
HAL Id: lirmm-00627427
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00627427

Submitted on 28 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timing Issues for an Efficient Use of Concurrent Error
Detection Codes

Rodrigo Possamai Bastos, Giorgio Di Natale, Marie-Lise Flottes, Bruno
Rouzeyre

To cite this version:
Rodrigo Possamai Bastos, Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre. Timing Issues for
an Efficient Use of Concurrent Error Detection Codes. LATW: Latin American Test Workshop, Mar
2011, Porto de Galinhas, Brazil. pp.1-6, �10.1109/LATW.2011.5985933�. �lirmm-00627427�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00627427
https://hal.archives-ouvertes.fr

Timing Issues for an Efficient Use of
Concurrent Error Detection Codes

R. P. Bastos, G. Di Natale, M. L. Flottes, B. Rouzeyre
LIRMM (Université Montpellier II / CNRS UMR 5506)

Montpellier, France
{possamaiba, dinatale, flottes, rouzeyre}@lirmm.fr

Abstract – This work reveals additional timing difficulties by
which concurrent error detection (CED) schemes can experience
to deal efficiently with transients. It shows previously-unknown
error scenarios where short-duration single transient faults in
logic circuits succeed in erroneously inverting stored results but
CED schemes fail in detecting even single soft errors. The paper
demonstrates that typical CED code-based schemes for
protecting logic circuits are not as capable as they have been
claimed, and so timing conditions are suggested for a more
efficient use of them.

Keywords – transient faults; soft errors; fault attacks;
concurrent error dectection codes; fault tolerance; and security

I. INTRODUCTION

IC-based systems are liable to encounter transient voltage
variations induced by environmental or even intentional
perturbation events. These effects – so-called transient faults
(TFs) – are able to produce soft errors (SEs) by wrongly
inverting stored results of circuit’s operations, and so they can
also make failure scenarios in fault-tolerance applications.
Moreover, SE-succeeded TFs can be used as a form of fault-
based attack to infer secret data during the execution of
encryption operations in security applications.

Related researches until the end of 20th century were
focused essentially on protecting systems against TFs arisen in
memory elements, which were considered the system’s most
vulnerable circuits. Hence, many concurrent error detection
and/or correction mechanisms were thus proposed to mitigate
direct SEs induced by TFs originated in memory circuits.
Nevertheless, in the last decade IC-fabrication deeper-
submicron technologies as well as novel classes of malicious
fault injection-based attacks – e.g. differential fault analysis
(DFA) – have also pushed on the use of countermeasures
against indirect SEs arisen from TFs in system’s logic circuits.

A TF in a system works like an extra primary input of the
system’s circuit. Actually, it is such as a perturbation input that
can be localized in any system’s part and can be fed at any
instant by any kind of transient shape. Most specifically, a TF
is like an asynchronous input of a certain target circuit, which
is normally synchronous in most typical design cases.
Therefore, a “TF-created unexpected asynchronous input” can
easily violate or even cover the latching windows (LWs) of
flip-flops (FFs) – i.e. a minimum period (defined as LW = set-
up time + hold time) for which synchronous circuits’ data must
be on steady state, otherwise they would not be properly
sampled. LWs make circuit’s internal synchronous operations
very sensitive to SE-succeeded TFs.

The traditional solution to face this issue is adding
information, spatial, or time redundancy to the circuit. So if for
instance a circuit’s original part fails, another redundant copy
permits detecting or even correcting produced errors. In theory,
such redundancy-based schemes cope very efficiently with
scenarios of single SEs caused by short-duration Single TFs
(i.e. STFs that last less time than a clock period), and they may
not operate properly under long-duration STFs, multiple TFs,
or multiple SEs. However, we reveal in this paper that timing
features of a short-duration STF in logic circuits can actually
provoke harmful effects at the same time upon the redundancy
scheme and circuit’s original parts, and so the protection can
fail even in detecting a single indirect SE (SISE).

