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Abstract—The evolution of wireless technologies has enabled
the creation of networks for several purposes as health care
monitoring. The Wireless Body Area Networks (WBANs) enable
continuous and real-time monitoring of physiological signals, but
that monitoring leads to an excessive data transmission usage,
and drastically affects the power consumption of the devices.
Although there are approaches for reducing energy consumption,
many of them do not consider information redundancy to
reduce the power consumption. This paper proposes a hybrid
approach of local data compression, called GROWN, to decrease
information redundancy during data transmission and reduce
the energy consumption. Our approach combines local data
compression methods found in WSN. We have evaluated GROWN
by experimentation, and the results show a decrease in energy
consumption of the devices and an increase in network lifetime.

I. INTRODUCTION

Wireless sensors networks (WSN) and nanosystems have
enabled the deployment of wearables sensors added into
clothing or implanted in the body, such as fitness trackers
and smartwatches [1]. Wireless body area networks (WBANs)
enables the collect, monitoring, and transmission of physio-
logical signals from people to several medical applications
and health professionals, making patients day-to-day eas-
ier [2] [3]. The WBAN devices usually employ small batteries,
which limit the energy consumption to communication [2].
Further, wearable and implantable devices working on real-
time should have a long lifetime, mainly due to challenges for
battery recharge and/or replacement [4]. Thus, manners for
saving transmission energy can support the services provided,
increasing the network lifetime. Although works have pro-
posed, for instance, communication protocols to maximize the
network lifetime, they did not focus on the redundancy of
sensed data, transmitting all the collected information.

Data compression techniques by local data lossy or lossless
allow us to aggregate and decrease the gathered information
redundancy in WBAN [5]. While in lossy compression, we
discard an acceptable amount of information, reducing the
number of transmitted bits and increasing data compression
rates, in lossless compression, the information remains un-
changed [6]. Some works have employed lossy compression
by a threshold between each transmitted data [7], [8], while
others employ codification tables, decreasing the amount of
transmitted data and preserving their integrity [9], [10]. How-
ever, as WBAN sensors collect distinct kinds of data, they
require both techniques to work in a hybrid way [5], [11].
Therefore, the management of the compression service must be

adaptive to the characteristics of the detected data to be energy
efficient. Though many of works that take into account signal
heterogeneity disregard the maximum latency set for WBAN
to medical applications, 125ms, and to other ones, 250ms [2].

This work presents a mechanism for the management
of local data compression in real-time and energy-efficient
to WBAN called GROWN (EnerGy-Efficient Local Data
Compression for TRansmission Over WBAN). GROWN co-
ordinates the compression to the type of the collected data
signal, avoiding redundant data transmission and thus reducing
devices’ energy consumption. GROWN applies lossy compres-
sion by a threshold to limit the acceptable data losses during
transmissions, and lossless compression by encoding tables,
which normalizes the data format to decrease the amount
of transmitted information. Experimentation points out that
GROWN increases the lifetime of sensors up to 53.73% with
a maximum delay of 55ms between consecutive data samples,
showing gains to WBAN working in real-time.

The paper is organized as follows: Section II shows the
related works. Section III describes the GROWN system and
its operation on the WBAN. Section IV shows an experimental
evaluation and the results obtained. Section V presents the
conclusion and future works.

II. RELATED WORK

The literature has shown various local and hybrid data
compression techniques [5], [8]–[11]. The local data com-
pression classes take advantages, such as reduced informa-
tion redundancy and lower power consumption in wireless
transmission. However, compressing data can lead to increased
latency in the delivery of information, in some cases, higher
energy consumption is due to the need for more computational
processing for compression. Among works that have applied
local data compression for WBANs, in [8], an amendment
to the traditional lightweight temporal compression (LTC)
method has been proposed by [12] to minimize the error rate
of information rebuilding and decrease the redundancy of the
information transmitted. They also added the differential pulse
coding modulation (DPCM) method into the compression
phase to define these combinations according to the target
application. While both methods increase the compression
rates and decrease the number of transmissions, the developed
method needs the storage of the data set to be transmitted over
a time of 60 seconds to check the consecutive samples; this
issue directly impact on information delay, usually a primary
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requirement for WBAN [2]. In [9], a lossless method explores
the correlation between consecutive samples to get an efficient
table of dynamics for Huffman coding. Though, the method
exhibited high processing rates due to the constant updates of
the dynamic table, affecting the device’s energy consumption.
In [10], the authors presented a lossless compression method
based on the discrete wavelet transform (DWT) as using a
lifting scheme [13]. Thus, the transformation of redundant
samples in a given period of time can be compressed with a
smaller number of bits. Although the method minimized the
redundancy of the information and achieved high compression
rates, its computational cost requires an excessive energy
consumption from the devices. The use of the local data
compression classes separately offers improvements to the effi-
ciency of the body devices. In [5], DPCM was applied for loss
compression and the coding tables for Exponential of Golomb
(Exp-Golomb) [14] with changes for lossless compression.
The method achieved high compression rates, however, the
energy consumption of the devices and the compression delay
is not explained. In [11], a hybrid-search method decreases
the power consumption of devices and improves the quality of
the electrocardiogram (ECG) signal. The data are compressed
with lossy compression, suitable for the preliminary evaluation
of ECG signals; and in cases that require more detailed
analysis, it uses lossless data compression. Although there
is a considerable reduction of the power consumption of the
devices, the method only classified one type of signal and
disregarded information such as device latency and memory.

