
Attack Detection in Smart Home IoT Networks
using CluStream and Page-Hinkley Test

Fernando H. Y. Nakagawa
Dept. of Computer Science
State University of Londrina

Londrina, Brazil
fernando.nakagawa@uel.br

Sylvio Barbon Junior
Dept. of Computer Science
State University of Londrina

Londrina, Brazil
barbon@uel.br

Bruno Bogaz Zarpelão
Dept. of Computer Science
State University of Londrina

Londrina, Brazil
brunozarpelao@uel.br

Abstract—The expansion of IoT device networks increases the
demand for security systems that detect attacks against these new
targets. These devices have simple hardware, limited memory
and processing power, and often are required to have low energy
consumption. Batch supervised learning algorithms have been
employed to address this issue, but they present some limitations.
These algorithms demand benign and malicious labeled samples
to be trained, which can be hard to obtain in real networks.
Also, once they are trained, it is hard to update the learning
model with newly found behaviors. In this work, we propose
an online and unsupervised scheme to detect attacks in smart
home IoT networks. This scheme is based on the combination of
two algorithms: CluStream and Page-Hinkley Test. It does not
require labeled samples to be trained and learns incrementally
as it is used. Tests were performed over data obtained from
publicly available datasets consisting of multiple smart home
devices and the results are encouraging. Different types of attacks
were detected with an overall detection rate around 97%, while
the precision stayed above 87%.

Index Terms—Internet of Things, stream learning, unsuper-
vised algorithm, attack detection

I. INTRODUCTION

The increasing number and importance of IoT devices in
home environments ease people’s everyday lives, e.g., by
making daily tasks more efficient, increasing home security,
and enabling health monitoring. However, while these devices
bring seamless experiences of ubiquitous connectivity, they
may lead to privacy and security problems. Most people
trust these home appliances, but they do not know what
information these devices transmit and store. Also, as these
devices have high connection availability and low security,
they become targets for attackers. Malicious users may use
these opportunities to create botnets, spread malware, and
break into people’s privacy. This current scenario creates a
demand for security systems that are able to detect attacks
against these new targets [1]–[4].

IoT systems have simple hardware, including limited mem-
ory and processing power. Some security technologies are
still challenging to be deployed in these devices, such as
cryptography [2] or intrusion detection systems (IDS). Several
approaches proposed to detect attacks in IoT systems are based
on batch machine learning algorithms. Also, they usually

consist of supervised learning schemes, which require labeled
samples to be trained and create a learning model [1], [5].

Two main issues arise when it comes to batch supervised
algorithms in this context. Firstly, batch algorithms cannot
learn incrementally. These algorithms approach their problems
as they were static: a finite amount of training data is gathered,
a static model is trained, and then it is applied to classify
future observations. When the data source behavior changes,
updating the learned model may be challenging. Secondly,
labeled samples are hard to obtain in real scenarios, espe-
cially malicious ones. Even if the user had these labeled
samples, it would be necessary to update the model every
time the network behavior changes. Most domestic users
are not technology experts to manage their network security
[2], [3]. Therefore, it would be difficult for them to use an
attack detection system based on a batch supervised learning
algorithm.

An alternative to batch learning algorithms is to use stream
learning. Stream learning algorithms consider that input stream
elements arrive online, and these data streams are potentially
unbound in size. For this reason, stream learning algorithms
do not store the data elements in memory, only statistical
information about them. Also, they can learn incrementally,
updating their models as new data arrives. Like batch learning
algorithms, stream learning schemes can be supervised or
unsupervised. By using an unsupervised process, they do not
require labeled samples to be trained [6], [7].

In this study, we propose an online and unsupervised
scheme to detect attacks in smart home IoT networks. The
proposed approach starts by dividing the incoming packets
into three streams: ICMP, UDP, and TCP streams. Each of
these streams is input to a CluStream instance. This algorithm
partitions the incoming packets online, creating, updating, and
destroying micro-clusters as new packets arrive. Then, the
scheme monitors the distance among the micro-clusters to
detect new and sudden changes that may indicate attacks.
The continuous collection of this indicator feeds a Page-
Hinkley Test, which detects sudden changes automatically.
Experiments were carried out over data collected from a
publicly available dataset. The results show that the proposed
approach can detect different types of attacks and has a low
false-positive rate in most of the observed situations.