Apparently such a SISE-succeeded-STF-timing problem
comes from the large need in latter years for also protecting the
system’s logic parts. In fact, this need has led to the
development of many new mitigation mechanisms (e.g. [1][2]
[3][4]) based on ideas originally proposed to make memory
elements robust. However, more complex effects of STFs in
logic circuits require analysis and use of additional design
timing issues that often have not been taken into account in
several recent protection propositions. Hence, some typical
countermeasures against SISEs are indeed not as efficient as
they seem.

Let us take a scenario of a SISE due to a STF that produces
a timing problem in circuits protected by concurrent error
detection (CED) codes. Fig. 1 shows a typical implementation
scheme [3][4][5] for protecting logic circuits which uses
information redundancy to make a CED. Fig. 2 renders timing
characteristics of Fig. 1’s signals under an occurrence of a STF.
The STF starts at instant tS and finishes at tF on Logic Block’s
output node OLogic. The clock cycle that is analyzed starts at
time t0 and finishes at t1, and registers’ FFs require a set-up
time TSet-up and a hold time THold. Code block’s delay and
Comparator block’s delay are respectively DCode and DCom.

D
at

a
R

eg
is

te
r

Logic
Block

Code
Prediction

Code

C
om

pa
ra

to
r

E
rr

or
 F

la
g

R
eg

is
te

r

OLogic OReg

OPredi

OCode

OFlag OCom

Figure 1. A state-of-the-art CED code-based scheme

Fig. 2’s example scenario illustrates a STF on OLogic
covering LW. Then, a wrong data value is registered at t1 – i.e.
a SISE happens as illustrated on OReg, which stores logic value
“1” instead of “0”. On the other hand, Code Prediction block
provides on its output OPredi the correct code that should be
expected from the ideal value at the output OLogic under a fault-
free scenario. This prediction is then compared with the code
on OCode, which is computed from the actual value at the output
OLogic under a fault scenario. If OCode and OPredi do not match,
Comparator block’s OCom results in “1”. Fig. 2’s example
therefore illustrates that the STF on OLogic arises too late in the
clock cycle, and so Code and Comparator blocks are not able to
generate an Error Flag (i.e. “1” on OCom) on time to detect SISE
on OReg. In fact, as shown in the figure, the Error Flag on OCom
rises later than LW, and so it is not registered on Error Flag
Register’s OFlag. Therefore, this flag on OCom has not a steady
condition during the clock cycle for the system deals later with.
The CED scheme thus fails in detecting the SISE.

Other previously-unknown SISE scenarios and STF-timing
issues that make typical CED code-based schemes inefficient
are further studied in this paper. The schemes’ fail situations
which are detailed in section II have not yet been illustrated in
the literature. Furthermore, section III discusses timing
conditions for a more efficient use of CED codes.

II. FAIL SITUATIONS OF TYPICAL CED SCHEMES

A CED scheme – as any on-line testing mechanism – fails
when it is not able to accomplish the results of its function on
time. Essentially, any CED scheme – such as that one in Fig. 1
– provides results in accord with Table I. If Data Register is
OK and Error Flag Register is “0”, then the scheme is
evaluated as efficient because the ideal scenario is achieved.
However, if Data Register is OK and Error Flag Register is
“1”, it is considered inefficient in fault-tolerance applications,
since an unnecessary Error Flag event is generated. On the
other hand, such a false-positive error flag (FPEF) might be
useful in security applications because this event may indicate

an attempt at retrieving a secret key by means of a fault-based
attack. Moreover, if Data Register contains a SE and Error Flag
Register is “1”, the scheme succeeds in detecting the SE. But
whether Error Flag Register is “0”, the scheme results in a
false-negative error flag (FNEF) and so it fails.