III. REAL-TIME LOCAL DATA COMPRESSION

This section presents an overview of the collect and dis-
semination data environment, the GROWN components and
their operation functioning. GROWN decreases the amount
of transmitted information from wearable devices (e.g., sen-
sors) to the central entity (e.g., sink), whose processing and en-
ergy resources allow operation while not affecting the latency
in WBAN. We also assume that the sink device disseminates
sensitive data collected from body devices to outside devices
to enable them to follow data evolution over time.

GROWN carries out on a set of wearable portable de-
vices (nodes) for sensing personal physiological signals in-
terconnected in a WBAN, whose devices are denoted by
D = {d1, d2, d3, ..., dj}, where dj ∈ D, as shows Fig. 1.

These devices possess computational resources to collect
and disseminate physiological signals. All devices keep a
unique identifier (Id) to identify it over time and perform the
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Fig. 1: Gather and dissemination model of signals

tasks of signal gather and processing, as well as sending the
information to the sink device. By simplicity, we assume that
the wireless communication technology controls the message
losses between sensors and the sink device. Also, nodes
operate statically over time in a star network topology.

The GROWN architecture takes the Compression Manage-
ment (CM) and Decompression Management (DM) mod-
ules, as shown in Fig. 2. The former makes the compression of
the physiological signals received from wearable devices and
the latter decompresses and recovers the original information
collected from sensors. We detail each one as follows.
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Fig. 2: The GROWN architecture

A. Data Compression Module

The CM module consists of components that convert the
physiological signal from analog to digital, analyze the dig-
ital data and define the form of compression, perform data
compression and transmit that data to the sink device through
a wireless connection for further decompression. Wearable
devices collect physiological signals from the user through
the Physiological Signals Acquisition (PSA) component. This
component converts the analog physiological signal to digital
and sends it to the Compression Threshold Control (CTC)
component. As described in Algorithm 1, this component
receives the current reading from the sensor (l.1). The first
reading of the sensor (l.3) is then stored for comparison with
the next ones (l.4), and also sent for compression (l.6.14). In
the next readings, if the variation between the current and the
previous reading exceeds the previously established threshold
(l.8-9), the difference is forwarded to compression (l.11) to
decrease the amount of transmitted information, and the last
reading stored for the next comparison (l.12).

GROWN compresses the information (ets) received by
CTC using a modified version of the Exponential-Golomb
code (Exp-Golomb) of order 3 [14]. Thus, each received
sample (ets 6= 0) is represented as a bit sequence (bsi)
composed of two parts si|ai. The first part (si) identifies the
group to which ets belongs and illustrates the value of ni,
which is equivalent to the number of bits needed to represent
ets. Thus, we represent the groups si related to the first 2k−1
values of ni by blog2(|ets|)c+ 1, where si is represented by
k bits. When ni > 6, the value of the si group is determined
by blog2(|ets|)− 1c, where the first si − 1 values of si are
represented by 1 followed by 0 (zero). The ai part corresponds



Algorithm 1: Compression control
1 procedure COMPRESSIONCONTROL (actual reading)
2 compression value← 0
3 if (first reading == True)
4 last reading ← actual reading
5 first reading ← False
6 compression value← actual reading
7 else
8 aux reading ← |last reading − actual reading|
9 if ((tthreshold > 0 AND aux reading > tthreshold) OR

10 (tthreshold == 0))
11 compression value← (actual reading − last reading)
12 last reading ← actual reading
13 endif
14 endif
15 return (compression value)
16 end procedure

to the binary representation of ets, whose variable-length code
is defined according to [15], ensuring different values for the
entries of each group. Table I shows the rules for ets values.