1

This paper is organized as follows: Section II presents
the related work, while Section III introduces the CluStream
framework and Page-Hinkley Test. In Section IV, we explain
our proposed approach. Section V presents the experimen-
tal results, illustrated by two examples. Lastly, Section VI
presents the conclusion about this study.

II. RELATED WORK

Different studies have been carried out in recent years
to tackle attacks against IoT home networks. Supervised
machine learning algorithms are frequently found as their
central component. Anthi et al. [1] proposed an intrusion
detection system for smart home IoT devices that makes use of
supervised learning in three different phases. First, supervised
algorithms classify the traffic collected in the home router
according to the source/destination IoT device. Then, traffic
packets belonging to each device are classified as malicious or
benign by another supervised model. Lastly, a third supervised
model is employed to determine the attack type if a packet
is classified as malicious. The proposal was evaluated in a
testbed with different types of attacks such as scanning, denial
of service (DoS), and man in the middle (MITM).

Moustafa et al. [5] also employed supervised algorithms,
but, in their case, the proposal relies on ensemble learning
to reach better results. The proposed approach makes use of
Adaboost to combine three base classifiers: decision tree, naive
Bayes, and artificial neural network. The approach analyzes
the collected traffic to detect botnet attacks against HTTP,
DNS, and MQTT protocols. Instead of exploring ensemble
learning techniques, Brun et al. [8] apply deep learning, which
has been widely discussed in the intrusion detection area. A
model based on dense random neural networks was developed
to detect DoS attacks through statistics collected from network
traffic in their work.

Detecting unknown attacks can be challenging for super-
vised algorithms. To address this shortcoming, Wan et al. [9]
proposed combining supervised and one-class classification
algorithms. Instead of requiring malicious and benign observa-
tions for training, a one-class algorithm only needs samples of
benign behavior. Thus, it detects attacks by spotting observa-
tions that are not similar to the benign ones used for training.
In the approach by Wan et al., the network traffic analysis is
divided into two steps. Firstly, a supervised algorithm is used
to detect known attacks. Then, if the observation is classified as
benign, it is input to a one-class algorithm for further analysis.

Meidan et al. [10] used only a one-class classification
algorithm in their detection approach. More specifically, they
applied deep auto-encoders to detect botnets in smart home
network traffic. Bezerra et al. [11] also used exclusively one-
class classification algorithms to detect botnets. Unlike Meidan
et al., they proposed a host-based solution, which monitors
the usage of resources like CPU and memory in each device.
Multiple algorithms such as isolation forest, one-class SVM
(Support Vector Machine), and LOF (Local Outlier Factor)
were tested. Lastly, in [12], the authors proposed to use a one-
class classification algorithm coupled with a reinforcement

learning solution. They aimed to address a typical challenge
in attack detection: devices’ normal behavior can change, and
the models must be updated to reflect these movements.

Overall, the reviewed solutions are based on batch learning
algorithms, which means they are not designed to be frequently
updated. Also, they assume that training data, no matter its
volume, is integrally stored to build or update the learning
model. This can be a burden in smart home environments,
since they may not be designed to store and process all
this data. Another challenge is the demand for samples for
extensive training phases, which may be hard to meet in
practical scenarios. In this work, we propose a detection
approach based on a stream clustering algorithm, which does
not require storing observations for training and can learn
incrementally, being continuously updated.

III. FUNDAMENTAL BACKGROUND

A. CluStream

CluStream is a continuous data stream clustering framework
proposed by [6]. The CluStream online process does not store
the data instances but maintains a statistical summary in a
micro-cluster structure. Let’s consider a data stream consisting
of a set of multi-dimensional data instances X1, ..., Xk arriv-
ing at time stamps T1, ..., Tk. Each Xi contains d dimensions
denoted by Xi = (x1i ...x

d
i). The structure of a micro-cluster is

defined as the tuple: (CF2x, CF1x, CF2t, CF1t, n), where:
• CF2x: sum of the squares of the data values for each

