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Abstract—Constrained discrete optimization problems are en-
countered in many areas of communication and machine learn-
ing. We consider the case where the objective function satisfies
Bellman’s optimality principle without the constraints on which
we place no conditions. We first show that these problems are
a generalization of optimization in constrained Markov decision
processes with finite horizon used in reinforcement learning and
are NP-Hard. We then present a novel multi-survivor dynamic
programming (msDP) algorithm that guarantees optimality at
significant computational savings. We demonstrate this by solv-
ing 5G quantizer bit allocation and DNA fragment assembly
problems. The results are very promising and suggest that msDP
can be used for many applications.

I. INTRODUCTION

We define a class of problems H that are constrained

discrete optimization problems with the objective function

(OF) satisfying the principle of optimality (PO) without

considering the constraints [1]. The constraint functions are

assumed to be neither convex nor linear in their decision

variables. Nor are the constraints required to satisfy the

linear independence constraint qualification (LICQ) [2].

These problems, in general, are NP-Hard [3]. Solving H to

optimality with reduced computational resources is highly

desirable. Popular methods like Dynamic Programming (DP),

Branch and Bound (BB), and Lagrangian relaxation methods

can solve H to optimality [4]–[8] as long as we place either

linearity or quadratic conditions on the OF or constraints [6],

[9], while many others do not ensure optimality [10].

Examples of H include resource allocation (power,

ADC bits) in massive Multiple-Input Multiple-Output

(MaMIMO) systems with constraints [11], constrained

network optimization problems used in routing protocols

[12], and Reinforcement Learning (RL) applied to Markov

decision processes with constraints [13], to name a few.

The contributions of this paper are as follows

• we propose a novel multi-survivor Dynamic Program-

ming (msDP) algorithm to solve H optimally at signifi-

cantly reduced computational cost, and,

• we show that Constrained Markov Decision Processes

(CMDP) with finite horizons belong to H .

Notations: The column vectors are represented as

boldface small letters. The superscripts T denote

transpose. The terms I and R, indicate space of integers

and real numbers respectively. We represent a vector

x = [x1, x2, · · · , xN ]T whose entries are constants up to

xi for i ≤ m as x
m and call such vectors partial, i.e.,

x
m = [a1, a2, · · · , am, xm+1, · · · , xN ]T where ai’s are

constants. The xi’s belong to a finite set X with cardinality

M . If there are multiple of such partial vectors under

consideration, we refer to the kth such vector as x
m
k and its

elements as x
m
k = [ak1 , a

k
2 , · · · , a

k
m, x

k
m+1, x

k
m+2, · · · , x

k
N ]

T
.

The j th element of the set X is represented as {X}j . If the

mth element of x
m
k takes a value {X}j , we represent such

partial vector as x
mj
k .

The rest of this paper is organized as follows. We define

the problem H in Section II. We first show in Section III that

the CMDP framework typically used in RL belongs to H . In

Section IV we describe the theoretical foundations that lead to

the proposed msDP algorithm. We describe the proposed algo-

rithm and evaluate its worst-case computational complexity in

Section V. We compare the performance and computational

complexity of the proposed method with exhaustive search

(ES) and the heuristic algorithm in Section VI, followed by

the conclusions in Section VII.

II. PROBLEM SETUP

We define H as stated below, where x
∗ is the optimal

solution to (1) if it exists.

max
︸︷︷︸
x

f(x),

such that ci(x) ≤ αi; for 1 ≤ i ≤ QI ,

hj(x) = βj ; for 1 ≤ j ≤ QE ,

(1)

where x = [x1, x2, · · · , xN ]T ∈ R
N . The OF f(x) satisfies the

PO without the constraint functions ci(x) and hj(x), where

αi, βj ∈ R, ∀i, j [1]. Thus, it can be written in the form

f(x) =
∑N

i=1 biφi(xi) where bi ∈ R are constants, xi ∈ X
can only take values from the set X whose cardinality is M ,

and, φi : X −→ Y, for 1 ≤ i ≤ N . The mapping φi need not

be known in closed form. The constraint functions ci(x) and

hj(x) are not limited to linear mappings in xi, nor convex and

need not satisfy LICQ [2]. The terms QI and QE represent

the number of inequality and equality constraints, respectively.
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III. FINITE HORIZON CMDP AS PROBLEM H