TABLE I: Data compression rules

Condition Rule
ets < 0 Make a 2 complement of ets, subtract 1 and use

the least significant ni bits
ets = 0 Encode si as 000 and not represent ai

ets > 0 ai corresponds to the less significant ni bits of
the ets 2 complement

Table II shows the number of ni bits for representing
ets and the encoding values for each group si. Thereby,
enconding depends on differences between the values of ets,
thus more frequent differences imply shorter code. After ets
compression, the new information (Infts) is transmitted to the
sink device.

TABLE II: Encoding values

ni si ets bit byte
0 000 0 3 1
1 001 -1,+1 4 1
2 010 -3,-2,+2,+3 5 1
3 011 -7,. . . ,-4,+4,. . . ,+7 6 1
4 100 -15,. . . ,-8,+8,. . . ,+15 7 1
5 101 -31,. . . ,-16,+16,. . . ,+31 8 1
6 110 -63,. . . ,-32,+32,. . . ,+63 9 2
7 11110 -127,. . . ,-64,+64,. . . ,+127 12 2
8 111110 -255,. . . ,-128,+128,. . . ,+255 14 2
9 1111110 -511,. . . ,-256,+256,. . . ,+511 16 2

B. Decompression management module

This module plays in the sink device, which has enough
resources of power, storage, and processing to carry out
the decompression of data sent by wearable devices in the
WBAN. Thus, as depicted in Fig. 2, the recovery of each
physiological signal starts in the Data Reception component.
This component receives the message with the compressed
data (bsi) and the device identification (Did), and forwards
it to the Decompression Control (DC) component, according
to Algorithm 2. DC holds a reference list (RL) to store the
identification of all wearable devices in the WBAN, besides

Algorithm 2: Decompression control
1 procedure DECOMPRESSIONCONTROL (compressed data, id)
2 last reading ← getLastReading(id)
3 prefix← getPrefix(compressed data)
4 suffix← getSuffix(compressed data)
5 data value← bdcoding(prefix, suffix)
6 return (data value, id)
7 end procedure

the values of their last reading (x̂ts) (l.2). Next, CD obtains
the prediction error (ets) through the prefix si (l.3) and the
suffix ai (l.4) from bsi. Then, it queries the Encoding database
(l.5), which stores the values of indexes (ni), groups (si) and
the binary representation of ets (ai). As ai is unique in si,
the recovery of the received bsi occurs with few instructions,
adapting to the real-time operation. Thus, DC forwards x̂ts and
ets values to the Data Decompression (DD) component and
updates the RL. Lastly, DD decompress the data and makes it
available to others applications.

C. Operation

Fig. 3 depicts a wearable device in a WBAN continuously
sensing a person’s temperature, meanwhile it interacts with the
sink device (e.g., smartphone). The sensor starts collecting the
temperature signal and converts it from analog to digital in a
binary representation (xts) with R bits. Suppose its reading
is 38, so xts value in 8 bits is 001001100. As the decision-
making about the data compression relies on a pre-defined
prediction filter T , assume T = 1. Hence, the filter checks
the xts value and as this is the first reading, the last reading
(x̂ts) gets the value 0. Thus, the prediction error (ets), which
means the difference between consecutive readings, is equal
to ets = xts − x̂ts = 38.

Next, the ets value is encoded to a bit sequence (bsi) in two
parts, si|ai. si represents the group (ni) which ets belongs,
so ni = blog2(|38|)c + 1 = 6. By the encoding values in
Table II, we verify that the si value belongs to the group
110. The ai value comes from the conversion of the ets = 38
value to a binary form, ai = 100110, so bsi = 110100110.
After that, the wearable device sends a message to the sink
device carrying bsi and DId values. When the sink receives
this message, it recovers the si and ai values from bsi and gets
the prediction error ets by querying the encoding table using
bsi and DId values. Through RL, it obtains x̂ts from ets and
DId. As it is the first reading, x̂ts = 0. Finally, it retrieves the
information equivalent to the reading of the wearable device,
Infts = ets + x̂ts = 38.

IV. EVALUATION

This section describes the GROWN implementation and
analyzes how the management of lossless (LL) and lossy (LS)
compression provides energy efficiency to WBAN. GROWN
combines distinct platforms to meet the needs of wearable and
sink devices to mimics a real environment in experimentation.
We have compiled the compression module in C++ language
in Arduino boards, whose integrated microcontroller operates
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Fig. 3: The step by step of GROWN operation

with a 16MHz clock and a 10 bits resolution in each logical
port for physiological sensors readings. We have developed
the decompression module in Android Studio, version 3.6.1,
that was installed in the sink device, a Motorola smartphone,
model G4 Plus, with an Android version 7.0.

