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Abstract—Named Data Networking (NDN) has gained signifi-
cant attention due to the appearance of several unforeseen design
flaws that became evident with new communication scenarios.
Among its many features, the two standard NDN forwarding
strategies are not adaptive, causing performance degradation in
several scenarios. This paper proposes an adaptive forwarding
strategy based on deep reinforcement learning with Deep Q-
Network, which analyzes the NDN router interface metrics
without creating signaling overhead or harming the design
principles from the NDN architecture, besides showing significant
performance gains compared to the standard strategies.

Index Terms—Fowarding Strategy, Deep Reinforcement Learn-
ing, DQN, Named Data Networking.

I. INTRODUCTION

With massively connected devices and the popularization
of new applications (e.g., high-quality video streaming), the
future Internet design will have new requirements, such as
enhanced device mobility. The NDN [1] is a promising internet
architecture paradigm that has been proposed to mitigate
the disadvantages of the original Internet architecture. Unlike
traditional IP networks, NDNs removes the need for end-to-
end communication, with a new approach to distributing and
retrieving content on the Internet.

As NDN focuses on content-driven communication and con-
tent identification, its operation mode has become quite similar
to the publish-subscribe communication pattern, where con-
sumers request content through interest packets and producers
respond with data packets. In this context, three data structures
are required: Content Store (CS), Pending Interest Table (PIT),
and Forwarding Information Base (FIB), in addition to the
forwarding strategy module [1].

An important feature of the NDN architecture is that due
to PIT, which awaits the arrival of data packets, NDN routers
maintain the state of pending interests. Each interest has a
lifetime and its respective registration to the PIT is removed
due to a timeout event, so that, among other metrics, routers
can measure the packet delivery performance [2], and how to
calculate the Round Trip Time (RTT). Moreover, the FIB in-
formation is inserted by a routing algorithm, such as NLSR [3]
or manually by the network administrator, however, it is the
forwarding strategy module, which decides whether, how and
to which next hop an interest packet must be sent.

In the standard NDN proposal, the two main strategies
are currently based on route (best-route) [2] and flooding
(multicast), with the first being strongly dependent on routing

policies and prone to inefficiency when there are multiple
available next-hops. The latter is considered costly, as it sends
interest packets to all the next available hops, causing great
network overload. For this reason, other adaptive forwarding
strategies have been proposed, which better observe the net-
work status to decide upon which next-hops the interest packet
should be sent to. The most promising approaches are the
Adaptive Smoothed RTT-based Forwarding (ASF) [4], which
chooses the best next-hop based on Smoothed RTT (SRTT)
measurements and Data-based Q-Learning (DQ-Learning) [5]
that exchanges information between NDN nodes using rein-
forcement learning algorithm to modify data packets to choose
the best next hop.

In general, the interest forwarding strategies are still an open
issue due to the remarkable drawbacks on the previously de-
veloped approaches. This paper proposes DQN-Adaptive For-
warding (DQN-AF), an adaptive forwarding strategy based on
deep reinforcement learning with Deep Q-Network (DQN) [6]
for NDN networks. A prototype for the NDN Forwarding
Daemon (NFD) [7] was developed using TensorFlow [8]
and simulated in ndnSIM [9]. The results obtained in the
simulations show the effectiveness of the proposal, which
presents a superior performance compared to Best-Route and
ASF, in addition to achieving similar indexes compared to
DQ-Learning, with the advantage of not modifying data pack-
ets.

The paper is organized as follows: Section II presents the
related work. Section III describes the proposed NDN adaptive
forwarding strategy. Section IV details the experimental setup.
In Section V numerical results are presented. Section VI
concludes the work.

II. RELATED WORK

The works [2] and [10] describe the main characteristics
of the NDN architecture, which allow routers to evaluate the
performance of the interfaces and thus quickly detect com-
munication failures, helping to discover the most appropriate
instant to try alternative paths in order to make adaptive
interest packet forwarding. Even so, the main strategy of
the standard NDN architecture named Best-Route still lacks
adaptive characteristics, which allows underutilizing NDN
router potential.

When interest packets arrive, the Best-Route strategy will
always check which next hop is best classified in the FIB,



even if the link for this hop is experiencing communication
problems, and the routing algorithm still has not updated the
FIB. This strategy will only try an alternative path when the
FIB is updated, either by disabling that hop’s entry or by
worsening its position in the classification. The problem is that
routing algorithms do not usually perform updates as often or
at an optimal time.

The ASF [4] is an adaptive forwarding strategy that period-
ically performs probes all interfaces to measure the respective
SRTT. From this metric, ASF sorts the interfaces to choose the
best next-hop and whenever one interface suffers a timeout,
it is penalized and falls to the end of the classification. If
two interfaces have the same SRTT value, ASF will behave
similarly to Best-Route, choosing the interface with the best
position in the FIB classification.

