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Abstract – This work reveals additional timing difficulties by 
which concurrent error detection (CED) schemes can experience 
to deal efficiently with transients. It shows previously-unknown 
error scenarios where short-duration single transient faults in 
logic circuits succeed in erroneously inverting stored results but 
CED schemes fail in detecting even single soft errors. The paper 
demonstrates that typical CED code-based schemes for 
protecting logic circuits are not as capable as they have been 
claimed, and so timing conditions are suggested for a more 
efficient use of them. 

Keywords – transient faults; soft errors; fault attacks; 
concurrent error dectection codes; fault tolerance; and security 

I. INTRODUCTION 

IC-based systems are liable to encounter transient voltage 
variations induced by environmental or even intentional 
perturbation events. These effects – so-called transient faults 
(TFs) – are able to produce soft errors (SEs) by wrongly 
inverting stored results of circuit’s operations, and so they can 
also make failure scenarios in fault-tolerance applications. 
Moreover, SE-succeeded TFs can be used as a form of fault-
based attack to infer secret data during the execution of 
encryption operations in security applications.  

Related researches until the end of 20th century were 
focused essentially on protecting systems against TFs arisen in 
memory elements, which were considered the system’s most 
vulnerable circuits. Hence, many concurrent error detection 
and/or correction mechanisms were thus proposed to mitigate 
direct SEs induced by TFs originated in memory circuits. 
Nevertheless, in the last decade IC-fabrication deeper-
submicron technologies as well as novel classes of malicious 
fault injection-based attacks – e.g. differential fault analysis 
(DFA) – have also pushed on the use of countermeasures 
against indirect SEs arisen from TFs in system’s logic circuits. 

A TF in a system works like an extra primary input of the 
system’s circuit. Actually, it is such as a perturbation input that 
can be localized in any system’s part and can be fed at any 
instant by any kind of transient shape. Most specifically, a TF 
is like an asynchronous input of a certain target circuit, which 
is normally synchronous in most typical design cases. 
Therefore, a “TF-created unexpected asynchronous input” can 
easily violate or even cover the latching windows (LWs) of 
flip-flops (FFs) – i.e. a minimum period (defined as LW = set-
up time + hold time) for which synchronous circuits’ data must 
be on steady state, otherwise they would not be properly 
sampled. LWs make circuit’s internal synchronous operations 
very sensitive to SE-succeeded TFs. 

The traditional solution to face this issue is adding 
information, spatial, or time redundancy to the circuit. So if for 
instance a circuit’s original part fails, another redundant copy 
permits detecting or even correcting produced errors. In theory, 
such redundancy-based schemes cope very efficiently with 
scenarios of single SEs caused by short-duration Single TFs 
(i.e. STFs that last less time than a clock period), and they may 
not operate properly under long-duration STFs, multiple TFs, 
or multiple SEs. However, we reveal in this paper that timing 
features of a short-duration STF in logic circuits can actually 
provoke harmful effects at the same time upon the redundancy 
scheme and circuit’s original parts, and so the protection can 
fail even in detecting a single indirect SE (SISE). 

Apparently such a SISE-succeeded-STF-timing problem 
comes from the large need in latter years for also protecting the 
system’s logic parts. In fact, this need has led to the 
development of many new mitigation mechanisms (e.g. [1][2] 
[3][4]) based on ideas originally proposed to make memory 
elements robust. However, more complex effects of STFs in 
logic circuits require analysis and use of additional design 
timing issues that often have not been taken into account in 
several recent protection propositions. Hence, some typical 
countermeasures against SISEs are indeed not as efficient as 
they seem. 

Let us take a scenario of a SISE due to a STF that produces 
a timing problem in circuits protected by concurrent error 
detection (CED) codes. Fig. 1 shows a typical implementation 
scheme [3][4][5] for protecting logic circuits which uses 
information redundancy to make a CED. Fig. 2 renders timing 
characteristics of Fig. 1’s signals under an occurrence of a STF. 
The STF starts at instant tS and finishes at tF on Logic Block’s 
output node OLogic. The clock cycle that is analyzed starts at 
time t0 and finishes at t1, and registers’ FFs require a set-up 
time TSet-up and a hold time THold. Code block’s delay and 
Comparator block’s delay are respectively DCode and DCom. 
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Figure 1. A state-of-the-art CED code-based scheme 