A finite-state Markov decision process is a 5-tuple

(X,A, P, r, µ) where X is the finite set of states, A is the

finite set of actions, P : X × A × X
′

→ [0, 1] are the state

transition probabilities px,a(x
′

) that a state x
′

is attained when

an action a ∈ A is taken in state x. Both x, x
′

∈ X . A

reward r : X × A → R is associated with an a ∈ A from

a state x ∈ X . The map µ : X → [0, 1] is the starting state

distribution [14].

A policy π = (D1, D2, · · · , DN−1) is defined as a set of

decisions taken by an agent over states that maximize a certain

cumulative reward. A stationary deterministic policy has a

decision rule Di : X → A that maps states to actions. In

case of randomized policies, the decision rule Di is a random

variable and described using state dependent distributions on

possible actions. Hence, Di is described as Di : X → P(A)
where P(A) is the probability distribution over actions defined

by qi(a|x) = Prob[Di = a|xi] for every action a ∈ A.

The cumulative reward is defined as R =
∑N

i=1 γ
iri where

ri is a reward accrued at ith time instance when the agent uses

a policy π. The discount factor γ ∈ [0, 1]. We can write the

expected sum of discounted rewards as a function of a given

policy and an initial state x as V π(x) = E[R | x1 = x] [14],

which can be rewritten as

V π(x) = E

[ N∑

i=1

γiri(xi, Di(xi)) | x1 = x

]

,

=

N∑

i=1

γir̂i(xi), where r̂i(xi) =
∑

a∈A

qi(a|xi)ri(xi, a),

(2)

assuming a random stationary policy. Considering an initial

distribution µ on all the possible starting states on set X , we

can define the value of the policy as [14]

J(π) = Ex∼µ

[

V π(x)

]

=
∑

x∈X

µ(x)V π(x).

=
∑

x∈X

µ(x)
N∑

i=1

γir̂i(xi) =
N∑

i=1

γiφi(xi),

(3)

where φi(xi) =
∑

x∈X µ(x)r̂i(xi), which is obtained by

substituting V π(x) from (2). We see that with bi = γi the

OF J(π) of (3) is similar to the OF f(x) =
∑N

i=1 biφi(xi) of

H in (1).

For the CMDP case, we have constraint functions that could

be either secondary reward functions or penalty functions. The

constraint functions c defined as c : X × A → R such that

cπ(x) ≤ d. The whole optimization problem is written as [14]

max
︸︷︷︸
π

J(π), such that c(π) ≤ d. (4)

In (4), c(π) = E[cπ(x)] = E[
∑N

i=1 γ
ici(xi, ai)].

IV. THEORETICAL FOUNDATIONS OF MSDP

In this section, we construct the theoretical foundations for

the proposed msDP. We first define the Constraint Satisfaction

Function (CSF). We define a boolean function A : x→ {0, 1}
such that

A(x) =







1, if x satisfies all the constraints

ci(x), hj(x) of H; for all i, j.

0, otherwise.

(5)

We also define A(·) on a partially assigned vector x
m
k as

A(xm
k ) = 1 for 1 ≤ m < N if there exists at least one vector

bk = [bkm+1, b
k
m+2, · · · , b

k
N ]T such that bi ∈ X for i > m that

satisfies all the constraints. This is represented as

A(xm
k ) =







1, if there exists at least one bk defined

above, that satisfies all the constraints

ci(x
m
k ), hj(x

m
k ) for all i, j.

0, otherwise.
(6)

A. Principle of Optimality

We define a partially computed OF of H as

λ(xm
k ) =

∑m
i=1 biφi(ai) for 1 ≤ m < N . It is to be

noted that A(x) = A(xN ) and λ(xN ) = f(x). Here x
N is a

completely known vector.