dimension;
• CF1x: sum of the data values for each dimension;
• CF2t: sum of the squares of time stamps;
• CF1t: sum of the time stamps;
• n: number of data points in the micro-cluster;
To start the online phase, it is necessary to determine

the initial clusters. It can be achieved through a clustering
method, such as K-Means. Then a maximum of q micro-
clusters are maintained in the memory, assigning a unique
identification number to each one. When a new data instance
arrives, the algorithm checks whether it is within the maximum
boundary of a micro-cluster. If so, it is added to the micro-
cluster, updating the micro-cluster’s tuple through the additive
property. Otherwise, a new micro-cluster with only one data
instance must be created. To respect the limit of q micro-
clusters, an old one must be eliminated or two must be merged
when the creation of a new cluster makes this limit be violated.
To choose between these options, firstly it is verified if any
micro-cluster has its relevance stamp below the value set in
the hyperparameter δc. If true, it can be deleted. The relevance
stamp stands for the age of the micro-cluster based on time
properties. Finally, if no micro-cluster’s relevance stamps are
below δc, the two nearest micro-clusters are merged.

B. Page-Hinkley Test

The Page-Hinkley Test [13] detects changes based on the
mean of an univariate stream. Upon a test, it considers the
cumulative sum of the observed values and their mean up
to the current moment. At first, the algorithm needs four

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 29,2022 at 09:32:34 UTC from IEEE Xplore. Restrictions apply.

2

hyperparameters: minimum instances , δph, threshold, and
α. For each iteration i, the Page-Hinkley algorithm receives
the xi value from the stream. Then a mean Mi is calculated
by:

Mi =Mi +
(xi −Mi)

i
(1)

Afterward, the cumulative sum of positive changes σ+
i is

calculated:

σ+
i = max(0, α · σ+

i + (xi −Mi − δph)) (2)

To detect changes in two-sized mode, the cumulative sum
of descent values σ−i is given by:

σ−i = max(0, α · σ−i + (Mi − xi − δph)) (3)

If a minimum of data instances (i ≥ minimum instances)
were analyzed and the conditions (σ+

i > threshold) or (σ−i >
threshold) hold true, an alert is raised. Also, σ+

i or σ−i are
reset.

IV. PROPOSED APPROACH

In this section, we present our approach to detect attacks
in smart home IoT networks. This approach is based on the
hypothesis that attacks against an IoT device will generate
a detectable disturbance in the observed traffic. To detect
anomalous behaviors, we employ online algorithms, which
can learn incrementally and keep a low memory footprint. An
overview of the approach is presented in Figure 1. Each packet
coming into the device is classified according to its protocol
(TCP, UDP, or ICMP). Then, the CluStream unsupervised
algorithm assigns the incoming packet to a micro-cluster,
and the mean of the maximum distances among the clusters’
centroids is calculated. Having this result, the Page-Hinkley
Test is applied to check whether there is an anomalous change
in the micro-clusters’ movement. On detection, the network
administrator is alerted that there might be anomalous traffic
occurring.

The first step consists of breaking the incoming stream into
three different streams. Each packet is classified according
to the protocol on top of the IP header in the protocol
stack. For this study, we considered TCP, UDP, and ICMP
protocols. The CluStream algorithm will be applied to each
packet individually. As TCP, UDP, and ICMP headers have
different fields, we decided to separate these packets into
three different streams and dedicate an exclusive CluStream
instance for each of them. Before inputting these packets to the
CluStream instances, it is necessary to extract the features that
will be analyzed, which are presented in Table I and Table II.
The features len, ip.flags.df, ip.flags.mf, ip.ttl, ip.frag offset are
extracted in the three streams, once they are related to the IP
header and the whole packet length. The features tcp.dstport,
tcp.flags.syn, tcp.flags.ack, tcp.flags.push are exclusive to TCP.
Also, it is considered only the udp.dstport for UDP and
icmp.code for ICMP. All the features are normalized using
min-max normalization. To this purpose, we consider the

Fig. 1. Proposed Model to detect attacks in Smart Home IoT Networks.

protocol specification limits for each header field. For example,
let’s consider the feature tcp.dstport: its minimum value xmin

is 0 and its maximum value xmax is 65535. To normalize this
feature into the [0, 1] interval, given a feature value x , the
normalized value xnorm is calculated as in (4).

xnorm =
x− xmin

xmax − xmin
(4)

TABLE I
COMMON FEATURES USED IN TCP, UDP AND ICMP STREAMS.