DQ-Learning [5] is another adaptive strategy. It is based on
the Q-Learning reinforcement learning algorithm, which will
update the Q value through positive and negative rewards upon
receiving data packets. The Q value represents the delay for
the next hop, thus lower Q values reflect better interfaces. In
addition, when a loss is detected, Q will increase in value.
The problem regarding this approach relies on the principle of
data immutability that is not respected since NDN nodes will
modify each data packet before sending, to add the following
information: the best Q value (zero if producer node) and the
sending time, which is information used to update the Q value
on the node that will receive the data packet. In this way, the
NDN nodes propagate the network status so that each router
can decide its next hops. If the same interface has successive
losses, DQ-Learning avoids penalizing its respective Q value
unnecessarily by temporarily interrupting the interface choice
by Q-Learning and using probability theory. The authors in [5]
also proposed the Interest-based Q-Learning (IQ-Learning)
approach, which works similarly to DQ-Learning, but instead
of modifying the data packet to provide the algorithm infor-
mation, this approach creates a new packet (non-standard) for
each feedback, causing extra signaling overhead. The authors
themselves claim that the performance of DQ-Learning is
superior to IQ-Learning.

Finally, regular Multicast is another strategy that belongs
to the NDN standard architecture. In this approach, upon
receiving an interest packet to be sent, it will greedily replicate
all the next hops interest. An advantage is that it increases the
chances of receiving the respective data packet; however, at a
very high cost for the network, as can be seen in the results
presented in Section V.

III. ADAPTIVE FORWARDING STRATEGY

This section describes the adaptive forwarding operation
depicted in Fig. 1. The workflow starts with the router
collecting data from available links (known from the FIB)
such as numbers of packets delivered and lost, RTT, SRTT,
Retransmission Timeout (RTO). The collected data is used
to identify the environment states and be processed by the
DQN-AF agent. Whenever an interest packet arrives at the
PIT, the NDN router informs the states that the DQN-AF

agent can predict which interface should be the next hop.
The agent then shares the router’s decision, which sends the
interest to the selected interface and creates a record at the PIT.
The NDN router will only inform the reward in two possible
situations: (a) upon respective data packet arrival or (b) loss
detection, by Negative-Acknowledgement (NACK) or timeout.
If the data packet successfully arrives, a positive reward will
be reported to the DQN-AF, whereas if a loss is detected, a
negative reward is generated instead. In this way, the proposed
forwarding strategy can adapt to different network conditions.

DQN-AF

Action

Router

RewardState

Fig. 1. Adaptive forwarding operation overview with DQN-AF.

A. DQN-Adaptive Forwarding (DQN-AF)

In this paper, we take advantage of the fact that NDN
routers maintain state information of sent requests to collect
performance metrics from the router’s interfaces, allowing
the DQN-AF module to generate state data sent to the deep
reinforcement learning agent. In the current version, DQN-AF
measures the following metrics on each interface:

• η → number of packets sent over a time interval t;
• ω → rate of successful deliveries in the last η interest

packets sent with defined status (delivered or lost);
• δ → stores if the interface is available and informs that

a timeout occurred on the last sent interest.

In DQN-AF, a state (s) is composed by ω and δ for each
interface, so the size of the state is dependent on the number
of interfaces. With these state values, the deep reinforcement
learning algorithm can predict by observing data regarding
the previous experiences (success/failures). This was defined
because an interface with low success rate over time, but in
the last verified interval delivered all packets, tends to be a
better choice than an interface with high success rate, but that
in the last interval delivered a small fraction of the packets.

Fig. 2 shows the details of the DQN-AF strategy. When
states are sent to the agent, data enters a fully connected
multilayer perceptron neural network, with two hidden layers
containing 24 units each and the Rectified Linear Unit (ReLU)
as the activation function. The number of available interfaces
defines the neural network output size, and the unit values are
generated by the Softmax activation function, which represents



the Q values for each interface. The action (a) is formed from
the best Q found in the output.
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Fig. 2. Internal view of the DQN-AF.

After the router acts as determined by the DQN-AF, it waits
until the status of the action is defined. When successful, a
positive reward is generated with SRTT/ω from the interface
and sent to the agent. In this way, this positive reward takes
both the delay and the success rate; in this context, lower
numerical values are obtained with higher rewards. When the
action is unsuccessful, a negative reward is generated with an
arbitrarily large value.

When the reward (r) arrives at the DQN-AF agent, the
neural network trains the weights with expression (1), to learn
from the new experience (state, action, reward), where γ is
the discount factor, and Q(s, a) is the prediction of a future
reward for the action taken (a) from the state (s).

