taken by the Analyzing

and Planning systems. Therefore, autonomic systems need

to ensure the quality of this information (e.g. correctness,

freshness, timeliness, accuracy, etc.). Moreover, within au-

tonomic systems, monitoring is usually QoS-oriented. This

QoS relies on the functional system (through the SLAs that

have been agreeded with clients), but also on the management

system; since the QoS specifications could be renegotiated or

modified afterward, the monitoring system has to adapt its

behavior according to these new requirements and constraints.

In other words, monitoring systems have to be capable of

(re)configuring their mechanisms based on quality require-

ments.

Our proposal deals with questions such as: how should

the autonomic system guarantee the agreed QoS if a service

provider hosts new services? What should the autonomic

system do if a part of the monitoring system has been attacked,

or if the credibility of the monitored information is weak?

These questions lead us to believe that derivation of monitoring

from SLAs is not a simple straightforward process. Rather,

monitoring has to be adaptive in order to satisfy high level

objectives coming from the functional QoS, monitoring QoS,

and even other FCAPS objectives. To tackle these issues, we

defined a 3-layered adaptive monitoring framework [3]: the

configurability layer defines monitoring operations (such as

polling or listening), the adaptability layer specifies operators

applying on the previous layer, while the governability layer

represents the ”intelligence” of the adaptation by invoking

the operators of the adaptability layer. Since the first two

layers have been respectively described in [16] and [14], we

focus in this paper on the governability layer and propose

a methodology to specify the policies required to guarantee

both functional and monitoring QoS requirements. The paper

is organized as follows: the next section gives an overview

of some existing approaches and points out their weaknesses;

section 3 briefly exposes our adaptive monitoring framework

so that our methodology can be introduced in section 4; before

concluding, a use case illustrating the monitoring adaptation

of a cloud provider is presented.

II. RELATED WORK

The studied research works lead us to raise three contri-

bution trends: monitoring SLA, autonomic management and

adaptive monitoring.

Monitoring SLAs is not a trivial task, especially when

they don’t match with predefined templates. [4] highlights

the complexity of SLA transformation -using Finite State

Machines- to introduce an executable unambiguous contract

that could be monitored during the SLA life-time, while [5]

discusses four approaches and two concrete architectures that

could be adopted to collect SLA metrics.

Regarding autonomic management, [6] suggests a map-

ping between ”high level” metrics (found in SLA) and ”low

level” metrics (fetched by soliciting agents) to ”facilitate

autonomic SLA management and enforcement”. [2] proposes

a framework where automatic monitoring (add/remove ser-

vices metrics) is derived from contracts and related to cross-

organizational workflow. [7] proposes an autonomic frame-



work that monitors QoS satisfaction on both the service and

infrastructure levels; identifying the relevant metrics, as well

as the right time intervals, can be performed on-the-fly, while

adaptations are guided by ”end-user preferences and pre-

defined application or platform policies”.

Regarding adaptive monitoring, [8] proposes an au-

tomated monitoring Web Service that could be deployed

and reconfigured at run-time. The monitoring reconfigura-

tion relates on operations such as adding new monitoring

instances/deleting an existing one, or scaling/withdrawing of

monitored resources. [9] introduces an architecture composed

of two levels of managers (main managers are responsible

for planning and deploying monitoring, while intermediate

managers solicit SNMP agents) where monitoring adaptability

is achieved by the replacement of failed managers. [10]

adapts monitoring in order to keep it minimal, but extends

it when a SLA metric violation occurs. [19] is concerned

by the detection of SLA violations in large networks, where

adaptation actions are taken in order to determine subsets of

end-to-end paths.

Thus, most works related to QoS monitoring focus either

on (1) the auto-configuration of SLA-oriented monitoring, or

(2) the reconfiguration of the functional system based on the

monitored metrics, or (3) the reconfiguration of the monitoring

itself, starting from either explicit demands or static objectives.

But none of these approaches offers an accurate visibility on

the quality of the metrics values and/or their instrumentation

mechanisms. In fact, managements decisions are directly in-

fluenced by the quality of monitoring, thus we argue that

increasing the QoS of the whole system requires (begins from)

designing adaptive monitoring system that ensures quality

constraints, instead of monitoring quality metrics only.