Common features Description
len Length of the datagram in

bytes
ip.flags.df Indicates if the datagram

can be fragmented.
ip.flags.mf Indicates if the datagram is

the last fragment or there
are more fragments.

ip.ttl Indicates the datagram’s
time to live. Once it
reaches 0, it must be

destroyed.
ip.frag offset Position of the fragment in

the entire datagram.

To run a CluStream instance, the hyperparameters q,
InitNumber, and h need to be set, where:
• q is the maximum number of micro-clusters;
• InitNumber is the number of initial data instances used

to create the initial micro-clusters;
• h is a time horizon considered to calculate the mean of

the maximum centroids’ distances.
The other hyperparameters are left with their default values

(t = 2, r = 2,m = 10, δc = 10), where:
• t: cluster’s maximum boundary factor, which is a factor of

the root mean square (RMS) deviation of the data points
in the cluster from the centroid;

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 29,2022 at 09:32:34 UTC from IEEE Xplore. Restrictions apply.

3

TABLE II
EXCLUSIVE FEATURES USED IN TCP, UDP AND ICMP STREAMS.

TCP features Description
tcp.dstport Destination port of TCP

datagram
tcp.flags.syn Synchronization flag to

start the synchronization of
the sequence numbers.

tcp.flags.ack Acknowledgement flag
indicating that a connection

is established.
tcp.flags.push Push flag asking that data

should be pushed to the
application.

UDP features Description
udp.dstport Destination port of UDP

datagram
ICMP features Description

icmp.code Control message code of
ICMP.

• r: heuristic maximum boundary factor. For a micro-
cluster with only 1 point, the maximum boundary is r
times the maximum boundary of the next closest cluster;

• m: cluster’s last data points. They are used to approximate
the average time-stamp;

• δc: a threshold to eliminate a cluster. If the least relevance
stamp of a cluster is below δc, the cluster can be erased,
and a new cluster can be created.

To start using the CluStream instance, a set of initial data
instances, as determined by InitNumber, is input to the K-
Means algorithm to create the initial q clusters. After that,
as new data instances arrive, the CluStream algorithm will
maintain the micro-clusters adding each data instance to a
cluster within the maximum boundary factor, eliminating,
creating, or merging clusters.

Every time the CluStream instance clusters a new packet,
the mean of the maximum distances among the cluster cen-
troids is calculated as follows. Only the q′ micro-clusters with
new data instances assigned to them in the time horizon h are
considered. First, the Euclidean distance for every pair of these
micro-clusters centroids is calculated. The centroid of a micro-
cluster i is calculated by CF1

x
i/ni. The calculated distances

are stored in a matrix D with dimensions q′ × q′, where each
position di,j denotes the distance between the centroids of
the micro-clusters i and j. For each row i in D, we pick
the maximum distance, denoted as mdisti. It represents the
maximum distance of the centroid of the micro-cluster i to
any other micro-cluster’s centroid in D. Finally, we calculate
the mean of all the maximum distances mdist as in (5). The
computed mean will feed the respective instance of the Page
Hinkley test.

mdist =

∑q′

i=1mdisti
q′

(5)

Our hypothesis is that when a device is attacked, the
involved packets will be clearly distinct from the other ones.
When CluStream clusters a malicious packet, either a new

micro-cluster is created, or this packet is assigned to an
existing cluster. In the former possibility, the new micro-cluster
will likely be distant from the other micro-clusters since it
represents a new and anomalous behavior. In the latter, the
micro-cluster that received the malicious packet will have its
centroid significantly changed. In both cases, the mean of the
maximum distances between the micro-cluster centroids will
be affected. By monitoring this indicator, we can detect when
it presents a sudden and significant change.

The calculated means of the maximum distances make up
a series, which feeds an instance of the Page-Hinkley Test.
When it detects a change, the system administrator is alerted.
The hyperparameters minimum instances, δph, threshold,
and α for the Page Hinkley Test must be set and are crucial
to determine if an alert will be raised or not.

