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Abstract—This paper deals with the general domain of IC 

reliability and targets more specifically RF circuit. It investigates 

the feasibility of implementing on-line RF performance 

monitoring based on the indirect test strategy. The principle of the 

proposed solution is introduced and the essential requirements 

needed to adapt the indirect test strategy are discussed. The 

proposed solution is then applied to a wireless microcontroller 

with the objective to monitor the power level delivered by the RF 

transmitter. Hardware measurement results are presented, which 

demonstrate the potential of this approach and establish a proof-

of-concept.  

Keywords— RF integrated circuits, reliability, on-line 

monitoring, indirect test, machine-learning 

I. INTRODUCTION  

RF devices are nowadays used in an increasing number of 

applications and they are produced in very high volume. It is a 

very competitive market and it is therefore essential to verify 

the quality of devices shipped to the customers, which is the 

role of production test. However, the quality of the devices at 

the time of their production is not sufficient and their reliability 

once deployed in the application is becoming a real concern, 

especially for devices used in critical-safety applications such 

as fire detection, entrance access control, smart metering, … In 

this context, there is a need for methods allowing on-line 

performance monitoring in order to warn the user if the device 

experiences a degradation; the user can then take proper actions 

before a complete failure of the system occurs.  

Reliability issues have been extensively studied for digital 

devices and a number of on-line monitoring solutions have been 

proposed. In contrast, research is scarcer for analog/RF circuits. 

The design of an adaptive checker for concurrent error detection 

based on common mode signal analysis is investigated in [1]. 

Authors in [2] proposed a real time estimation to monitor a 

performance accurately by capturing the distortion performance 

variation. The use of an embedded temperature sensor [3] or a 

current-based monitor circuit [4] has been proposed to 

implement RF performance monitoring. Our objective is to 

explore a different approach which is based on an adaptation of 

the indirect test strategy.  

For the sake of comprehension, the basic principle of the 

indirect test strategy, which has been proposed to reduce the 

production testing costs of analog/RF circuits, is briefly recalled 

here. The objective is to replace the conventional and costly RF 

measurements usually performed during production test by 

some Indirect Measurements (IMs) that can be measured at 

low-cost. The underlying assumption is that process variations 

that affect the device RF performances also affect indirect 

parameters. So, if the correlation between these two spaces can 

be established, it is then possible to predict the RF performances 

using only the indirect measurements. The relation between 

these two sets of parameters is complex and cannot be simply 

identified with an analytic function; instead, machine-learning 

algorithms are used. The classical implementation of the 

indirect test strategy for production testing therefore involves 

two phases, as illustrated in Figure 1. There is first an initial 

learning phase in which both the conventional RF 

measurements and the low-cost IM measurements are 

performed on a set on training devices and machine-learning 

algorithms are used to build regression models that map the 

indirect measurements to the RF performances. These models 

are then exploited during the second phase, i.e. the production 

testing phase, in which the RF performances of every new 

device are predicted based only on the low-cost indirect 

measurements; the device is then binned as a good or bad circuit 

depending on the predicted values.  

 
Fig.1: Indirect test synopsis 

The efficiency of the indirect test strategy for production 
testing has been widely studied in the literature, including 
various aspects such as the choice of the regression model type, 
the selection of relevant indirect measurements, the use of 
embedded sensors, the adoption of an adaptive test flow... A 
comprehensive review of these works can be found in [5]. Some 
studies have also investigated the use of the indirect test strategy 
to implement Built-In Self-Test (BIST) [6,7] or to perform post-
manufacturing calibration [8.9] of analog/RF circuits. However, 
to the best of our knowledge, the use of the indirect test strategy 
has never been investigated to implement on-line RF 
performance monitoring. It is the objective of this paper. 

II. ADAPTATION OF THE INDIRECT TEST STRATEGY FOR  

ON-LINE PERFORMANCE MONITORING 

A. Principle 

The principle of the proposed strategy for on-line 

performance monitoring is illustrated in Figure 2. As in the 
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classical indirect test implementation, it involves a preliminary 

learning phase in which the mapping between a given circuit 

performance and some indirect measurements is established 

through the construction of a regression model. The main 

difference is that the learning set should include not only 

devices affected by process variations but also devices 

representative of the main wear-out failure mechanisms 

susceptible to occur during the circuit life. It is therefore 

recommended that the learning set includes devices that have 

been subjected to accelerated life tests or burn-in.  