In this paper, our proposal tries to tackle these major

issues by making monitoring self-managed regarding high

level quality goals, while taking into account the functional

QoS & monitoring quality requirements.

III. THE ADAPTIVE MONITORING FRAMEWORK

Our approach is based on a 3-layered framework illustrated

on Figure 1, and defines three fundamental capabilities re-

quired to control monitoring: being configurable, adaptive

and governable. [3][14][16] introduce an adaptive monitoring

service where monitoring activities become independent of any

consideration regarding agents or management protocols: the

originality of this approach relies on its capacity of hiding the

complex integration of heterogeneous target agents (entities

providing management data) and management protocols (used

to communicate with those agents).

The configurability layer stands on the DMTF Common

Information Model (CIM) standard. This low level layer aims

at representing, in addition to the systems to be managed, the

metrics and monitoring mechanisms that are required to ensure

both functional and monitoring QoS; this layer operates these

mechanisms as well.

The classes IRIT PollingOperation and IRIT Liste-

ningOperation respectively specify the polling and event
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Fig. 1: An Adaptive Monitoring Framework

reporting mechanisms. The polling operation can be

configured according to various properties (PollPeriod,

RequestDelay, MaxIteration, TemporalValue) and statistics

(UnsuccessfulOperationRate, UnsuccessfulOperationThresh-

old) that guide the autonomous behavior of polling. As this

paper does not deal with event reporting, we do not mention

their configurability. In practice, the framework performs

polling by soliciting ”targets” defined as managed elements

or sources of pulled data (i.e. remote agents).

In addition, this monitoring model is associated with a

metric model to derive the configuration of the monitoring

mechanisms based on the QoS specification (i.e. QoS metrics

& constraints to be monitored). This derivation is feasible by

virtue of our CIM Model extension [13] that classifies metrics

according to their instrumentation: (i) Resources Metrics are

instrumented with pulled data, thus they are associated with

IRIT PollingOperation instances, (ii) Measurable Metrics are

processed programmatically using algorithms (they are not

gathered distantly), and (iii) Mathematical Metrics are cal-

culated based on formulas applied to elementary metrics.

The adaptability layer provides ”operators” that apply on

the lower layer. Using these operators, some instances of moni-

toring services can be added, deleted or updated (by modifying

their configuration), and the underlying mechanisms (polling

and event reporting) can be started, stopped, suspended or

resumed.

Finally, the governability layer is the top level layer

representing the ”intelligence” of the monitoring adaptation.

To express both functional and monitoring objectives, it uses

policies to describe when and how adaptation should take

place, that is when and where operators of the adaptability

layer should be invoked. Considering this adaptable monitor-

ing framework, a question arises: how to build the governance

level in order to monitor SLAs from both the functional and

monitoring points of view? This issue could be driven by a

top-down approach that help to specify ”high level objectives”,

and then derive these objectives through the configuration and

adaptation of monitoring operations.

IV. A GOAL-ORIENTED APPROACH FOR ADAPTIVE SLA

MONITORING

Thinking that one of the existing software engineering

approaches should answer our needs, we looked forward a

suitable method for designing moniroting adaptation. The ori-

gin of Requirements Engineering (RE) goes back to the need to

avoid crucial mistakes committed at the project design phase,



Fig. 2: Our Goal-Oriented Approach for Adaptive SLA Mon-

itoring

and aims at building systems solving real-world problems.

This methodology applies iterative activities about ”eliciting,

evaluating, documenting, consolidating and changing the ob-

jectives, functionalities, assumptions qualities and constraints

that the system-to-be1 should meet based on the opportunities

and capabilities provided by new technologies” [11]. Among

multiple RE approaches, the KAOS2 method is goal-oriented

and provides a formal assertion layer that proves correctness

and completeness of goals [12].

A. Our Goal-Oriented Approach for Adaptive SLA Monitoring

The resulting methodology is illustrated on Figure 2, and

follows a top-down approach to fit the management area speci-

ficities. We focus here on the self-management of monitoring

integrated into autonomic systems, but our methodology ap-

plies to any management system handling any FCAPS feature.