Experience = (1− γ) ∗Q(s, a) + γ ∗ r (1)

One of the main virtues of DQN compared to Q-Learning is
the ability to improve learning through repetition of past non-
consecutive experiences, since learning only with consecutive
samples is inefficient due to strong correlation between sam-
ples [6]. Therefore, the DQN-AF uses a memory of maximum

size κ to store the last analyzed experiences. For every ρ
analyzed experiments, the DQN-AF will re-train experiences
of a minibatch formed by randomly selected ψ samples.

IV. EXPERIMENTS

The performance evaluation using the official tools of the
NDN project required developing a prototype for the forward-
ing strategy, which was composed of two main blocks: The
first is a C++ module within the NFD 0.6.5 (project router) that
performs multiple tasks related to the adopted strategy such as
link data collection, sending the interest to the next hop, and
reward calculation. The second part implements DQN and was
developed in Python using TensorFlow 2.1.0 to use hardware
acceleration through parallel processing boards.

The following lines describe the DQN-AF parameters. First,
a random variable (between 0.0 and 1.0) is assigned to the
possible actions. If the generated number is smaller than or
equal to the ε (exploration rate), the action will be randomly
defined. For each received reward, the ε decay by 0.005,
until the minimum value 0.01 is reached. The γ (discount
factor) controls the weight of the future reward compared
to the current reward. The value is set statically to 0.95.
ReLU was used in the hidden layers whereas the output
layer uses Softmax as activation functions. The loss function
was defined as the mean squared error. Multiple DQN-AF
variants have been tested with RMSprop and Adam (see
Table I) but RMSprop performed better (Section V), being the
recommended optimizer. Three learning rates were evaluated
(see Table I) but the value of 0.005 is recommended. When an
operating cycle status–action–reward is ended (see in Fig. 1),
this experience is saved in memory, i.e., a queue that stores
the last 2000 experiences is created. This parameter is named
memory size (κ). For every 100 experiences analyzed (ρ), a
minibatch is formed with 32 random samples selected from
memory. This parameter is known as the minibatch size (ψ).
This process re-trains experiences with low correlation in
DQN, reducing the forgetting effect. Lastly, a time interval
(t) of 100 ms is used to measure η.

A. Simulation Details

The simulations were performed using the ndnSIM-2.7, the
official NDN project simulator based on Network Simulator
(NS) 3.29. To evaluate the DQN-AF with different optimizers
and learning rates, six variants were created (see Table I).
Besides, each variant has been evaluated in two operation
modes: a) without saving the weights, that is, with each new
simulation performed, the DQN is started with new weights; b)
saving the weights, at the end of each simulation, the weights
were saved so that in the next simulation the DQN could reuse
the previous values. The results are analyzed in Section V.

In addition to DQN-AF, the following strategies were also
simulated: Best-Route, Multicast, ASF, and DQ-Learning.
Except for the last, all others have an implementation available
in ndnSIM. Hence, DQ-Learning was entirely developed based
on the parameters disclosed [5].



TABLE I
DQN-AF VARIANTS SETTINGS

Variants Learning rate Optimizer
dqn-af-1 0.001
dqn-af-2 0.005 RMSprop
dqn-af-3 0.01
dqn-af-4 0.001
dqn-af-5 0.005 Adam
dqn-af-6 0.01

The adopted network topology (Fig. 3) provides two paths
between consumer and producer. The objective is to evaluate
which forwarding strategy can deliver a greater amount of data
packets. The evaluation focuses on router 1 since it can send
interest packets for the two next possible hops. All links were
configured with a 10 ms delay and a capacity of 1 Mbps. Each
node in the network has a maximum queue of 10 packets. The
consumer sends interests at a constant rate of 100 packets
per second, and the producer responds to those interests by
sending data packets with 1024 bytes of payload. The CS
cache was not used since the interests sent by the consumer
are always for new data.

Consumer
Router 1

Router 2

Router 3

Router 4
Producer

Fig. 3. Simulated NDN network topology.

Each analyzed strategy and DQN-AF variants were simu-
lated 25 times reaching a total of 400 simulations with 30
seconds each (see Table I). Furthermore, two performance
metrics were collected: (1) Data received at the consumer –
Each data packet that arrives at the consumer is counted in
order to check how far it was from the rate of 100 interest
packets sent per second by the consumer. (2) Interests sent
by router 1 – This metric captures how many interests router
1 sent for its next hops. The aim is to compare the overload
generated by the Multicast strategy with the other strategies.

Finally, to create an adverse situation, short-term instability
events were generated in the links that connect router 1 to
routers 2 and 3. The events are described below:

• Event 1 (5.0s-9.0s) – The link between router 1 and 3
loses all packets in that period.

• Event 2 (10.0s-14.0s) – The link between router 1 and 2
loses all packets in that period.

• Event 3 (15.0s-19.0s) – Again, the link between router 1
and 3 loses all packets in that period.