Furthermore, this scheme’s fail situation highly depends on
the STF’s timing features. In practice, a STF is classically
represented as a time-varying current source characterized by a
double-exponential pulse-based model, which is well discussed
in [6]. However, a timing analysis of a STF that causes faulty
functional behaviours in on-line testing schemes can be done
through a logic abstraction-level model. In fact, this simplifies
the evaluations to compare the efficiencies of the schemes by
using a rectangular pulse-based model, which is detailed in [7].
This logic-level model is used in this paper to analyze fail
situations of CED schemes. The circuit analysis seeks STF-
timing intervals (STF-TIs) of SISE-succeeded-STF prone
nodes (SISE-STF-PN) on which there are chances of the CED
schemes failing in detecting SISEs arisen from STFs.

TABLE I. EVALUATION OF A CED SCHEME BY USING ITS RESULTS

System Values at Registers Evaluation of a CED Scheme for
Scenario Data Error Flag Fault Tolerance Security

Fault Free OK “0” Efficient Efficient
Fault OK “0” Efficient Efficient
Fault OK “1” Inefficient Efficient
Fault SE “1” Efficient Efficient
Fault SE “0” Fail Fail

A. Fail Situations of Fig. 1’s Scheme

An eventual STF originated on any node of Code
Prediction, Code, Comparator, or Error Flag Register blocks
could only cause a FPEF. In contrast, a STF arisen in Data
Register could produce a single direct SE what is classically a
well-known weakness of this type of scheme as the cases of
multiple TFs and multiple SEs are too. Furthermore, any
scenario of STF in Logic Block that succeeds in provoking a
SISE should be, in theory, detected by the scheme. However,
cases of FNEF can happen as we prove below, and then the
scheme in Fig.1 can fail in detecting SISEs.

Let us firstly analyze only scheme’ fail cases in which a
rectangular pulse, which represents a STF on a Logic Block’s
SISE-STF-PN, covers at least the whole duration of a flip-flop
LW. Therefore, analyzing SISE-STF-PN situations in which a
Data Register’s FF suffers a SISE but its LW is Not Violated –
i.e. scenarios so called as SISE-STF-LWNVs. Note that the
STF effects on the SISE-STF-PN OLogic enclose all possible
cases of SISE-succeeded-STF that could arise in Logic Block.
Then, OLogic’s STF-TIs on which the scheme fails in detecting
SISE-STF-LWNVs are extrapolated from Fig. 2’s fail situation
by using different tS and tF as well as STF’s minimum and
maximum durations (TFMin and TFMax in (1)). DCritical is the
delay of the circuit’s critical path, DLogic is the Logic Block’s
longest delay, and TMargin is a DCritical‘s additional time margin
for variations in clock operations (jitter and skew), and
manufacturing and environmental variabilities [8]:

 





+=

+= −

inMCriticalMax

HoldupSetMin

TDTF

TTTF

arg

 (1)

 upSetComCodeLogicHoldCritical TDDDTD −++++= (2)

OLogic

Clock

OCom

OCode DCode

STF

Error Flag
“1”

OPredi

OReg

OFlag

t0 t1

THold TSet-up THold

DCom DCom

DCode

tF tS

DCom

TSet-up

SISE

Error Flag Register
“0”

LW LW

Figure 2. Timing characteristics of the CED scheme in Fig. 1

Fig 2’s SISE-STF-LWNV example and the conditions of
scheme’s fail (Table I’s last row) assist us in defining OLogic‘s
STF-TIs on which Data Register’s FF suffers a SISE-STF-
LWNV (Fail Condition 1 (FC1)) but Error Flag Register’s FF
exhibits a FNEF (Fail Condition 2 (FC2)). Then, STF-TIs of
FC1 and FC2 are firstly characterized separately by finding the
ranges of tS and tF for:

(FC1): a STF on OLogic that produces SISE-STF-LWNV on
OReg of the Data Register’s FF – i.e. excursions of tS (tS0 to tS2
in Fig. 3a) and tF (tF2 to tF4 in Fig. 3b):

()
()
()
()
