The goal models elicit ”goals” representing high level

behavioral prescription of the system-to-be (the functional or

1The ”system-to-be” refers to the system with RE machine operating in it.
2KAOS stands for ”Knowledge Acquisition in Automated Specification”,

or ”Keep All Objectives Satisfied”.

monitoring systems in this study). Each goal expresses one

or more objectives, and a given goal is completed through

the cooperation of several components or actors, the so-

called agents3; as goals belong to two distinct systems, we

distinguished two categories of agents: Functional System

QoS Agents, and Monitoring System QoS Agents. Goals are

decomposed into sub-goals via AND/OR refinement methods,

where the most refined goals are called Requirements, or Leaf

Goals; in KAOS, each of those leaf goals are assigned to a

specific agent in order to be realized. Within our framework,

they match with objectives related to the QoS management of

both the functional system and the monitoring system itself.

Others goals, depicted within the obstacle models, are

deduced from the goal models and may prevent the satisfaction

of these lasts. Since the goal models rely on metrics gathered

by the monitoring system, the obstacle models comprise goals

related to the quality of those metrics. Such goals include,

among others, degradations of monitoring: if those degrada-

tions occur (if obstacle goals are satisfied), they cause the

non-satisfaction of some QoS management goals.

Starting from both the goal and obstacle models, the policy

models specify events triggering the evaluation of conditions

and leading, when conditions are verified, to the execution

of some specific adaptation actions. The policy models thus

ensure that goals of the functional and monitoring systems

remain satisfied, whereas obstacle goals keep unsatisfied. Let

us note that in fact, adaptation actions match with leaf goals

(or requirements).

Finally, from the policy models, the operation and object

models are designed. Indeed, the event and condition specified

within a given policy relies on one or several metrics or

managed elements defined into the configurability layer; the

object models thus define objects representing the system-to-

be resources, their dependencies and their topology, together

with the metric model [13] and monitoring mechanisms [3]

presented in the previous section. On the other hand, the

operation models are composed of the sets of operations

required by agents to achieve the Leaf Goals, that is the

actions specified into the policy models. They match with the

operators defined within the adaptability layer, and acts on the

monitoring services specified in the object models.

This methodology points out the fact that the identification

of leaf goals represents a crucial step in this approach: from the

requirements, adaptation policies can be specified and, from

here, the models of the configurability and adaptability layers

are built. Therefore, to facilitate this identification process,

we suggest a classification of leaf goals according to the

dimension they belong to.

B. A Classification of Leaf Goals

We conducted a reflexion about the ”factors” a monitoring

adaptation action may apply to. From this study, we identified

four categories of leaf goals, or dimensions, illustrated on

3Notice that Agents in networks and systems Management are entities
responding to Management requests coming from other Management entities
called Managers; therefore the term ”Agent” in RE has a different meaning.



Figure 3: Spatial, Metric, Temporal, Gathering. For clarity

reasons, we illustrated each dimension with examples of leaf

goals that may be reached within our framework, but this

list is far from being exhaustive: the aim of the dimensions

is to make the design of policies (and thus, the design of

operation and object models) easier and more efficient for

human administrators.

The spatial dimension comprises goals focusing on the

target number of managed elements composing the functional

or monitoring systems. When new entities (dis)appear within

those systems, (less)more targets have to be monitored, and

the monitoring system has to self-adapt accordingly: it has to

(expand)shrink its monitoring perimeter. We thus defined two

leaf goals into this dimension: Expand Monitoring Perimeter,

and Shrink Monitoring Perimeter.

The metric dimension implies goals focusing on the num-

ber of monitored metrics. This amount of metrics may evolve

according to a negociation of the SLA (i.e. additional metrics

have to be monitored to meet the new SLA requirements),

or to a modification of the monitoring perimeter (the number

of monitored metrics increases/dicreases when the monitoring

perimeter expands/shrinks). Therefore, the leaf goal Zoom In

has been identified to monitor more metrics, whereas the leaf

goal Zoom Out allows to stop monitoring a given (set of)

metric(s).