Now we show that H does not satisfy the PO. We then

introduce a multi-valued function maxl{·} that returns l

maximum values from its domain. Adopting maxl{·}, we

reformulate H to satisfy the PO.

Theorem 1. If x∗ is the optimal solution to H described in (1)

and if there exists at least one infeasible solution x1 to H such

that f(x1) > f(x∗) with constraint satisfaction function being

true at some intermediate stage l in the recursion A(xl
1) > 0,

then it can be shown that J = max
︸︷︷︸

x,A(x)>0

f(x) does not obey

the PO.

Proof. We say that (1) satisfies the PO if we can express it as

a value function [1]. That is, given

J = f(x∗) = J(x1) = max
︸︷︷︸

{xi}
N
i=1,

A(x)>0

{ N∑

i=1

biφi(xi)
}

, then

J(xi) = max
︸︷︷︸
xi;

A(xi)>0

{

biφi(xi) + max
︸︷︷︸

{xj}
N
j=i+1;

A(xi+1)>0

N∑

j=i+1

bjφi(xj)

}

,

J(xi) = max
︸︷︷︸

xi;A(xi)>0

{

biφi(xi) + J(xi+1)

}

.

(7)

Let x1 be an infeasible solution to H such that

f(x1) > f(x∗), where

A(x1) = 0 and A(x∗) > 0.
(8)

However, at some intermediate stage l < N in the recursion,

the condition depicted below would arise as a consequence of



no conditions placed on the constraints [2], [15].

As λ(xl
1) > λ(x∗l), such that A(xl

1) > 0 and A(x∗l) > 0 :

λ(xl
1) = max

︸︷︷︸

xl;A(xl)>0

{

λ(xl
1), λ(x

∗l), · · ·

}

. Thus, we can write

the recursion at stage l in (7) as J = λ(xl
1) + J(xl+1).

As a result, we see that the optimal solution x
∗l is dropped

against x
l
1 at stage l. However, in the subsequent stage

r, where l < r ≤ N , another candidate solution x
r
2 is

picked against x
r
1 because the infeasibility of x

r
1 shows up

as A(xr
2) > 0, and A(xr

1) = 0. Consequently, xr
1 is dropped

and we have the recursion equation at stage r ≤ N as

J = λ(xr
2) + J(xr+1). (9)

Extending the result to stage N , we can see that

J = f(x2) = λ(xN
2 ) = max

︸︷︷︸

x;A(x)>0

N∑

i=1

biφi(xi). (10)

However, by definition we have

J = f(x∗) = λ(x∗N ) = max
︸︷︷︸

x;A(x)>0

N∑

i=1

biφi(xi), (11)

where x
∗ 6= x2, hence, H defined in (1) does not satisfy the

PO.

We now define a multi-valued function maxNe
: R

m →
R

Ne such that it returns at-most Ne maximum values over a

combination of m variables in its domain. We now rewrite H

in (1) using Γ as defined below

max
︸︷︷︸

x;A(x)>0

f(x) = J = max
{

Γ(x1)
}

, where

Γ(x1) = λ(x̃) = maxNe
︸ ︷︷ ︸

{xj}N
j=1;A(x̃)>0

{ N∑

i=1

biφi(xi)
}

,

(12)

where λ(x̃) is a vector of Ne maximum values. That is,

λ(x̃) = [λ(x1), λ(x2), · · · , λ(xNe
)]T that corresponds to the

Ne solutions x̃ = [x1,x2, · · · ,xNe
]T . It is also to be noted

that the CSF A(x̃) > 0 is true iff A(xi) > 0 is satisfied for

all xi ∈ x̃.

We also define the partially evaluated objective at stage

m ≤ N as λ(x̃m) = [λ(xm
1 ), λ(xm

2 ), · · · , λ(xm
Ne

)]T =

maxNe
︸ ︷︷ ︸

{xj}m
j=1;A(x̃m)>0

{
∑m

i=1 biφi(xi)
}

. As before, the CSF

A(x̃m) > 0 is true iff A(xm
i ) > 0 is satisfied for all xm

i ∈ x̃
m.