V. EVALUATION

In this section, the proposed approach is evaluated. We start
by presenting the experimental design containing information
about the dataset, implementation and evaluation metrics.
Next, we show the results related to the proposal’s efficacy.
Finally, two examples are discussed to provide more details
about the approach’s operation.

A. Experimental Design

To evaluate the proposed approach, we used the dataset
created by [1]. This dataset consists of packets captured in
multiple smart home devices such as smart plugs, cameras,
and device hubs. Different attacks such as scanning, DoS,
and MITM were launched against these devices, with the
packets being labeled accordingly. To use the dataset in our
evaluation, we first organized it by device and protocol (TCP,
UDP, and ICMP). Then, we observed that the tests that
originated the dataset followed a common pattern. For each
device, the traffic starts with a long sequence of normal traffic,
followed by a sequence of attacks. There are no situations
that intersperse periods of normal traffic and attacks. As our
proposed approach is based on incremental learning, it is
important to observe its behavior when the traffic changes from
normal to attack and vice-versa.

To address this issue, we augmented the original dataset. By
following the dataset labels, the moments when attacks started
and ended were identified. Also, we found the moments when
the monitoring was turned off or restarted. This was possible
through the analysis of the packet’s timestamps. In some
points, there are gaps between packets that clearly indicate a
pause in the monitoring, which is expected in experimental en-
vironments. Using these moments as references, we extracted
self-contained periods of normal and attack traffic, making a
collection of them. Then, we could make new scenarios for
each device, combining periods picked from this collection.
As a result, we made 11 scenarios, where each scenario is
a stream characterized by device + protocol, as Table III
presents. This table also provides details about the amount of
packets (length) and the normal:attack ratio for each scenario.

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 29,2022 at 09:32:34 UTC from IEEE Xplore. Restrictions apply.

4

The data presented in this study are available on request by
contacting the authors.

TABLE III
DESCRIPTION OF THE EXPERIMENTAL SCENARIOS.

Device
name

Protocol Attack
Type

Length Unbalance
Ratio

Hive Hub
TCP DoS,

MITM,
Scanning

193919 4.6:1

UDP MITM,
Scanning

4464 10.2:1

ICMP DoS,
MITM

36248 51:1

Samsung
Smart
Things

TCP DoS,
MITM,

Scanning

122833 3.5:1

UDP MITM,
Scanning

10612 30.2:1

Lifx
Smart
Lamp

TCP DoS,
MITM

64199 5.4:1

ICMP MITM 89073 164:1
TP-Link
NC200
Camera

TCP DoS,
MITM,

Scanning

39848 2:1

UDP DoS,
MITM,

Scanning

8549 3.4:1

TP-Link
SmartPlug

TCP DoS 8896 12.6:1
UDP DoS, IoT-

Toolkit
12477 0.34:1

After data preparation, we implemented the proposed ap-
proach in Python. To implement the CluStream module, the
code from a GitHub repository1 was used as starting point.
Some changes were added to this code, including the calculus
of the mean of maximum centroid distances. As for the
Page-Hinkley Test, we made use of the River’s Page-Hinkley
implementation [14], with modifications to detect changes in
two-sided mode.

Finally, the metrics used to evaluate the proposed approach
are:
• Detection Rate: proportion of how many attacks were

detected. If an attack goes unnoticed by the system, this
value gets lower;

• Precision: TP/(TP+FP). The percentage of alerts that
were true. TP stands for true positives and FP stands for
false positives.

B. Results

To run our approach over the 11 scenarios, we set Init-
Number to 10%, representing the data used by K-Means to
generate the initial q micro-clusters. The value of q was set to
12. As for the Page-Hinkley Test hyperparameters, firstly, we
used the default values: minimum instances = 30, δph =
0.005, threshold = 50, α = 0.9999. Then different values
for threshold and α were analysed to find the best setting
in terms of precision and detection rate. The thresholds used
were: 0.001, 0.5, 1, 5, 10, 20, 50, 100, 150,200 and the α
values were: 1, 0.9999, 0.999, 0.99, 0.9, 0.8, 0.75, 0.5. In

1https://github.com/FelixNeutatz/CluStream/blob/master/python

Table IV, we present the best results for each scenario with
its hyperparameters values, detection rate, and precision.