Fig. 2’s example scenario illustrates a STF on OLogic 
covering LW. Then, a wrong data value is registered at t1 – i.e. 
a SISE happens as illustrated on OReg, which stores logic value 
“1” instead of “0”. On the other hand, Code Prediction block 
provides on its output OPredi the correct code that should be 
expected from the ideal value at the output OLogic under a fault-
free scenario. This prediction is then compared with the code 
on OCode, which is computed from the actual value at the output 
OLogic under a fault scenario. If OCode and OPredi do not match, 
Comparator block’s OCom results in “1”. Fig. 2’s example 
therefore illustrates that the STF on OLogic arises too late in the 
clock cycle, and so Code and Comparator blocks are not able to 
generate an Error Flag (i.e. “1” on OCom) on time to detect SISE 
on OReg. In fact, as shown in the figure, the Error Flag on OCom 
rises later than LW, and so it is not registered on Error Flag 
Register’s OFlag. Therefore, this flag on OCom has not a steady 
condition during the clock cycle for the system deals later with. 
The CED scheme thus fails in detecting the SISE. 

Other previously-unknown SISE scenarios and STF-timing 
issues that make typical CED code-based schemes inefficient 
are further studied in this paper. The schemes’ fail situations 
which are detailed in section II have not yet been illustrated in 
the literature. Furthermore, section III discusses timing 
conditions for a more efficient use of CED codes. 

 

II. FAIL SITUATIONS OF TYPICAL CED SCHEMES 

A CED scheme – as any on-line testing mechanism – fails 
when it is not able to accomplish the results of its function on 
time. Essentially, any CED scheme – such as that one in Fig. 1 
– provides results in accord with Table I. If Data Register is 
OK and Error Flag Register is “0”, then the scheme is 
evaluated as efficient because the ideal scenario is achieved. 
However, if Data Register is OK and Error Flag Register is 
“1”, it is considered inefficient in fault-tolerance applications, 
since an unnecessary Error Flag event is generated. On the 
other hand, such a false-positive error flag (FPEF) might be 
useful in security applications because this event may indicate 

an attempt at retrieving a secret key by means of a fault-based 
attack. Moreover, if Data Register contains a SE and Error Flag 
Register is “1”, the scheme succeeds in detecting the SE. But 
whether Error Flag Register is “0”, the scheme results in a 
false-negative error flag (FNEF ) and so it fails. 

Furthermore, this scheme’s fail situation highly depends on 
the STF’s timing features. In practice, a STF is classically 
represented as a time-varying current source characterized by a 
double-exponential pulse-based model, which is well discussed 
in [6]. However, a timing analysis of a STF that causes faulty 
functional behaviours in on-line testing schemes can be done 
through a logic abstraction-level model. In fact, this simplifies 
the evaluations to compare the efficiencies of the schemes by 
using a rectangular pulse-based model, which is detailed in [7]. 
This logic-level model is used in this paper to analyze fail 
situations of CED schemes. The circuit analysis seeks STF-
timing intervals (STF-TIs) of SISE-succeeded-STF prone 
nodes (SISE-STF-PN) on which there are chances of the CED 
schemes failing in detecting SISEs arisen from STFs. 

TABLE I.   EVALUATION OF A CED SCHEME BY USING ITS RESULTS 

System Values at Registers Evaluation of a CED Scheme for 
Scenario Data Error Flag Fault Tolerance Security 

Fault Free OK “0” Efficient Efficient 
Fault OK “0” Efficient Efficient 
Fault OK “1” Inefficient Efficient 
Fault SE “1” Efficient Efficient 
Fault SE “0” Fail Fail 

A. Fail Situations of Fig. 1’s Scheme 

An eventual STF originated on any node of Code 
Prediction, Code, Comparator, or Error Flag Register blocks 
could only cause a FPEF. In contrast, a STF arisen in Data 
Register could produce a single direct SE what is classically a 
well-known weakness of this type of scheme as the cases of 
multiple TFs and multiple SEs are too. Furthermore, any 
scenario of STF in Logic Block that succeeds in provoking a 
SISE should be, in theory, detected by the scheme. However, 
cases of FNEF can happen as we prove below, and then the 
scheme in Fig.1 can fail in detecting SISEs. 