+−=<
+=>





−=<
−+=>

−

−

MaxupSetFF

HoldFF

upSetSS

MaxHoldSS

TFTttt

Tttt
and

Tttt

TFTttt
and

and

14

12

12

10

 (3)

and (FC2): a STF on OLogic which does not succeed in
reaching LW of the Error Flag Register’s FF, and so it
generates a FNEF that is manifested by “0” on OCom at least
during LW to produce “0” on OFlag. The FC2 excursions of tS
and tF are derived from the ranges of tS and tF for a STF on
OLogic that does not achieve the LW of the Data Register’s FF,
and so it does not make a SE on OReg – i.e. excursions of tS (tS0
to tS1 in Fig. 4a) and tF (tF0 to tF1 in Fig. 4b) or excursions of tS
(tS3 to tS4 in Fig. 4c) and tF (tF3 to tF4 in Fig. 4d):

()
()

()()
()
















−=<
−−+=>





−−=<
−+=>

−

−

upSetFF

MinMaxHoldFF

MinupSetSS

MaxHoldSS

Tttt

TFTFTttt
and

TFTttt

TFTttt
and

and

11

10

11

10

 (4)

or

()
()()

()
()
















+−=<
++=>





−+−=<
+=>

−

−

MaxupSetFF

MinHoldFF

MinMaxupSetSS

HoldSS

TFTttt

TFTttt
and

TFTFTttt

Tttt
and

and

14

13

14

13

 (5)

Equations (4) or (5) are thus formalized only to us easily
derive the STF-TIs in (6) or (7) on which a STF on OLogic does
the Error Flag Register’s FF manifesting FC2. These STF-TIs
are indeed derived by just adding “– (DCode + DCom)” to (4) and
(5), since OCom is delayed by “(DCode + DCom)” from OLogic:

()
()

() ()
()
















+−−<
+−−−+>





+−−−<
+−−+>

−

−

ComCodeupSetF

ComCodeMinMaxHoldF

ComCodeMinupSetS

ComCodeMaxHoldS

DDTtt

DDTFTFTtt
and

DDTFTtt

DDTFTtt
and

and

1

1

1

1

 (6)

or

()
() ()

()
()
















+−+−<
+−++>





+−−+−<
+−+>

−

−

ComCodeMaxupSetF

ComCodeMinHoldF

ComCodeMinMaxupSetS

ComCodeHoldS

DDTFTtt

DDTFTtt
and

DDTFTFTtt

DDTtt
and

and

1

1

1

1

(7)

Figure 3. STF-TIs on OLogic for which a Data Register’s FF certainly manifest

a SISE-STF-LWNV – i.e. FC1

Figure 4. STF-TIs on OLogic for which a Data Register’s FF certainly does not

manifest a SE – i.e. for deriving FC2

OLogic

Clock

TFMin

t0 t1

THold TSet-up THold

tF1

TSet-up

t2

THold TSet-up

tS0

tS

tS1

TFMax

(a)

OLogic

Clock

t0 t1

THold TSet-up THold TSet-up

t2

THold TSet-up

tF1

TFMax

(b)

TFMin

tS0

tF

tF0

OLogic

Clock

TFMin

t0 t1

THold TSet-up THold

tF2

TSet-up

t2

THold TSet-up

tS0

tS

tS2

TFMax

(a)

OLogic

Clock

TFMin

t0 t1

THold TSet-up THold

tF2

TSet-up

t2

THold TSet-up

tF4

tF

tS2

TFMax

(b)

OLogic

Clock

t0 t1

THold TSet-up THold TSet-up

t2

THold TSet-up

TFMax

(c)

TFMin

tF4 tS3

tS

tS4

OLogic

Clock

t0 t1

THold TSet-up THold TSet-up

t2

THold TSet-up

TFMax

(d) tF4

TFMin

tS3

tF

tF3

Finally, FC1 and FC2 have to be accomplished together to
characterize STF-TIs on which the scheme fails in detecting
SISE-STF-LWNVs. It is a condition required for scheme’s fail
(Table I’s last row). Then, all FC1’s STF-TIs in (3) would need
to have common points with all FC2’s STF-TIs in (6) or (7) to
really provoke SISE-STF-LWNV scenarios.