TABLE IV
TOP RESULTS FOR EACH DEVICE AND PROTOCOL.

Device
name

Protocol Threshold α value Detection
rate

Precision

Hive Hub
TCP 150 0.999 100% 86,6%
UDP 5 0.99 100% 75%
ICMP 1 0.8 100% 100%

Samsung
S. Things

TCP 0.5 0.5 100% 100%
UDP 5 0.999 100% 28.5%

Lifx S.
Lamp

TCP 150 1 100% 100%
ICMP 0.5 1 100% 100%

TP-Link
Camera

TCP 5 0.9 100% 92.3%
UDP 0.5 0.9 66.7% 75%

TP-Link
S. Plug

TCP 150 0.999 100% 100%
UDP 0.5 0.8 100% 100%

After analyzing a total of 591.118 packets in 11 scenarios,
the overall detection rate is around 97%, and the precision
is approximately 87%. In most cases, the proposed approach
yield better results to TCP and ICMP streams than to UDP
ones. UDP streams presented a very irregular behavior even
in normal traffic periods, causing frequent changes in the mean
of the maximum distances. Conversely, when considering TCP
and ICMP streams, five out of seven scenarios reached 100%
of detection rate and precision. For the other two scenarios
related to TCP and ICMP, the detection rate was 100%, and
the precision stayed above 85%. It is also noteworthy that
our approach was able to detect all the different attack types:
DoS, scanning, MITM, and IoT-Toolkit. The results show
that CluStream and the mean of maximum distances among
centroids provide a good indicator of attacks in the TCP
and ICMP streams. Moreover, Page-Hinkley Test could detect
these changes precisely.

C. Illustration Examples

To better illustrate how the proposed approach works,
figures 2 and 3 present more details on how the attacks were
detected in two scenarios. More specifically, the objective is
to show through these examples how the mean of maximum
distances reacts to different attacks and how the proposed
approach uses this indicator to detect these attacks.

Fig. 2. TCP stream in the Samsung Smart Things Hub: mean of maximum
centroid distances and generated alerts.

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 29,2022 at 09:32:34 UTC from IEEE Xplore. Restrictions apply.

5

The scenario with TCP stream in the Samsung Smart Things
Hub TCP is presented in Figure 2. Until packet #30533, the
traffic is normal, and the mean of the maximum distances
present small and regular variations. A DoS attack starts with
packet #30534. Suddenly, the mean of maximum distances
drops, signaling that there is a predominant behavior in this
stream now, which makes the micro-clusters stay very close to
each other as they are updated or created with DoS packets. As
a consequence of the change, an alert is quickly raised. After
packet #36485, the traffic goes back to normal, so the centroids
move back to the previous pattern, thus generating two alarms
that are not considered false positives since they are related
to the attack. Next, a MITM attack occurs between packets
#51905 and #52565, being properly detected by the approach.
Finally, from packet #74180 to #95130, a scanning attack
occurs, firing various alerts. It is noticeable that the varying
nature of scanning attacks generated an irregular pattern in the
mean of maximum centroid distances.

Fig. 3. ICMP stream in the Hive Hub: mean of maximum centroid distances
and generated alerts.

Figure 3 depicts the scenario with ICMP stream in the Hive
Hub. From the beginning to packet #14744, the traffic is nor-
mal, and we can observe that the mean of maximum distances
is stable. When the DoS attack starts, there is a very high
peak in the mean of maximum distances, signaling that a new
micro-cluster was added or an existing one was updated and
moved due to the new behavior brought by the attack. As time
passes, the past micro-clusters regarding normal traffic become
less relevant and are erased by CluStream. The DoS behavior
predominates, making the mean of maximum distances drop.
When the DoS attack stops (packet #15136), there is a sudden
behavior change again, which reflects in the mean of maximum
distances. Later in this scenario (packet #23003), a MITM
attack starts, showing again that the proposed approach could
detect it quickly, generating alerts.