Once the learning phase is over, mass production can start. 

Every new manufactured device undergoes a production test; 

devices that do not comply with the specifications are rejected 

(this test can be implemented using either a conventional 

approach or an indirect test solution). Before shipping good 

devices to the customers, there is then an additional step which 

consists in storing within the IC the original value of the 

performance that will be monitored and the values of the model 

coefficients determined in the previous phase.  

Finally, once the device is deployed in its application, the 

on-line monitoring process can be triggered at any time. It 

involves the embedded measurement of the selected IMs and 

the embedded computation of the performance value. In this 

process, the device predicts its own performance variation 

based on the model established during the learning phase and 

the values stored within the IC at production time; a flag alert 

is raised if the predicted performance variation exceeds a 

predefined threshold.  

B. Hardware Requirements 

To perform the embedded prediction, a number of hardware 

resources are obviously necessary: (i) a dedicated infrastructure 

in order to access to the internal nodes or structures involved in 

the indirect measurements, (ii) digitization resources to convert 

the measured analog values into the digital domain, (iii) a non-

volatile memory to store and fetch the coefficients of the 

established regression model and finally, (iv) a processing unit 

to perform the computation of performance prediction. The 

main requirements on these resources are discussed hereafter. 

Note that all these resources do not necessarily have to be 

embedded within the circuit itself, some of them might be 

available within the system in the application. 

1) Indirect Measurements  

A specific requirement for an on-line monitoring process is 

that all the considered IMs must have the possibility to be 

measured on-chip, and preferably with a simple measurement 

infrastructure. In this context, the most natural candidates are 

DC voltages on internal nodes and DC signatures delivered by 

built-in sensors accessible through an internal analog test bus.  

Furthermore, the main motivation behind the on-line 

performance monitoring strategy is to observe and detect any 

performance deterioration induced by aging effects. The most 

important aging phenomena observed today in nanometric 

technologies are hot carrier injection (HCI), time dependent 

dielectric breakdown (TDDB), bias temperature instability 

(BTI) and electromigration (EM). These aging phenomena 

affect not only the digital parts but also the analog/RF parts 

[10]. It is highly desirable that the set of IM candidates include 

indirect measurements sensitive to these wear-out mechanisms. 

Due to practical constraints, this aspect is not considered for the 

case study used in this paper.  

2) Digitization 

Once the indirect measurements and the test infrastructure 

allowing to access these measurements are defined, the 

following step is the choice of the digitization resources. It is 

essential that the quantization error introduced by this analog-

to-digital conversion does not significantly affect the accuracy 

of the computed prediction. The choice and the design of the 

digitization resources is therefore an important aspect. 

The choice should take into consideration the characteristics 

of the different indirect measurements. Indeed, it is likely that 

they cover a large voltage range while the variation range of 

each indirect parameter might be small. The digitization 

resources have to cope with this diversity without comprising 

the conversion accuracy. Several options can be considered for 

the design of the required digitization resources, i.e. (i) a single 

high-resolution ADC with a large measurement range that 

covers the complete variation range of all indirect 

measurements, (ii) a single medium-resolution ADC with a 

programmable measurement range that can be adapted to 

 

Fig.2: Principle of on-line RF performance monitoring based on the indirect test strategy 
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groups of indirect measurements with a similar order of 

magnitude in the variation range, or (iii) several low-resolution 

ADCs, each one with a fixed measurement range perfectly 

adapted to the variation range of one indirect measurement. The 

retained solution obviously strongly depends on the case study 

and will be a tradeoff between the required silicon area and the 

conversion accuracy. 

3) Memory and Arithmetic Unit 

A regression model is defined by (i) the function that relates 

the indirect measurements to the predicted performance and, (ii) 

a set of coefficient values that parametrizes the regression 

function. In order to implement an embedded prediction, it is 

therefore necessary to have memory as well as arithmetic 

resources. The memory resources are used to store the value of 

the coefficients established during the learning phase. These 

values obviously need to be permanently stored in the circuit or 

the system, which implies the use of a non-volatile memory. 