Given the optimal solution x
∗, we say that the value function

Γ(·) in (12) satisfies the PO if we can write

Γ(xi) = maxNe
︸ ︷︷ ︸

xi;A(x̃i)>0

{

biφi(xi) + Γ(xi+1)
}

, where

J = f(x∗) = max
{

Γ(x1)
}

.

(13)

That is, the optimal solution is maintained at every stage of

the recursion in Γ(xi).

Theorem 2. If x∗ is the optimal solution to H described in

(1), then with an appropriate choice of Ne that is dependent on

the constraint satisfaction function A(·), it can be shown that

Γ(x1) = max
Ne
︸︷︷︸

{xj}N
j=1;A(x̃)>0

{
∑N

i=1 biφi(xi)
}

always satisfies the

PO.

Proof. Let x1 be an infeasible solution to H as described in

(8) in Theorem 1. Let the PO (13) hold true; we can then write

the same at recursion l ≤ N as

Γ(x1) = maxNe
︸ ︷︷ ︸

xl;A(x̃l)>0

{

blφl(xl) + Γ(xl+1)
}

,

= λ(x̃l) + Γ(xl+1).

(14)

We now let Ne be large enough such that λ(x̃l) =
[λ(xl

1), λ(x
∗l), · · ·]T . That is (xl

1,x
∗l) ∈ x̃

l.

However, at some later stage r where l < r ≤ N , we can

write the recursion as

Γ(x1) = maxNe
︸ ︷︷ ︸

xr;A(x̃r)>0

{

brφl(xr) + Γ(xr+1)
}

,

= λ(x̃r) + Γ(xr+1).

(15)

Now we note that λ(xr
2) ∈ λ(x̃r) and λ(xr

1) 6∈ λ(x̃l). This

is because, at this stage in the recursion, the infeasibility of

the candidate solution x
r
1 becomes known as indicated by

A(xr
1) = 0. Thus the solution x

r
1 is not part of x̃r.

With the appropriate choice of Ne, it can be ensured that

(xr
2,x

∗r) ∈ x̃
r. The determination of Ne is discussed in

Lemmas 1 and 2 in section IV. Extending r to N , we have

(xN
2 ,x

∗N ) ∈ x̃
N . Hence, we can write

Γ(x1) = λ(x̃N ) = maxNe
︸ ︷︷ ︸

{xj}N
j=1;A(x̃N )>0

{ N∑

i=1

biφi(xi)
}

,

with x
∗ ∈ x̃

N ; Thus, f(x∗) = max
{

Γ(x1)
}

.

(16)

Thus, with an appropriate choice of Ne, we see that the PO

for (12) is always satisfied.

B. Trellis for H

We define a graph G(V,E,A) with nodes V , edges E, and

edge label A as

Vi =
{

xij | xij = {X}j; 1 ≤ i ≤ N ; 1 ≤ j ≤M
}

∪ S ∪ F,

E =
{

(xij , xi+1m) | xij = {X}j ;xi+1m = {X}m;

1 ≤ j,m ≤M ; 1 ≤ i ≤ N − 1; (S, x1j), (xNm, F )
}

,

A =
{

ψi(xi+1 | xi) = φi(xi)← (xi, xi+1) | ∀xi ∈ X ;

1 ≤ i ≤ N ;φN (xN )← (xN , F ) | ∀xN ∈ X ;

0← (S, x1) | ∀x1 ∈ X
}

.

(17)



The nodes S and F are the starting and terminal nodes,

respectively. The optimal solution x
∗ = [x1j , x2j , · · · , xNj ]

T

can be thought of as a walk through this graph starting at

node S and ending at the destination node F passing through

the nodes xij ∈ Vi from stage i = 1 to i = N , along the

edges (xij , xi+1m) ∈ E accruing a reward ψi(xi+1m | xij) =
φi(xij) ∈ A that results in the maximum total accumulated

reward f(x∗) such that all the constraints are satisfied. That

is A(x∗) > 0. It can also be noted that this graph G(V,E,A)
can be qualified as a trellis T (V,E,A) [7]. An example

T (V,E,A) with M = 4 is shown in Fig 1.