The temporal dimension relates on goals focusing on

temporal behavior. We distinguish two levels of temporal

granularity: the fine-grained level deals with individual tem-

poral characteristics, whereas the coarse-grained level ad-

dresses collective temporal behavior. Within our framework,

this dimension includes three leaf goals related to the polling

mechanism and illustrated on Figure 3: the Update Period to

update the frequency of a given polling, the Align Polling to

launch concurrent pollings at the same time, and the Disalign

Polling to process pollings according to a given offset.

The gathering dimension deals with goals focusing on the

manner of getting/exchanging information. Such goals occur

when the way of getting a desired metric has to be updated

(i.e. another target has to be invoked to get a given metric

value, or another communication protocol has to be used to

invoke a given target). The matching leaf goals we identified

are Alter Target Entity and Alter Target Protocol.

Our analysis showed up that the adaptation of monitoring

implies some sort of ”semantic”. We believe that handling

adaptation with more coarse granularity expressing its se-

mantic, by adopting a goal-oriented approach, makes mon-

itoring adaptation more suitable to fit quality of measures’

requirements. Moreover, goals can be classified into distinct

dimensions, thus providing a new ”starting point” reflection to

establish a panel with a variety of adaptation actions.

V. CASE STUDY: A CLOUD PROVIDER

In order to show the applicability of the proposed approach,

we address here an example related to the adaptation of the

monitoring system (not the functional system).
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Fig. 3: Dimensions and Leaf Goals

Our scenario rolls in a cloud data center hosting a large

number of virtual machines (VMs) created/deleted on demand,

and which provides its clients with a service offering con-

tinuous monitoring of some agreed SLAs metrics. When the

number of VMs is too high, the monitoring service might not

be able to respect the determined metrics freshness, and thus

breaks the SLA agreement.

To tackle this issue, the cloud provider has to adapt its

monitoring. Two high level goals to be satisfied during the

monitoring system runtime have been identified: Respect Met-

rics Freshness makes sure that the SLA is respected, and

Minimize Monitoring Cost aims at dicreasing the consumption

of resources dedicated to monitoring as much as possible.

The former goal can be decomposed by OR-refinement into

two leaf goals (see Figure 4): Shrink Monitoring Perimeter to

decrease the load of the monitoring service, and Alter Target

Entity to retrieve the metric, in time, from another target. On

the other hand, the goal Minimize Monitoring Cost matches

with the leaf goal Expand Monitoring Perimeter, to monitor

ressources handled by others monitoring services so that they

are able to stop their activity (or even shudown).

The matching adaptive monitoring framework (based on

the two above high level goals) has been first simulated and

then implemented. However, we focus here on the Shrink

Monitoring Perimeter requirement.

A. Shrink Monitoring Perimeter

We adopted a distributed management architecture to pro-

cess the Shrink Monitoring Perimeter leaf goal, and introduced

two types of managers as CIM servers hosting the moni-



Fig. 4: Use Case Goal Refinement

toring service defined in [3]: the Primary Managers (PM)

are responsible for life-cycle management of SLAs, whereas

the Assistant Managers (AM) act as temporary managers to

dicrease the load on a given PM (each primary manager has its

own pool of assistants). Then, the adaptation action consists

in transferring some resources managed by a primary manager

to one or more of its assistants, so that the interval period

between two polls for the same metric becomes lower than a

given treshold.

This operation is handled by an additional component,

called agent (see Section IV-A), responsible for instrumenting

the leaf goal. The agent executes the following sequence of

process once it receives the stimuli from the PM:

1) It randomly picks up and launches an inactive assistant

manager.

2) It randomly picks up a set of target instances to handle;

the set size is specified through a dedicated parameter

(see further).

3) It forwards the selected set of instances to the launched

assistant manager. Starting from this moment, pollings

to the matching targets are operated by the AM.

4) Finally, once it receives an acknowledgement from the

AM, it deletes the delegated instances within the primary

manager.