Fig. 5 as well as Fig. 6 analyze and identify, in the most
highlighted zones, such a condition of common points that
generates scheme’s fail situations. These zones then indicate
the STF-timing conditions for SISE-STF-LWNV scenarios on
the scheme, and they are characterized in (8). Fig. 1’s scheme
therefore certainly fails weather a STF starts (tS) and finishes
(tF) in these STF-TIs in (8) that indeed represent only the Fig.

6’s most highlighted zones, since Fig. 5 presents no common
points for tF between all (3)’s STF-TIs and (6)’s STF-TIs.

In addition to equations (6) and (7), Fig. 5 and Fig. 6
include STF-TIs in case of a STF starting or finishing within a
flip-flop LW, therefore even STFs shorter than TFMin are taken
into account in these figures. These STF-TIs are illustrated in
Fig. 5 and Fig. 6 by horizontal lines based on small squares that
follow the beginning of the point-based horizontal arrows tS
and tF, and they are defined as SISE-STF-PN situations in
which a Data Register’s FF may suffer a SISE because its LW
is Violated – i.e. scenarios so identified as SISE-STF-LWVs.
In fact, an eventual STF in such STF-TIs would result in the
metastability of the circuit, and so unknown values in registers
– i.e. either an erroneous value (a SE) or the correct value.

Figure 5. Equations (3) and (6): STF-TIs on which a STF on OLogic does Fig. 1’s scheme failing in detecting a SISE

Figure 6. Equations (3) and (7): STF-TIs on which a STF on OLogic does Fig. 1’s scheme failing in detecting a SISE

Clock

t0 t1

THold TSet-up THold TSet-up

t2

THold TSet-up

TFMax

tS, eq. (3)

TFMax

tS, eq. (7)

DCode+DCom

TFMin DCode+DCom

TFMin

DCode+DCom

DCode+DCom

DLogic DCode+DCom TMargin DLogic DCode+DCom TMargin

TFMin

tS, eq. (3)

tS, eq. (7)

tF, eq. (3)

tF, eq. (7)

tF, eq. (3)

tF, eq. (7)

Condition for
SISE-STF-LWNVs

Conditions for
SISE-STF-LWVs

Clock

t0 t1

THold TSet-up THold TSet-up

t2

THold TSet-up

TFMax

TFMax

DLogic DCode+DCom TMargin DLogic DCode+DCom TMargin

DCode+DCom

TFMin DCode+DCom

TFMin

DCode+DCom

DCode+DCom

DCode+DCom

tS, eq. (3)

tS, eq. (6)

tF, eq. (3)

tF, eq. (6)

tS, eq. (3)

tS, eq. (6)

tF, eq. (3)

tF, eq. (6)

tS-timing
conditions for

SISE-STF-LWNV
scenarios on the

scheme

tS-timing
conditions for

SISE-STF-LWVs
scenarios on the

scheme

()

()















+−+−<
+>





−<
+−+>

−

−

ComCodeMaxupSetF

HoldF

upSetS

ComCodeHoldS

DDTFTtt

Ttt
and

Ttt

DDTtt
and

and

1

1

1

1

 (8)

Note that STF-TIs for fails in (8) are still longer whether
Fig. 6’s STF-TIs for SISE-STF-LWVs are taken into account,
and so the scheme is in reality even more vulnerable to SISE-
succeeded-STF scenarios. Furthermore, although Fig. 5
presents no all timing conditions that would allow scheme’s
fail situations, the scheme could indeed fail in case of:

 HoldupSetComCode TTDD +<+ − (9)

Equation (9) would allow the creation of common STF-TIs
between four Fig. 5’s arrows of tF that therefore would give tF-
timing conditions for SESI-STF-LWVs scenarios on the
scheme.