Alongside the memory, an arithmetic unit must be included in 

the circuit or system to perform the calculations defined by the 

established regression model.  

It is important to highlight that performance monitoring of 

a device in the field is an auxiliary option to improve the 

reliability of the system, but is not the main core of the 

application. Therefore, the additional circuitry required to 

implement the embedded prediction must be minimized. 

Moreover, the processing time must be minimized in order to 

maintain the normal operation of the system without disruption. 

Hence, it is essential to reduce the number of required 

operations; the choice of the regression model type plays an 

important role in this aspect.  

In the classical implementation of the indirect test strategy 

for production test, the model accuracy is crucial since binning 

of devices as good or bad circuits is realized based only on the 

results of the prediction. To achieve high accuracy, models 

usually implemented are non-linear models such as Multi-

Adaptive Regression Spline (MARS) or Support Vector 

Machine (SVM) models, or even more sophisticated models 

based on ensemble methods [11]. However, the use of these 

types of model is problematic in the context of on-line 

performance prediction. Indeed, they involve the storage of a 

substantial number of coefficients as well as the computation of 

specific non-linear functions that cannot be easily implemented 

with a standard arithmetic unit. Embedded performance 

computation based on such models would therefore be 

consuming both in terms of memory resources and processing 

time, which is a strong drawback.  

An alternative way is to lean on less accurate but easier to 

implement models, such as Multiple Linear Regression (MLR) 

models. Indeed, these models involve only basic arithmetic 

operation and a limited number of coefficients (𝑚 + 1 for a 

model with 𝑚 parameters). Of course, the simplicity of 

implementation comes at the cost of lower model accuracy. 

However, in the context of on-line performance monitoring, the 

accuracy constraint is not as strong than in the context of 

production test since the objective is just to monitor whether the 

performance has experienced a degradation and to quantify the 

order of magnitude of this degradation. This is therefore the 

choice that is used in this study.  

III. CASE STUDY 

A. Test Vehicle: RF Transceiver (NXP JN518x) 

The test vehicle considered as a case study is an ultra-low 

power wireless microcontroller supporting Zigbee 3.0 and 

Thread networking stacks to facilitate the development of home 

automation, smart lighting and wireless sensor network 

applications. It includes a 2.4GHz IEEE 802.15.4 compliant 

transceiver and a comprehensive mix of analog and digital 

peripherals, as well as an Arm Cortex-M4 core and embedded 

Flash and RAM memory. It also includes an embedded test 

infrastructure that involves an analog DC bus allowing to probe 

various internal nodes of the transceiver (11 nodes) and a 12-bit 

ADC. The internal nodes might be connected either to two 

General Purpose Input Output (GPIO) pins, or to the embedded 

ADC. The general architecture of this product is summarized in 

figure 3.  

Our objective is to monitor the power level delivered by the 

transmitter, which is an essential performance of the system. 

This product has been selected for this study because it is 

equipped with all the necessary hardware to implement 

embedded performance prediction. Specifically, the indirect 

measurements (voltage on internal nodes of the transceiver) will 

be performed using the test infrastructure and digitized by the 

embedded ADC. They will be transferred to the CPU where 

they will be processed using the model equation determined 

during the initial learning phase along with the model 

coefficients stored in the Flash memory during the production. 

The result of the prediction will be compared to a predefined 

threshold and a flag alert will be issued on a GPIO pin if the 

predicted value is below the threshold.  