We built a testbed composed by three wearable devices to
act as physiological sensors and one smartphone to operate
as the WBAN’s sink device, as depicted in Fig. 1. We set up
the wearables devices on protoboards model Mb102 to sense
temperature, ECG and photoplethysmogram (PPG) signals, as
described in Table III. These protoboards provide energy to
sensors and Arduino boards supplied by 5V regulated power
sources supported by 9V/400mAh batteries. Each wearable
device has a sensor to collect a given physiological signal and
all the sensors codes were compiled with official libraries.

To enhance the GROWN analysis in the ECG signals com-
pression, we have added a 4th device (ECGDB) to our testbed
that acts as an ECG sensor and employs the MIT-BIH arryth-
mia database [16] as its data source. The wearables and sink
devices communicate by Bluetooth Low Energy (BLE), by
IEEE 802.15.1 standard, through a HM-10 BLE V4 module.
They keep a connection during 600s, a sufficient period to get
600 instantaneous current reading samples from each device.
We set up the smartphone to operate in flight mode during the
experiments to avoid any interruptions from other applications,
while keeping in operation only the Bluetooth communication.
As shown in Fig. 4, the environment for sensing a person’s
body temperature operates by infrared signals to avoid the
physical contact of the person’s body with the device. After
the reading, the device compresses such data and forwards to
the Bluetooth module that transmits it to the sink device, which
then decompresses the data. We have set up the prediction filter
to 1 (T = 1) for lossy compression to improve the identification
of the correlation between consecutive samples.

TABLE III: Wearable devices settings

Feature
Device

Temperature PPG ECG / ECGDB

Board Arduino UNO Arduino UNO Arduino Mega

Controller ATmega328P ATmega328P ATmega2560

Body sensor MLX90614 PulseSensor AD8232

sink

Current
Sensor

Temperature
Sensor

Bluetooth LE
Module

Wearable device
Temperature

Device battery

Fig. 4: Wearable temperature device testbed

The analysis of GROWN takes into account the metrics
presented in Table IV. We have measured the Compression
Delay (CD) and Decompression Delay (DD) by [17], and
the Average Delay (AD) by [18]. We have also employed a
current and voltage sensor from Texas Instruments, model
INA219 [7] to measure the Device Energy Consumption
(DEC). This sensor monitors the voltage drop over a 1 mΩ
shunt resistor, which is proportional to the current flowing
through it [19]. We obtained the Compression Ratio (PCR)
from the amount of compressed packets (comp pkt) and the
amount of these packets without any compression (orig pkt).
Results exhibited correspond to an average of ten repetitions.

TABLE IV: Evaluation Metrics

Metric Equation

Compression Delay (CD)
n∑

i=1

Tfcomi−Ticomi

Inftsi

Decompression Delay (DD)
n∑

i=1

Tfdesi−Ticdesi

Inftsi

Average Delay (AD)
Ne∑

x = 1

Ttr∑
y = 1

CDxy+DDxy+DTRxy
Ttr × Ne

Energy consumption (DEC) I × t

Compression Ratio (PCR)
(
1− comp pkt

orig pkt

)
× 100

A. Results

The compression and decompression processes add a delay
to data dissemination, which varies according to the correlation
between consecutive samples. The temperature signals exhibit
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Fig. 5: Delays in compression and decompression of physiological signals

high correlated samples, whose consecutive values present
slight variations. Hence, GROWN measured a value of ≈ 1ms
to CD, the lowest among four types of signals (Fig. 5(a)). We
noted that the samples correlation of ECG (Fig. 5(b)) and PPG
(Fig. 5(c)) signals frequently varies over time, so both suffered
higher CD, ≈ 3ms and ≈ 2ms, respectively. Finally, as shows
Fig. 5(d), ECGDB signals behaved in similar way and cost
≈ 3ms for CD. On the other hand, as depict Fig. 5(e), 5(f),
5(g), and 5(h), the GROWN cost was ≈ 1ms for DD, as the
smartphone that plays as sink device has greater computational
resources than wearables devices.

We have identified that signals with low correlated consec-
utive samples (i.e., consecutive values exhibit wide variations)
increase the compression time in devices with constrained
resources. Fig. 6 shows the Average Delay (AD) measured
on the evaluated physiological signals with lossless (LL) and
lossy (LS) compression. We noted that ECG, ECGDB and
PPG signals show ≈ 3ms of AD, while the temperature
signal shows ≈ 1ms. However, the delay of ≈ 49ms on
all wearable devices is due to the manner Bluetooth BLE
connections happen, endorsing what Gatouillat et al. in [20]
have already identified on Bluetooth connections on Android
7.0. In a general manner GROWN raised 7.84% on the total
transmission time for ECG and ECGDB signals, 6% for
PPG, and 2.04% for temperature signal. Those values show
GROWN’s ability in saving energy on data dissemination in
WBANs, which demand a maximum latency of 125ms for
medical applications and 250ms for non-medical ones [2].