B. Fail Situations of another State-of-the-Art Scheme

Another typical CED scheme is shown in Fig. 7. It is
indeed derived from [3] and Fig. 1’s scheme but its DCritical is
initially defined in (10), where DExtra is the Extra Logic Block’s
longest delay:

 upSetExtraLogicHoldCritical TDDTD −+++= (10)

As before, STF-TIs on which Data Register’s FF
manifesting FC1 are derived from (3) by adding “– DExtra”:

















−+−<
−+>





−−<
−−+>

−

−

ExtraMaxupSetF

ExtraHoldF

ExtraupSetS

ExtraMaxHoldS

DTFTtt

DTtt
and

DTtt

DTFTtt
and

and

1

1

1

1

 (11)

Figure 7. Another state-of-the-art CED code-based scheme

On the other hand, the same equations (6) and (7) represent
STF-TIs on which the Error Flag Register’s FF results in the
FC2. Consequently, Fig. 8 and Fig. 9 are the counterparts of
Fig. 5 and Fig. 6, and their two most highlight zones represent
STF-TIs (12) and (13) on which there are chances of Fig. 7’s
scheme failing whether a STF happens within:

()
()

()















+−+<

−−>







+−−<

+−−−>

−

−

−

ComCodeHoldF

ExtraupSetF

ComCodeupSetS

ComCodeupSetMaxS

DDTtt

DTtt
and

DDTtt

DDTTFtt
and

and

1

1

1

1

 (12)

or

()

()
















−++<
+−+>





−+<

+−−> −

ExtraMaxHoldF

ComCodeHoldF

ExtraHoldS

ComCodeupSetS

DTFTtt

DDTtt
and

DTtt

DDTtt
and

and

1

1

1

1

 (13)

Furthermore, note that a SISE due to a STF arisen in Extra
Logic Block is not able to be detected by the scheme whether
no additional mechanisms are included to protect such a block.

Figure 8. Equations (11) and (6): STF-TIs on which a STF on OLogic does Fig. 7’s scheme failing in detecting a SISE

Clock

t0 t1

THold TSet-up THold TSet-up

t2

THold TSet-up

TFMax

TFMax DCode+DCom TFMin DCode+DCom

TFMin

DCode+DCom

DCode+DCom

DLogic DExtra TMargin DLogic DExtra TMargin

DExtra

DExtra

DExtra

DExtra

tS, eq. (11)

tS, eq. (6)

tF, eq. (11)

tF, eq. (6)

DCode+DCom

DExtra

DExtra

DCode+DCom

tS, eq. (11)

tS, eq. (6)

tF, eq. (11)

tF, eq. (6)

Conditions for
SISE-STF-LWNVs

Conditions for
SISE-STF-LWVs

D
at

a
R

eg
is

te
r

Logic
Block

Code
Prediction

Code

C
om

pa
ra

to
r

E
rr

or
 F

la
g

R
eg

is
te

r

OLogic OReg

OPredi

OCode

OCom OFlag

Extra Logic
Block

OExtra

Figure 9. Equations (11) and (7): STF-TIs on which a STF on OLogic does Fig. 7’s scheme failing in detecting a SISE

III. CONCLUSIONS AND TIMING CONDITIONS FOR AN

EFFICIENT USE OF CED CODES

The efficiency of Fig. 1 and Fig. 7’s schemes may be
improved by minimizing the STF-TIs for fails – discussed in
section II – in function of fitting the delay of blocks. However,
quite better timing conditions are met by avoiding schemes that
associate their redundant parts before a timing barrier. It was
the case of Fig. 1 and Fig. 7’s schemes that join their redundant
parts – i.e. Logic Block and Code Prediction block – by using
the Code and Comparator blocks before the timing barrier of
the Data and Error Flag Register.