 

 
Fig.3: High-level block diagram of the test vehicle 

At this point, it is important to highlight that the 

implementation of an on-line monitoring process was not 

considered during the design phase of this product. Hence, no 

specific structures were embedded in the product with respect 

to the prediction of the transmitted power level, nor with respect 

to the impact of aging effects. In the same way, the ADC 

available in the circuit has not been specifically designed for 

conversion of the embedded measurements. Our objective with 

this case study is therefore to study the feasibility of 

implementing on-line performance monitoring based on the 

indirect test strategy, and we do not expect a high accuracy from 

the prediction model. The case study should be considered as a 

proof-of-concept rather than a validation of the efficiency that 

can be achieved with this approach.  
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B. Dataset Collection: Measurement Campaign 

A measurement campaign has been performed to collect 

data in order to build a regression model that maps indirect 

measurements to the level of transmitted power. Ideally, data 

should be collected on circuits that present a degradation of the 

power level due to aging effect. However, because it is a new 

product and the mass-production is not yet launched, we do not 

have this opportunity. In this context, the solution retained to 

collect data representative of a power level degradation was to 

act on two internal configuration registers of the transmitter. 

Each one of these registers has four configuration bits (16 

configurations). By playing on both registers, we therefore have 

256 possibilities to operate the transmission block of the device 

under a different configuration. One of these configurations 

corresponds to the nominal configuration (C172), and the others 

are used to emulate a variation of the transmitted power level.  

Practically, test data were collected from four ICs on 

Advantest V93K ATE. Each IC has been operated under the 

256 possible configurations and the transmitted power level has 

been measured using the ATE RF resources, for each 

configuration. The DC voltage on the 11 internal nodes that can 

be accessed through the analog test bus have also been 

measured by the ATE (DC30 to DC40 indirect measurements). 

In total, the dataset contains 12,288 measurements resulting 

from 1,024 observations.  

Again, it is important to keep in mind that the available IMs 

have not been specifically defined for the context of this study. 

Hence, they are not necessarily relevant and it is likely that 

more pertinent IMs could have been defined during the design 

phase. Despite the weakness of this dataset, the expectation is 

that we can build a regression model that predicts the power 

level with a reasonable accuracy and establish a proof-of-

concept for an on-line performance monitoring scheme based 

on the indirect test strategy.  

IV. INITIAL LEARNING: MODEL ELABORATION  

In this section, the choice of the model type is commented 

and the procedure for IM selection and model construction is 

detailed. Results on the accuracy of the retained model to 

predict the power level variation on IC4 using measurements 

performed on the ATE are also presented. 

A. Choice of Model Type 

As mentioned in section II, the choice of a simple MLR 

model allows to easily implement the required calculations and 

to minimize the number of coefficients that have to be stored 

within the circuit. A classical approach to build such a model is 

based on the use of Sequential Forward Selection (SFS) 

procedure in order to select the more pertinent IMs [12]. The 

procedure starts by building an MLR model for each available 

IM and selecting the IM that generates the model with the 

minimum prediction error (lowest RMSE score). At the second 

iteration, an MLR model is built for each pair of IMs that 

includes the previously selected IM; the pair that gives the best 

model is then selected. The process then continues with triplets 

and so on.  

This procedure has been implemented in this work. 

However, in order to improve the accuracy of the MLR model, 

IM selection has been performed on an enriched space of 

candidates that includes not only the original IMs but also non-

linear transformations of these IMs as well as interactions 

between pairs of IMs, as suggested in [13].  

Regarding the non-linear transformations, some 

transformations such as 1/𝑥  and 𝑥2 can be implemented at low-

cost because they require only a limited number of elementary 

arithmetic operations. In contrast, other transformations such as 

log⁡(𝑥), √𝑥 and exp⁡(𝑥) would require much longer processing 

times. Indeed, their exact computation is not feasible with 

elementary arithmetic operations; instead, numerical 

algorithms that involve many elementary arithmetic operations 

have to be used to compute an approximation. In this study, we 

have considered only transformations that can be implemented 

at low-cost, i.e. 1/𝑥  and 𝑥2. Regarding the interaction between 

IMs, all combinations of pairs of IMs using the four elementary 

operators (+,−,∗,  /) can be easily implemented. Interactions 

using (+) and (−) operators are intrinsically present in the 

model; therefore, only interactions using (∗) and (/) operators 

have been considered in this study. 

Globally, with the considered non-linear transformations 

and interactions, an enriched space of 209 candidates has been 

generated from the original space of 11 IM candidates.  