Let us firstly analyze only scheme’ fail cases in which a 
rectangular pulse, which represents a STF on a Logic Block’s 
SISE-STF-PN, covers at least the whole duration of a flip-flop 
LW. Therefore, analyzing SISE-STF-PN situations in which a 
Data Register’s FF suffers a SISE but its LW is Not Violated – 
i.e. scenarios so called as SISE-STF-LWNVs. Note that the 
STF effects on the SISE-STF-PN OLogic enclose all possible 
cases of SISE-succeeded-STF that could arise in Logic Block. 
Then, OLogic’s STF-TIs on which the scheme fails in detecting 
SISE-STF-LWNVs are extrapolated from Fig. 2’s fail situation 
by using different tS and tF as well as STF’s minimum and 
maximum durations (TFMin and TFMax in (1)). DCritical is the 
delay of the circuit’s critical path, DLogic is the Logic Block’s 
longest delay, and TMargin is a DCritical‘s additional time margin 
for variations in clock operations (jitter and skew), and 
manufacturing and environmental variabilities [8]: 
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Figure 2. Timing characteristics of the CED scheme in Fig. 1 



Fig 2’s SISE-STF-LWNV example and the conditions of 
scheme’s fail (Table I’s last row) assist us in defining OLogic‘s 
STF-TIs on which Data Register’s FF suffers a SISE-STF-
LWNV (Fail Condition 1 (FC1)) but Error Flag Register’s FF 
exhibits a FNEF (Fail Condition 2 (FC2)). Then, STF-TIs of 
FC1 and FC2 are firstly characterized separately by finding the 
ranges of tS and tF for: 

(FC1): a STF on OLogic that produces SISE-STF-LWNV on 
OReg of the Data Register’s FF – i.e. excursions of tS (tS0 to tS2 
in Fig. 3a) and tF (tF2 to tF4 in Fig. 3b): 
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and (FC2): a STF on OLogic which does not succeed in 
reaching LW of the Error Flag Register’s FF, and so it 
generates a FNEF that is manifested by “0” on OCom at least 
during LW to produce “0” on OFlag. The FC2 excursions of tS 
and tF are derived from the ranges of tS and tF for a STF on 
OLogic that does not achieve the LW of the Data Register’s FF, 
and so it does not make a SE on OReg – i.e. excursions of tS (tS0 
to tS1 in Fig. 4a) and tF (tF0 to tF1 in Fig. 4b) or excursions of tS 
(tS3 to tS4 in Fig. 4c) and tF (tF3 to tF4 in Fig. 4d): 
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Equations (4) or (5) are thus formalized only to us easily 
derive the STF-TIs in (6) or (7) on which a STF on OLogic does 
the Error Flag Register’s FF manifesting FC2. These STF-TIs 
are indeed derived by just adding “– (DCode + DCom)” to (4) and 
(5), since OCom is delayed by “(DCode + DCom)” from OLogic:  
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Figure 3. STF-TIs on OLogic for which a Data Register’s FF certainly manifest 

a SISE-STF-LWNV – i.e. FC1 

 

 
Figure 4.  STF-TIs on OLogic for which a Data Register’s FF certainly does not 

manifest a SE – i.e. for deriving FC2 
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Finally, FC1 and FC2 have to be accomplished together to 
characterize STF-TIs on which the scheme fails in detecting 
SISE-STF-LWNVs. It is a condition required for scheme’s fail 
(Table I’s last row). Then, all FC1’s STF-TIs in (3) would need 
to have common points with all FC2’s STF-TIs in (6) or (7) to 
really provoke SISE-STF-LWNV scenarios. 

Fig. 5 as well as Fig. 6 analyze and identify, in the most 
highlighted zones, such a condition of common points that 
generates scheme’s fail situations. These zones then indicate 
the STF-timing conditions for SISE-STF-LWNV scenarios on 
the scheme, and they are characterized in (8). Fig. 1’s scheme 
therefore certainly fails weather a STF starts (tS) and finishes 
(tF) in these STF-TIs in (8) that indeed represent only the Fig. 

6’s most highlighted zones, since Fig. 5 presents no common 
points for tF between all (3)’s STF-TIs and (6)’s STF-TIs. 

In addition to equations (6) and (7), Fig. 5 and Fig. 6 
include STF-TIs in case of a STF starting or finishing within a 
flip-flop LW, therefore even STFs shorter than TFMin are taken 
into account in these figures. These STF-TIs are illustrated in 
Fig. 5 and Fig. 6 by horizontal lines based on small squares that 
follow the beginning of the point-based horizontal arrows tS 
and tF, and they are defined as SISE-STF-PN situations in 
which a Data Register’s FF may suffer a SISE because its LW 
is Violated – i.e. scenarios so identified as SISE-STF-LWVs. 
In fact, an eventual STF in such STF-TIs would result in the 
metastability of the circuit, and so unknown values in registers 
– i.e. either an erroneous value (a SE) or the correct value. 