In fact, this type of protection allows a single event – i.e. a
STF starting before or even during the action of registering – to
wrongly affect at the same moment the redundancy scheme and
circuit’s original blocks. Then, the comparison mechanisms
have not enough time to suitably accomplish their function.
Hence, a more efficient solution is using Fig. 10’s scheme
which compares the results of the redundant parts after the
timing barrier. The comparison mechanisms Code and
Comparator blocks thus evaluate signals OReg and OPrediReg that
have steady conditions during the clock cycle. Furthermore,
otherwise Fig. 1 and Fig. 7’s schemes, an eventual single direct

SE, which is provoked by a STF originated in Data Register or
Prediction Register, can be detected by Fig. 10’s scheme. One
could yet argue that any eventual STF arisen in Code or
Comparator blocks could do Fig. 10’s scheme not properly
operating. However, such a scenario in the worst case would
produce just a FPEF. This Fig. 10’s scheme therefore prevents
the fail situations analyzed in section II, and then it is much
more efficient than Fig. 1 and Fig. 7’s schemes. The
vulnerability windows of these latter schemes represent risks
for operations of systems that require fault tolerance; moreover
they are such as attack-prone slots which could compromise
secure systems.

REFERENCES
[1] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue

nanometer technologies”, in Proc. VTS, IEEE Computer Society, 1999,
pp. 86-94.

[2] Y. Sasaki, K. Namba, and H. Ito, “Circuit and Latch Capable of
Masking Soft Errors with Schmitt Trigger”, JETTA, Kluwer Academic
Publishers, v. 24, n. 1-3, pp. 11-19, 2008.

[3] M. M. Kermani, A. Reyhani-Masoleh, “Parity-Based Fault Detection
Architecture of S-box for Advanced Encryption Standard”, in Proc.
DFT', IEEE, 2006, pp.572-580.

[4] C. Yen, B. Wu, “Simple Error Detection Methods for Hardware
Implementation of Advanced Encryption Standard”, IEEE Transactions
on Computers, v. 55, n. 6, pp. 720-731, 2006.

[5] V. Maingot, R. Leveugle, “Influence of Error Detecting or Correcting
Codes on the Sensitivity to DPA of an AES S-Box”, in Proc. SCS, IEEE,
2009, pp. 1-5.

[6] H. Cha, and J. H. Patel, “A Logic-Level Model for α-Particle Hits in
CMOS Circuits”, in Proc. ICCD, IEEE, 1993, pp. 538-542.

[7] D. Alexandrescu, L. Anghel, and M. Nicolaidis, “Simulating Single
Event Transients in VDSM ICs for Ground Level Radiation”, Journal of
Electronic Testing: Theory and Applications 20, Kluwer Academic
Publishers, 2004, pp. 413–421.

[8] D. Geer, “Is It Time for Clockless Chips?”. IEEE Computer, v. 38, n. 3,
pp. 18-21, 2005.

Clock

t0 t1

THold TSet-up THold TSet-up

t2

THold TSet-up

TFMax

TFMax

DCode+DCom TFMin DCode+DCom

TFMin

DCode+DCom

DCode+DCom

DLogic DExtra TMargin DLogic DExtra TMargin

DExtra

DExtra

DExtra DExtra

tS, eq. (11)

tS, eq. (7)

tF, eq. (11)

tF, eq. (7)

tS, eq. (11)

tS, eq. (7)

tF, eq. (11)

tF, eq. (7)

DCode+DCom

DCode+DCom

DExtra

DExtra

Conditions for
SISE-STF-LWNVs

Conditions for
SISE-STF-LWVs

D
at

a
R

eg
is

te
r

Logic
Block

Code
Prediction

P
re

di
ct

io
n

R
eg

is
te

r

OLogic OReg

OPredi

Code

C
om

pa
ra

to
r

OPrediReg

OCode

OCom

OIn

Figure 10. A more efficient state-of-the-art CED code-based scheme