A DP approach can not be used to obtain x
∗ as shown using

Theorem 1. We note from Theorem 2 that the PO is satisfied

by using the multi-valued function maxNe
. Thus, maintaining

multiple survivor paths (Ne) at each stage of the trellis ensures

optimality if Ne is picked properly. An appropriate choice of

Ne is discussed in the next subsection. Thus the DP algorithm

is modified to perform Add, Compare, and Multiple Select

(ACMS) as basic operation at each node in the trellis as

opposed to Add, Compare, and Select (ACS). The algorithm

is described in section V.

C. Determination of Ne

In the Lemmas below, we establish a relationship between

the number of survivorsNe and CSF A(·) to ensure optimality.

Due to the page limitation, the proofs are omitted.

Lemma 1. The number of survivor paths (or partial solutions)

that need to be maintained at a given node xij in trellis

T (V,A,E) to obtain optimal solution to H is dependent on

the constraint satisfaction function A(xij) at the node xij in

the trellis. It can be shown that

B(xij) ,

Lij∑

k=1

A(xij
k ), (18)

where Lij is the number of paths incident on the node xij ,

out of which B(xij) paths satisfy all the constraints as per the

definition of CSF in (6).

Lemma 2. The minimum number of maximum paths Ne that

need to be maintained in (13) at each stage in the recursion

for optimality of H can be expressed as a lower bound:

Ne ≥ max
︸︷︷︸

i

M∑

j=1

Lij∑

k=1

A(xij
k ). (19)

V. MULTI-SURVIVOR DYNAMIC PROGRAMMING

ALGORITHM

A. Evaluation of CSF

It can be shown that the A(xm) can be evaluated at any

intermediate stage m ≤ N by posing it as an unconstrained

discrete optimization (UDO) problem. The UDO problems

can be solved in polynomial time using graph structures like

Depth-First-Search (DFS), Breadth-First-Search (BFS), or BB

algorithms [6], [16].

Algorithm 1 Multi-survivor Dynamic Programming.

Input:M ,N ,A(·),X
M ← Cardinality of sets X
N ← Number of stages or variables of f(·) of problem H
A(·)← Constraint satisfaction function of H
X ← Set of discrete values that xi’s can take
Determine the path valency E(xir) for all nodes
Initialize paths and its associated costs
x
1,1={X}1,x

1,2={X}2,···,x
1,M={X}M

λ(x1,1)=b1φ1({X}1),λ(x
1,2)=b1φ1({X}2),···,

λ(x1,M )=b1φ1({X}M )

for i = 2 : N do
for r = 1 : M do

m← 1
for b = 1 : M do

if (xi−1b, xir) ∈ T (A) then
for k = 1 : E(xir) do

if A(xir
k ) > 0 then

xir = {X}r
x
i,r

k = [(xi−1,b
k )T , xir]

T

λ(xi,r

k ) = λ(xi−1,b
k ) + biφi(xir)

end if
end for

end if
end for

Keep only {xi,r
m }m=1,···,E(xi,r) paths, that

correspond to E(xir) maximum values of
{

λ(xi,r
m )

}

m=1,···,E(xir)

and ignore the rest!

end for
end for
Process the termial node ”F”
m← 1
for b = 1 : M do

for k = 1 : LT All paths incident on terminal node F do
λ(xF

m)=λ(x
N−1,b
k

)+bNφN (xNb)

m←m+1

end for
end for

Pick x
∗ that has maximum of

{

λ(xF
k )

}

k=1,···,m−1

return x
∗ Optimal Solution

B. Computational Complexity Analysis

The computational blocks of the msDP involve (i) evaluat-

ing the CSF A(xijk ), and (ii) performing the ACMS operation

on the E(xij) paths incident on a given node xij of the trellis.

For (i), a BFS or DFS can be used in such cases which has

complexity of O(E + V ), where E and V are the numbers

of edges and vertices of the trellis [16]. In the worst case of

a fully connected trellis, E = (N − 1)M2, and V = NM .