B. Simulation

The above scenario has been simulated using Colored Petri

Nets (CPN) [17][20] and CPN Tools V3.5.7. CPN is a mod-

eling language for concurrent and reactive systems. The latter

leverage on communication, synchronous and asynchronous

events to collaborate. It produces formal models, due to the

mathematical definition of its syntax and semantic. Those

models are ”executable”, that is, they could be simulated, in

order to illustrate visually the evolution during the system

runtime. Simulation is useful to detect early misconception

at the design phase. Because of the formal nature of CPN

models, state space process calculates all reachable states of

the model, therefore those models could be the subject of

some ”verification and validation questions” to ensure some

desired properties regarding the system-to-be. Beside graphical

capabilities of creating models, CPN involves a functional

programming language, namely CPN ML, which is based on

the Standard ML, providing primitives for defining data types

and writing treatment functions.

The simulation has been initialized according to the follow-

ing parameters: metric freshness was set to 20 time unit; the

inter-arrival rate of Poisson distribution regulating the arrival

of VMs in the cloud is λ = 1/60, (i.e. the time between

two arrivals has a mean of 60 time unit); the service rate

of Erlang distribution representing the polling service time is

µ = 1 (i.e. the time to serve polling has a mean of 1 time unit).

In addition, the number of targets delegated by the server to

a given AM is 50, and this process occurs when the polling

service time exceeds the metric freshness (20 time unit) more

than fifty times (N=50).

Figure 5 illustrates measurements of the polling service time

belonging to two simulation replications. In these simulations,

VMs are continuously created and joined to the monitoring

perimeter of PM. In addition, simulations are automatically

stopped after generating 250 VMs. During simulation, the

Metric Evaluator continuously evaluates the polling service

time of each polling operation (instrumenting the SLA tem-

plate metrics), against the determined threshold. The latter,

in our use case is set to be equal to the metric freshness.

Once the polling service time is violated more than fifty

times, the Shrinking process will be fired up as much as

necessary. In each of these two simulations, PM performs

Shrinking three times (vertical bars in Figure 5 represent

the moments of time where Shrinking is performed). That

is due to the continuous creation of VMs, as well as the

violation of polling service time; that is decreased significantly

after each Shrinking. At the end of the simulation, we can

notice that AM1, AM2, and AM3 are launched. Each of them

monitors 50 targets according to their appropriate 100 pooling

operations. Furthermore, 100 targets and their 200 associated

polling operations are still monitored by the PM. We purposely

continue the simulation after the launching of all AMs, to

illustrate the increasing of the polling service time regarding

PM remaining polling.

By simulating our use case, we have been capable of illus-

trating (using a formal-language based tool) the importance

of monitoring adaptation, when this monitoring is performed

regarding quality concerns (Qos & QoI). As well as, by

analyzing simulation measurements, we were able to show that

semantic behind goals (which guided us in goals refinement

process), can concretely take place by goal realization.

VI. CONCLUSION & PERSPECTIVES

We have proposed a goal-oriented approach for designing

adaptive SLA monitoring. This approach guides the manage-

ment expert to express the monitoring behaviour starting from

any SLA contract. It enhances to focus on SLA-monitoring
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Fig. 5: Simulation Measurements

adaptation in regard with: 1) the managed system changes

and its related functional requirements, 2) the non-functional

requirements, and 3) violation detection.

It links the defined monitoring adaptation (dimensions) to

several models that drive the distributed monitoring execu-

tion. As examples, we have determinated (1) the adaptation

triggers (by instantiating metrics & constraints instances, and

then instrumenting and evaluating them), (2) the adaptation

policy (by instantiating adaptation policy, and automating the

subscription to constraints violations).

Due to the 3-layers adaptable monitoring framework, this

approach hides complexity and heterogeneity of candidate

management protocols by focusing on monitoring adaptation

behaviour. This approach benefits from formal CPN notation

and simulation for validating the designed adaptative moni-

toring behaviour. An implementation of this simulation on a

specific-technology platform has just been achieved, but we

didn’t conduct any experimentation yet; however, some results

should be discussed by the time of the cofnerence.

The main perspectives we currently investigate are the

followings: 1) the specification of complex goals (composed of

leaf goals) 2) support for the designing process 3) the adaptive

monitoring as a service
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