 
Figure 5. Equations (3) and (6): STF-TIs on which a STF on OLogic does Fig. 1’s scheme failing in detecting a SISE   

 
Figure 6. Equations (3) and (7): STF-TIs on which a STF on OLogic does Fig. 1’s scheme failing in detecting a SISE 
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Note that STF-TIs for fails in (8) are still longer whether 
Fig. 6’s STF-TIs for SISE-STF-LWVs are taken into account, 
and so the scheme is in reality even more vulnerable to SISE-
succeeded-STF scenarios. Furthermore, although Fig. 5 
presents no all timing conditions that would allow scheme’s 
fail situations, the scheme could indeed fail in case of: 

 HoldupSetComCode TTDD +<+ −   (9)  

Equation (9) would allow the creation of common STF-TIs 
between four Fig. 5’s arrows of tF that therefore would give tF-
timing conditions for SESI-STF-LWVs scenarios on the 
scheme. 

B. Fail Situations of another State-of-the-Art Scheme 

Another typical CED scheme is shown in Fig. 7. It is 
indeed derived from [3] and Fig. 1’s scheme but its DCritical is 
initially defined in (10), where DExtra is the Extra Logic Block’s 
longest delay: 

 upSetExtraLogicHoldCritical TDDTD −+++=   (10)  

As before, STF-TIs on which Data Register’s FF 
manifesting FC1 are derived from (3) by adding “– DExtra”: 
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Figure 7. Another state-of-the-art CED code-based scheme 

On the other hand, the same equations (6) and (7) represent 
STF-TIs on which the Error Flag Register’s FF results in the 
FC2. Consequently, Fig. 8 and Fig. 9 are the counterparts of 
Fig. 5 and Fig. 6, and their two most highlight zones represent 
STF-TIs (12) and (13) on which there are chances of Fig. 7’s 
scheme failing whether a STF happens within: 
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Furthermore, note that a SISE due to a STF arisen in Extra 
Logic Block is not able to be detected by the scheme whether 
no additional mechanisms are included to protect such a block. 

 
Figure 8. Equations (11) and (6): STF-TIs on which a STF on OLogic does Fig. 7’s scheme failing in detecting a SISE 
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Figure 9. Equations (11) and (7): STF-TIs on which a STF on OLogic does Fig. 7’s scheme failing in detecting a SISE 

III.  CONCLUSIONS AND TIMING CONDITIONS FOR AN 

EFFICIENT USE OF CED CODES 

The efficiency of Fig. 1 and Fig. 7’s schemes may be 
improved by minimizing the STF-TIs for fails – discussed in 
section II – in function of fitting the delay of blocks. However, 
quite better timing conditions are met by avoiding schemes that 
associate their redundant parts before a timing barrier. It was 
the case of Fig. 1 and Fig. 7’s schemes that join their redundant 
parts – i.e. Logic Block and Code Prediction block – by using 
the Code and Comparator blocks before the timing barrier of 
the Data and Error Flag Register. 

In fact, this type of protection allows a single event – i.e. a 
STF starting before or even during the action of registering – to 
wrongly affect at the same moment the redundancy scheme and 
circuit’s original blocks. Then, the comparison mechanisms 
have not enough time to suitably accomplish their function. 
Hence, a more efficient solution is using Fig. 10’s scheme 
which compares the results of the redundant parts after the 
timing barrier. The comparison mechanisms Code and 
Comparator blocks thus evaluate signals OReg and OPrediReg that 
have steady conditions during the clock cycle. Furthermore, 
otherwise Fig. 1 and Fig. 7’s schemes, an eventual single direct 

SE, which is provoked by a STF originated in Data Register or 
Prediction Register, can be detected by Fig. 10’s scheme. One 
could yet argue that any eventual STF arisen in Code or 
Comparator blocks could do Fig. 10’s scheme not properly 
operating. However, such a scenario in the worst case would 
produce just a FPEF. This Fig. 10’s scheme therefore prevents 
the fail situations analyzed in section II, and then it is much 
more efficient than Fig. 1 and Fig. 7’s schemes. The 
vulnerability windows of these latter schemes represent risks 
for operations of systems that require fault tolerance; moreover 
they are such as attack-prone slots which could compromise 
secure systems.   
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Figure 10. A more efficient state-of-the-art CED code-based scheme 