B. Model Construction 

The full dataset of 1024 observations has been partitioned 

into training and validation sets: the training set includes data 

collected on IC1, IC2 and IC3 (768 observations) while the 

validation set is composed of data collected on IC4 (256 

observations). The SFS procedure has been applied on the 

training set and models including between 1 and 10 features 

have been built to predict the transmitted power level 𝑃̂. Results 

have shown that there is no significant improvement in the 

model accuracy by using more than three features. This is 

therefore the solution that has been retained: 

𝑃̂ = 𝑐0 + 𝑐1 ∗ (
𝐷𝐶39

𝐷𝐶35
) + 𝑐2 ∗ (

1

𝐷𝐶372
) + 𝑐3 ∗ (𝐷𝐶30 ∗ 𝐷𝐶35)   (1) 

where 𝑐0, 𝑐1, 𝑐2, and 𝑐3 are the model coefficients that have to 

be stored in the Flash memory of the circuit. 

It can be observed that this model exploits both non-linear 

transformations and interactions between IMs. It involves the 

measurement of four IMs, i.e. 𝐷𝐶30, 𝐷𝐶35, 𝐷𝐶37 and 𝐷𝐶39. 

Predicted power level variation Δ𝑃̂𝑖
𝑗
 is then simply 

computed with: 

Δ𝑃̂𝑖
𝑗
= 𝑃̂𝑖

𝑗
− 𝑃𝑛𝑜𝑚

𝑗     (2) 

where 𝑃̂𝑖
𝑗
 is the power level predicted for device 𝑗 in 

configuration 𝑖 and 𝑃𝑛𝑜𝑚
𝑗

is the actual power level measured on 

the ATE for device 𝑗 in the nominal configuration. 

Prediction results obtained on both the training and 

validation sets are illustrated in Figure 4, which presents the 

predicted power level variation with respect to the actual one 

(power level variation measured on the ATE with RF 

resources). It can be observed that the regression model 

performs acceptably well considering the different 

shortcomings, i.e. the use of a simple linear regression model, 

the fact that the IMs were not specifically defined for power 

level prediction and the limited size of the dataset. It can also 

be observed that there is no discrepancy between prediction 
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results on the ICs of the training set and the IC of the validation 

set, which is an unseen IC for the model.  

 
Fig.4: Predicted power level variation vs. measured power level variation 

Regarding the prediction accuracy, results are illustrated in 

Figure 5, which gives the normalized distribution of the 

prediction error; numerical results are summarized in Table I. 

Results show that the prediction error is well-centered on 0 and 

that it follows a nearly Gaussian distribution. The standard 

deviation is around 0.42dB, which corresponds to a rms 

accuracy of about 3.7% and the maximum error is around 

1.3dB. We can therefore expect that any power degradation 

stronger than this will be definitely detected by the on-line 

monitoring process. For lower degradation, detection might be 

possible but is not guaranteed since we are within the model 

uncertainty.  

 
Fig.5: Normalized distribution of the prediction error 

TABLE I.  STATISTICS OF THE PREDICTION ERROR  
OVER THE 256 CONFIGURATIONS 

 All configurations 

 
Mean 

(dB) 

Std. Dev. 

(dB) 

Max 

(dB) 

Prediction error -Training 0.00 0.42 1.30 

Prediction error - Validation -0.02 0.42 1.19 
 

V. EMBEDDED PREDICTION 

This section is dedicated to the practical implementation of 

the on-line monitoring process. More precisely, the regression 

model elaborated in the previous section from ATE 

measurements on IC1, IC2, and IC3 is exploited to perform 

embedded prediction of the power level variation on IC4. The 

experimental setup is first described and hardware 

measurement results are then presented.  

A. Experimental Setup and Product Programming 

To emulate the operation of the circuit within its application 

environment, the circuit is mounted on a development board 

provided by NXP Semiconductors. MCUXpresso Integrated 

Development Environment (IDE) is used to develop the 

software code on a PC. A stand-alone debug probe is then used 

to download the code within the product and debug the 

firmware through a JTAG interface. A specific code dedicated 

to the on-line performance monitoring process has been 

developed. The flowchart of this code is illustrated in Figure 6.  