VI. CONCLUSION

The increasing adoption of IoT home devices draws at-
tention to their security. Attackers see new opportunities to
break into these devices since they are more vulnerable and
getting more numerous. This paper proposed a new approach
for change detection in the network behavior through an
unsupervised stream learning algorithm. After organizing the

packets into three streams, CluStream instances process them,
maintaining the packets partitioned in micro-clusters at low
memory cost. Then, the Page-Hinkley Test is applied over the
mean of maximum distances among micro-cluster centroids to
detect changes in the device’s incoming traffic. The proposed
approach does not require labeled samples to be trained or
build a learning model.

Experiments performed with data from five devices in
eleven scenarios showed that the best results were mostly
found for TCP and ICMP streams. A total of six out of eleven
scenarios reached 100% of detection rate and precision, which
is a great result. Also, despite the different changes that distinct
attacks caused in the micro-clusters’ behavior, the proposed
approach could detect all experimented types of attacks.

REFERENCES

[1] E. Anthi, L. Williams, M. Słowińska, G. Theodorakopoulos, and P. Bur-
nap, “A supervised intrusion detection system for smart home IoT
devices,” IEEE Internet of Things Journal, vol. 6, pp. 9042–9053, 2019.

[2] D. Pishva, “Internet of things: Security and privacy issues and possible
solution,” in 2017 19th International Conference on Advanced Commu-
nication Technology (ICACT), 2017, pp. 797–808.

[3] S. Zheng, N. Apthorpe, M. Chetty, and N. Feamster, “User perceptions
of smart home IoT privacy,” Proc. ACM Hum.-Comput. Interact., vol. 2,
no. CSCW, Nov. 2018.

[4] R. Chow, “The last mile for IoT privacy,” IEEE Security & Privacy,
vol. 15, no. 6, pp. 73–76, 2017.

[5] N. Moustafa, B. Turnbull, and K.-K. R. Choo, “An ensemble intrusion
detection technique based on proposed statistical flow features for
protecting network traffic of internet of things,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 4815–4830, 2019.

[6] C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang, “A framework
for clustering evolving data streams,” in Proceedings 2003 VLDB
conference. Elsevier, 2003, pp. 81–92.

[7] J. Gama, Knowledge discovery from data streams. CRC Press, 2010.
[8] O. Brun, Y. Yin, E. Gelenbe, Y. M. Kadioglu, J. Augusto-Gonzalez,

and M. Ramos, “Deep learning with dense random neural networks for
detecting attacks against IoT-connected home environments,” in Security
in Computer and Information Sciences, E. Gelenbe, P. Campegiani,
T. Czachórski, S. K. Katsikas, I. Komnios, L. Romano, and D. Tzovaras,
Eds. Cham: Springer International Publishing, 2018, pp. 79–89.

[9] Y. Wan, K. Xu, G. Xue, and F. Wang, “IoTArgos: A multi-layer security
monitoring system for internet-of-things in smart homes,” in IEEE
INFOCOM 2020 - IEEE Conference on Computer Communications,
2020, pp. 874–883.

[10] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Bre-
itenbacher, and Y. Elovici, “N-BaIoT—network-based detection of IoT
botnet attacks using deep autoencoders,” IEEE Pervasive Computing,
vol. 17, no. 3, pp. 12–22, 2018.

[11] V. H. Bezerra, V. G. T. da Costa, S. Barbon Junior, R. S. Miani, and
B. B. Zarpelão, “IoTDS: A one-class classification approach to detect
botnets in internet of things devices,” Sensors, vol. 19, no. 14, 2019.

[12] R. Heartfield, G. Loukas, A. Bezemskij, and E. Panaousis, “Self-
configurable cyber-physical intrusion detection for smart homes using
reinforcement learning,” IEEE Transactions on Information Forensics
and Security, vol. 16, pp. 1720–1735, 2021.

[13] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no.
1/2, pp. 100–115, 1954.

[14] J. Montiel, M. Halford, S. M. Mastelini, G. Bolmier, R. Sourty,
R. Vaysse, A. Zouitine, H. M. Gomes, J. Read, T. Abdessalem, and
A. Bifet, “River: machine learning for streaming data in Python,” 2020.

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 29,2022 at 09:32:34 UTC from IEEE Xplore. Restrictions apply.

6