Also, in the worst case scenario of N
′

e = Ne

M
incident on

all the nodes in the given trellis, the net complexity of CSF

evaluation TCSF can be expressed as

TCSF = Ne

(

(N − 1)NM2 +N2M
)

for all the NM nodes.

(20)

In case of (ii), the total number of ACMS evaluations for

the trellis in the worst case is TACMS = Ne

M
NM = NeN .

Thus, the complexity of msDP is O(NeN
2M2) or in general

O(NeN
l), where l ∈ R. On the other hand, the ES requires
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Fig. 1. An example trellis T (V, E,A) for M = 4.

an evaluation of the CSF and OF for MN solutions. Hence its

complexity is O(MN ). In the case of learning techniques like

RL, to guarantee an optimal solution, the complexity required

is ≈ O(MN ) [17].

VI. SIMULATIONS

In this section, we apply the proposed msDP to solve (i)

Analog to Digital Converter (ADC) Bit-Allocation (BA) prob-

lem for MaMIMO receiver, and (ii) DNA fragment assembly

(DFA) problem that is a part of DNA sequencing [18], [19].

We evaluate the performance and compare the number of

computations1 against the ES and the heuristic suboptimal

simulated annealing (SA) algorithms2 [20].

A. ADC Bit Allocation for MaMIMO

The ADC BA problem is to assign the number of bits

to be used by Variable-Resolution ADCs on different Radio

Frequency (RF) paths of the MaMIMO receivers. An optimal

BA ensures that the performance, of the receiver is maximized

under a non-linear power constraint. It is to be noted that the

OF is non-linear. In [11], the authors reduce this to a problem

in H , which is described as

J = max
︸︷︷︸

{xi}
N
i=1;A(x)>0

{ N∑

i=1

a2i
b2i + di2xi

}

, (21)

where ai, bi, and di are constants ∈ R that represent channel

singular value, noise power, and coefficient of quantization

noise due to bit allocation xi on the ith RF path, respectively.

Here N is the number of RF paths in the receiver. The CSF

A(x) > 0 iff the power constraint
∑N

i=1 2
xi ≤ Pt, and bit-

ordering constraint x1 ≥ x2 ≥ · · · ≥ xN are satisfied. The

total ADC power budget is Pt. Hence we have

A(x) =







1, if
∑N

i=1 2
xi ≤ Pt,

x1 ≥ x2 ≥ · · · ≥ xN .

0, Otherwise.

(22)

We perform simulations considering the parameters used by

the authors in [11]. They consider a maximum bit resolution

1Number of computations = Actual number of CSF evaluations + ACMS
operations.

2The optimality is compromised against complexity with heuristic algo-
rithms like SA.

of M = 4, such that xi’s (bits) take values from the set X =
{1, 2, 3, 4} for 1 ≤ i ≤ N . We assume the number of RF

paths in the receiver as N = 12 and the power budget of

Pt = 48. For this case, we achieve Ne ≥ 13. The number of

computations with msDP, ES, and SA algorithms are shown

in Table I. Both the brute-force and msDP methods obtain the

optimal solution of x∗ = [4, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1]T [21].

B. DNA Fragment Assembly

We apply our proposed formalism to the DFA problem,

which has equivalence to the TSP [18], [22]. DFA is the

challenging process of the DNA sequencing [23]. DNA se-

quencing’s main problem is that the current technology can not

read an entire genome in one shot, sometimes not even more

than 1000 bases. Even the simplest organisms, like bacteria

and viruses, have much longer genome lengths. Consequently,

the genomes are broken down into smaller readable fragments

and sequenced [24]. In this step, N copies of DNA are created.

A short fragment is derived from each of the replicated DNA at

some random location. These short fragments are sequenced.

The final and challenging step is to assemble these sequenced

fragments to obtain the original DNA sequence. This step is

called the DFA, which is illustrated through an example below

[18].

We assume the DNA sequence to be TTACCGTGC,

and the fragments sequenced using 4 DNA copies being

F1 = ACCGT , F2 = CGTGC, F3 = TTAC, and

F4 = TACCGT . The overlap of each fragment with the

other three fragments are computed using similarity measure.