 
Fig.6: Flowchart of the on-line monitoring process 

The code is divided in three main stages. In the first stage, 

the product is initialized and the Test Mode is started. In this 

mode, the transmitter is activated and delivers a modulated RF 

signal at 2.4GHz corresponding to internally-generated DSSS 

sequences. Once the circuit is ready, the second stage dedicated 

to the embedded measurements is launched. In this stage, we 

loop through the selected indirect measurements in order to 

measure and store their value. More precisely, for each selected 

indirect measurement, the DC bus is reconfigured, acquisition 

is realized by the ADC and the digitized value is stored in the 

SRAM memory. Finally, the last stage is dedicated to the 

embedded computation and the verification of the performance. 

In this stage, the predicted power level degradation is computed 

based on the model equation established during the learning, the 

measured IM values stored in the SRAM memory, the model 

coefficients and the original power level stored in the Flash 

memory. This value is then simply compared to a predefined 

threshold and a flag is raised if the value is below the threshold, 

indicating that the product has experienced a degradation.  

Note that for validation purposes, a number of outputs that 

correspond to different stages have been included during the 

execution of the code, i.e. the digitized value of the embedded 

measurements, the predicted power level and the status of the 
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flag alert. These outputs can be transferred to the PC via the 

USB interface and extracted with the help of the IDE. In the 

final version of the code, the only output will be the alert flag. 

Also note that averaging has been implemented for the 

embedded measurements in order to improve the measurement 

resolution of the ADC, especially for IMs that exhibit a very 

small variation range.  

B. Results 

The specific code dedicated to the on-line performance 

monitoring process has been launched on IC4 under five 

different configurations of the device, i.e. the nominal 

configuration (C172) and 4 other configurations (C12, C132, 

C241, C246) spread across the power level variation range 

observed in the collected dataset.  

Results are illustrated in Figure 7, which shows the power 

level variation predicted from the indirect measurements versus 

the actual power level variation (measured on the ATE with RF 

resources), for the five configurations. Two values have been 

computed in each configuration, using either the original 

indirect measurements collected on the ATE or the embedded 

measurements performed within the circuit. Numerical values 

of the prediction error observed for the five configurations are 

summarized in Table II.  

 
Fig.7: Predicted power level variation vs. measured power level variation  

for IC4 in five different configurations 

TABLE II.  SUMMARY OF PREDICTION ERRORS ON IC4  
IN FIVE DIFFERENT CONFIGURATIONS 

 Prediction Error 

 
Using ATE meas. & 

computation on PC 

Using embedded meas. & 

embedded computation 

C172 (nom.) -0.31 dB +0.50 dB 

C12 +0.20 dB +0.52 dB 

C132 +0.39 dB +0.76dB 

C241 +0.38 dB +0.56 dB 

C246 +0.15 dB +0.18 dB 
 

Looking at these results, it can be observed that the 

predicted power level variation is in good agreement with the 

actual one. It exists a difference between the values predicted 

using the original indirect measurements collected on the ATE 

and the one measured within the circuit, certainly related to a 

difference in the measurement accuracy, but the prediction error 

remains within the model uncertainty (symbolized by the dotted 

lines located at ±3𝜎 around the ideal line in figure 7). Overall, 

these results establish a proof-of-concept of the proposed on-

line performance monitoring scheme.  

VI. CONCLUSION 

In this paper, we have explored an adaptation of the indirect 

test strategy for on-line RF performance monitoring. The 

principle involves an initial learning phase on a set of training 

devices in which a regression model is established between the 

RF performance to the monitored and some indirect 

measurements that can be measured on-chip. Then at 

production time, the model coefficients as well as the original 

performance value are stored within the circuit for any new 

fabricated device. Finally, once the device is deployed in its 

application, the on-line monitoring process can be launched at 

any time. It involves the embedded measurement of the selected 

IMs and the embedded computation of the performance 

variation.  

The model and hardware requirements to implement this 

approach have been discussed. The approach has then been 

demonstrated on a practical case study and results have shown 

that on-chip monitoring of the transmitted power level is 

feasible. The main limitation of this investigation is that the 

indirect measurements available on this case study were not 

specifically defined for prediction of the transmitted power 

level, nor with respect to the impact of aging effects. Future 

work will address these aspects.  
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