We also noted that consecutive highly correlated samples
enable devices to reduce energy consumption (DEC), as shows
Fig. 7, because GROWN assigns shorter codes for the small
differences to be transmitted. To verify its energy efficiency,
we have conducted experiments with lossless (CGLL) and
lossy (CGLS) compression, and also without compression
(CGWC). We verified that the temperature device consumes
on average 36.81mAh for CGLL and 36.65mAh for CGLS,
while in CGWC it consumes 38.28mAh. Hence, GROWN
achieves an energy efficiency of 1.47mAh for CGLL and
1.63mAh for CGLS. GROWN reached an energy efficiency
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of 1.02mAh on the ECG device for both methods. For the
PPG device, we observe an energy efficiency of 0.31mAh for
CGLL and 0.89mAh for CGLS, as this kind of signal presents
low correlated consecutive samples. As the ECGDB device has
performed frequent readings of ECG samples from the MIT-
BIH database in the SD module, this approach has increased
its energy consumption to 73.29mAh in CGWC, and produces
an energy efficiency of 0.90mAh for CGLL and 1.14mAh
for CGLS. Although data compression also consumes energy,
even so there is an increase of the lifetime of each wearable
device with the use of GROWN, as we can see in Table V.
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GROWN enables an energy efficiency to the devices even
with their Bluetooth module active and paired with the



TABLE V: Lifetime of wearable devices

Mode Normal Sleep
Device ECGBD ECG PPG Temperature Temperature

Battery life (h)
CGWC 5.46 6.81 8.38 10.45 -
CGLL 5.53 6.93 9.45 10.87 15.50
CGLS 5.54 6.93 9.58 10.91 16.05

smartphone. But, only this condition already increases the
energy consumption, as this module carries a CC2540 BLE
chip, which consumes 24mA to data transmission and recep-
tion [21]. Hence, to reduce energy consumption, we have set
up the Bluetooth module in sleep mode. So, it falls asleep
after a certain period and wakes up with a proper command.
We have set up the temperature device to this configuration,
as it has the highest correlated consecutive samples and it is
active whenever the device does not transmit two consecutive
samples. This strategy has reduced DEC for the temperature
device to 25.81mAh for CGLL and to 24.92mAh for CGLS,
both from CGWC. Hence, as shows Table V, it has increased
temperature device lifetime by 53.73% for CGLL, from 10.45h
in normal mode to 15.50h in sleep mode, and by 48.37% for
CGLS, from 10.45h in normal mode to 16.05h in sleep mode.

TABLE VI: Compression ratio of physiological signals

Signal Num. of delivered packets Compression ratio (%)
Original LS LL LS LL

ECGDB 8.863 5.589 5.757 36.94 35.04
ECG 7.586 4.879 4.879 36.68 36.68
PPG 6.483 5.011 6.016 22.70 7.20
Temp. 120 1 2 99.16 97.50

GROWN got higher data compression ratio (PCR) mainly
for highly correlated samples, as shows Table VI. We noted
that it greatly decreases the number of transmitted packets, and
reduces the energy consumption. On the temperature signal,
GROWN achieved a PCR of 99.16% for LS, and 97.50% for
LL, as its high correlated consecutive samples. Meanwhile, on
the ECG signal, it got a PCR of 35.68% for both methods,
as the correlation between consecutive samples exceeded the
threshold of 1, and obliges the transmission of the same
amount of information. As this behavior occurs less frequently
with PPG signal, GROWN achieved the lowest PCR on it.

V. CONCLUSION

This paper presented GROWN, a mechanism to save energy
and increase the lifetime of wearable devices in wireless body
networks. It manages real-time data compression in the sensing
device by techniques employed in WSNs, so it allows devices
to achieve an energy efficient operation. Experiments evaluated
the GROWN effectiveness, and the results have demonstrated
its ability to manage data compression and decompression
in real-time in WBAN. GROWN has achieved an energy
efficiency up to 53.73% with a maximum delay of 55ms.
Future works we will investigate GROWN availability in the
face of data losses in the transmission, and its reliability with
other wireless communication technologies. We also intend to
compare GROWN with other mechanisms.
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