Based on this similarity measure, the order of fragments are

determined which in the case of this example is F3F4F1F2.

The DFA problem is posed as a maximization problem

where the sum of the similarity measures3 between two

adjacent DNA fragments is maximized. This is subject to the

constraint that there is no repetition of the fragments in the

sequence. Formally, this problem is defined as [18]

J = max
︸︷︷︸

{Fσi
}N
i=1;A(F)>0

{N−1∑

i=1

φ(Fσi
, Fσi+1)

}

, (23)

3The similarity scores between different pairs of fragments are derived
using the Smith-Waterman algorithm [18], [25].



TABLE I
COMPARISON OF THE TOTAL ACTUAL NUMBER OF COMPUTATIONS §

REQUIRED FOR MSDP, ES, AND SA ALGORITHMS.

PROPOSED EXHAUSTIVE SIMULATED

METHOD SEARCH ANNEALING

O(NeN2M2) O(MN ), O(N ! ) ≈ O(MN ), O(N ! )‡

ADC BA 6912 (Ne = 13) 16.7 × 106 5220

DFA-1† 83890 (Ne = 434) 3.62 × 106 380
† DFA with a second constraint. § Number of computations = Actual number of CSF evaluations + ACMS operations. ‡

To guarantee optimal solution.

where F = {Fσ1 , Fσ2 , · · · , FσN
} is the optimal solution

indicating the original DNA sequence, σi is the fragment

index, and φ(Fσi
, Fσi+1) is the similarity measure between the

fragments Fσi
and Fσi+1 . Here, the set X is collection of DNA

fragments {Fσj
}Nj=1, where N is the number of fragments. In

this example we have M = N . For this problem the CSF

A : F → {0, 1} is defined on the set F as A(F) > 0 iff all

the fragments in F are unique. The CSF denoted as

A(F) =







1, if
N⋂

i=1

Fσi
= ∅,

0, Otherwise.

(24)

We perform the DFA of a small section of the DNA

sequence of bacterium Escherihia Coli (E. coli) [18].

The original section of the DNA is represented as

TACTAGCAATACGCTTGCGTTCGGT . We consider

N = 10 fragments each with 8 bases, as follows: F1 =
ACGCTTGC, F2 = TTGCGTTC, F3 = ACTAGCAA, F4 =
CGTTCGGT, F5 = AGCAATAC, F6 = TACTAGCA, F7 =
AATACGCT, F8 = CTTGCGTT, F9 = ATACGCTT, and

F10 = CTAGCAAT. Using the proposed method, we obtain

the optimal solution F = {F6F3F10F5F7F9F1F8F2F4}. It

can be shown that by imposing a second constraint using an

upper bound [22], we achieve Ne ≥ 454. Solving the DFA

problem to optimality with the imposition of these additional

constraints is not possible using the traditional DP. The results

are shown in Table II.

TABLE II
COMPARISON OF PERFORMANCE OF THE MSDP, ES, AND SA

ALGORITHMS.

PROPOSED EXHAUSTIVE SIMULATED

ALGORITHM SEARCH ANNEALING

OPTIMAL OPTIMAL SUBOPTIMAL

ADC BA [4, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1]T [4, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1]T [4, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1]T

DFA-1 † [6, 3, 10, 5, 7, 9, 1, 8, 2, 4]T [6, 3, 10, 5, 7, 9, 1, 8, 2, 4]T [6, 3, 10, 5, 2, 8, 4, 7, 9, 1]T

VII. CONCLUSION

Constrained discrete optimization problems with the objec-

tive function that satisfies the optimality principle and place

no conditions on the constraints are NP-Hard. In general, such

problems arise in many areas of science, engineering, finance,

and management. We propose a multi-survivor dynamic pro-

gramming framework that solves these problems to optimality

with worst-case complexity reduction from either O(KN ) or

O(N ! ) to O(NeN
l), where Ne and l are constants that depend

on the constraints.
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