• Event 4 (20.0s-24.0s) – Burst losses are generated in
the links between router 1 and routers 2 and 3 with

ns3::BurstErrorModel configured at a rate of 0.02 and the
average burst size in 10 packets following an exponential
distribution.

• Event 5 (25.0s-29.0s) – Bursts losses are repeated in the
two links, only with a rate of 0.01.

V. RESULTS AND DISCUSSIONS

In this first evaluation, the six DQN-AF variants (Table I)
were simulated. Each variant was tested in two operating
modes: saving and without saving the neural network weights,
as described in Section IV. The chart in Fig. 4 shows the
average number of packets received by the consumer when
testing different DQN-AF variants that make use of RMSpro
optimizer on router 1, while Fig. 5 shows the variants with
the Adam optimizer.
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Fig. 4. Performance obtained by the DQN-AF variants configured with the
RMSprop optimizer.
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It is possible to observe that regardless of the adopted opti-
mizer, keeping the weights between the simulations presented
some advantage only when the learning rate was 0.001, in
the other cases the performance worsened, being on average
11.76% worse with DQN-AF-6 when saving weights between
the instances.

With regards to the optimizers, the RMSprop performed
better in all cases, being around 0.49% to 6.09% higher than
Adam. When analyzing different learning rates, the Adam
optimizer is more sensitive towards this parameter than the
RMSprop. The only satisfactory results using Adam were
noted when the learning rate was 0.001.

The best results for the DQN-AF were achieved with learn-
ing rates of 0.005 when the weights were not saved and 0.001
when saving them, always with the RMSprop optimizer. This
may indicate that in scenarios where the DQN-AF strategy
will be used for a short period, the rate of 0.005 is indicated,
otherwise, 0.001 should be adopted.

The second evaluation encompasses the comparison be-
tween Best-Route, Multicast, ASF and DQ-Learning with the
DQN-AF-02 variant (without saving weights). Fig. 6 shows the
average number of packets received by the consumer when
testing the strategies analyzed in router 1. It is possible to
observe that the strategy with the worst performance is Best-
Route with an average of 77.56 received data packets per
second.
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Fig. 6. Comparison between forwarding strategies with DQN-AF (variant 2).

Still, the Best-Route could have performed even worse,
since the links between router 1 and routers 2 and 3 had the
same characteristics, always presenting multiple “best routes”.
Thus, only in this case, the link between router 1 and router 2
was selected by order, considering that the routing information
was saved in the FIB data structure. Since the link between
routers 1 and 2 was completely down for just 4 seconds versus
8 seconds of the link between routers 1 and 3, which was never
used by the Best-Route strategy, as in these circumstances, it
cannot be adaptive solution.

In general, the ASF strategy performed better compared to
the Best-Route approach but was worse compared to all others,
with the consumer receiving, on average, 81.94 data packets
per second. Although adaptive, the ASF strategy checks only
the SRTT of each link to make a decision, and at different
times the next two hops have similar SRTTs, however, with
one link delivering more packets than the other at that moment.
In these moments, the ASF ends up taking a little longer to
understand which next jump is the best option.

The largest amount of data packets received at the consumer
is on average 93.69 packets per second, which is achieved
when the multicast strategy is used on router 1. However, this
performance has a very high cost (see Fig. 7), which presents
the cost–benefit chart between the amount of interests sent by
router 1 and the amount of data received at the consumer, with
this, it is possible to evaluate the overload of each strategy.
For achieving a rate of 93.69 packets, the Multicast strategy
had to send on average 195.77 interests per second for the
next two available hops, while all other strategies had a much
lower overload, sending between 97.87 and 97.92 interests per
second (on average).
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Finally, the most cost–benefit strategies are DQ-Learning
and DQN-AF-02 with respectively 89.63 and 89.69 data pack-
ets received per second (on average) and 97.88 sent interests
per second for both. However, the DQ-Learning operation
mode requires NDN nodes to modify data packet to add the
time the packet was sent and the interface Q value that received
the packet, so that routers have more information about the
next hops. This characteristic of DQ-Learning violates the
design principle of data immutability, where data packets on
NDN networks must be immutable. On the other hand, our
strategy presents a satisfactory performance with the advantage
of not needing to modify packets, or even create unnecessary
ones. NDN nodes do not need to exchange information with
each other, which does not generate any signaling overhead.
The proposed DQN-AF strategy only observes metrics of the



interfaces of the router itself to predict which next hop is the
most suitable to send the interest packets, without breaking
any design principle of NDN networks.

VI. CONCLUSIONS

In this paper we designed a comparative study considering
four NDN networks interest packets forwarding strategies and
an adaptive forwarding alternative based on Deep Q-Network
called DQN-AF that selects the next hop of interest packets
based on data from the links of the router itself, without
needing any external information. Besides performing better
than the standard NDN non-adaptive forwarding approaches,
the proposed strategy also has the advantage of not breaking
the principle of data immutability.
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