
A HW-dependent Software Model for
Cross-Layer Fault Analysis in Embedded Systems

Christian Bartsch, Nico Rödel, Carlos Villarraga, Dominik Stoffel, Wolfgang Kunz
Electronic Design Automation Group

University of Kaiserslautern
{bartsch,roedel,villarraga,stoffel,kunz}@eit.uni-kl.de

Abstract. With the advent of new microelectronic fabrication technologies new hardware
devices are emerging which suffer from an intrinsically higher susceptibility to faults than
previous devices. This leads to a substantially lower degree of reliability and demands further
improvements of error detection methods. However, any attempt to cover all errors for all
theoretically possible scenarios that a system might be used in can easily lead to excessive
costs. Instead, an application-dependent approach should be taken, i.e., strategies for test and
error resilience must target only those errors that can actually have an effect in the situations in
which the hardware is being used.

In this paper, we propose a method to inject faults into hardware and to formally analyze their
effects on the software behavior. We describe how this analysis can be implemented based
on a recently proposed hardware-dependent software model called program netlist. We show
how program netlists can be extended to formally model the behavior of a program in the event
of one or more hardware faults. First experimental results are presented to demonstrate the
feasibility of our approach.

1. Introduction

In the design of Systems-on-Chip and Embedded Systems measures for increasing error resilience
can benefit from an application-dependent approach when determining good trade-offs between
effectiveness and costs. Only those errors should be targeted that can actually have an effect in
the situations in which the hardware is really used. These situations are defined by the software.
Fortunately, as a result of the application-specific nature of embedded systems, most parts of the
software do not undergo major changes during the system’s lifetime. This is true in particular for
low-level software components controlling the communication between the application software
and the hardware, implementing important functions for chip management and, not rarely, replacing
traditionally hardware-implemented control functions of the system. When taking measures for
increasing the system’s reliability with respect to HW faults, it seems wise to take this SW into
account since different HW faults may have different relevance in their effects on this software layer
and, thus, on the entire system.
Fault injection is a well-known technique to evaluate the fault tolerance of a component or system

against specific faults [3, 7]. While the standard application for fault injection is determining the

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

10



coverage of implemented resilience techniques, our work has a slightly different focus and uses
fault injection to increase the efficiency of resilience techniques by determining which faults should
be covered.
For this purpose, a computational model, called program netlist [17], recently developed for

hardware-dependent software verification, has been extended to formally model the effects of
hardware faults on the software. Under all possible runs of the software the effect of an injected
fault on the program state is precisely determined, including corner cases which are difficult to
find for non-formal approaches like simulation. The proposed method does not only enable the
modeling of simple faults like single bit flips but also of more complex fault scenarios consisting of
multiple faults occurring at different points in time. Such complex fault scenarios may result from
practical observations of test engineers or from a preceding analysis, as described in Section 4.1.
In cases where the protection of specific variables against faults is considered critical and should

be increased, we propose to analyze the data dependencies between assembler instructions. In this
way, it is possible to understand the possible root causes of faults and the possible fault propagations
through the program so that appropriate countermeasures can be taken.
The paper is structured as follows. In Section 2 we briefly discuss already published work related

to our topic. Then, we explain in Section 3 how our model is generated and how it is extended
to model faulty program behavior. In Section 4 we present the proposed analysis of the modeled
effects as well as the analysis of data dependencies. In Section 5 experimental results are presented
and discussed. This is followed by a conclusion where we summarize our work and point out
further applications.

2. Related Work

Most existing approaches for HW/SW cross-layer fault analysis, such as [9, 11], are based on
simulation. It is in the nature of simulation-based approaches that full confidence can never be
gained on the absence of errors. For the same reason a complete understanding on how a fault
can propagate and how it can affect the program execution is not possible. The proposed formal
approach can provide this confidence and an improved understanding of possible fault propagations
by exploring all possible program runs under a given fault assumption.
Our approach is therefore also useful to formally certify the effectiveness of resilience measures

or to prove that one resilience measure is more effective than another based on some metrics.
In [14] related goals are pursued and specific code transformations were proposed to increase
the robustness of software against hardware faults. However, the verification in [14] relies on a
simulation-based method. Verifying the effectiveness of such approaches in a formal way can
increase the confidence about the applied resilience measures and allows for formulating safety
guarantees for the system.
There is also previous work in which formal techniques were used to analyze the effects of HW

faults on the system behavior. In [5], for example, model checking is used to prove that specific
fault tolerance properties hold. A use case of this technique was presented in [4]. In order to
perform the fault analysis a labeled transition system (LTS) representing the considered system
has to be generated. Model checking was also used in [15], where the fault tolerance of a startup
algorithm for a time-triggered architecture had been proven. Like in [4] a manual conversion of
the HW/SW system into a highly abstracted state transition system is conducted. Such approaches
are promising when a manual translation of the concrete system into a highly abstract model is

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

11



doable. However, in some industrial settings a higher degree of automation is required. Moreover,
the standard fault models for HW implementations like stuck-at faults and bit flips do not have a
direct correspondence at the abstract level. For the same reason fault effects on the detailed I/O
behavior are difficult to model at the abstract level such that their analysis may be difficult or even
completely impossible.
In [10] a formal framework is proposed which is able to analyze the effects of transient HW faults

on the program behavior. The proposed framework enumerates the effects of an error for every
possible error location, e.g., every register in the register file, at one or more instructions of the
program. However, it cannot handle undefined inputs to the program, so that concrete input values
have to be chosen. In addition to that the assembly program under consideration has to be converted
into a custom-built assembly language supporting only a small set of instructions. Analyzing
how a fault affects the temporal behavior of a program is therefore very difficult. The same
difficulties occur when trying to derive low-cost resilience measures by exploiting the knowledge
about the used instruction set architecture and possible program states. Another drawback is that
the framework operates on the word level, leading to over-approximation and incomplete knowledge
on the program’s control flow. This may lead to complexity problems (e.g., by introducing infinite
loops) as well as to false alarms when attempting to certify the effectiveness of resilience measures.
Our approach can be seen as complementary to previouswork that has evaluated the effects ofHW

faults on the architectural processor state, such as [6]. There, it is elaborated on how intermittent
HW faults on the RT level affect the behavior of processor components, including program-visible
components like the register file. Knowledge about how physical defects propagate through the
layers can be used to develop realistic fault models on the architectural level and provide a basis
for methods like the one proposed in this work. Another promising approach developing realistic
fault models is to derive them from a meta-model [13].
Finally, the output of our analysis can be used as input for techniques that inject faults directly

into the software, e.g., [8], to examine their effect in higher software layers than the ones considered
here.

3. Program Netlist

The underlying model of the proposed fault analysis method is called program netlist (PN) [12].
A PN formally models the behavior of a processor with respect to a specific software program.
An important property of this model is that it is of entirely combinational nature so that Boolean
reasoning by SAT solving can be employed for its analysis. This was exploited by [17] to develop
an efficient equivalence checker that will be used in the proposed fault analysis, as described in
Section 4.

3.1. Model Generation

The process for the generation of program netlists is completely automated and consists of two
steps. The first step is to unroll a control flow graph (CFG) representing the software program.
The CFG can be obtained by extraction from either machine or assembly code of the program.
In our model, each node of the graph represents an individual instruction. The unrolled CFG is
called execution graph (EXG) and is the basis for the second step, where each node of the EXG is
replaced by a corresponding logic block describing the behavior of the processor for this particular

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

12



instruction. Such a logic block is called instruction cell (IC). It has an input and an output which
are connected to the preceding and succeeding instruction cell, respectively. The input of an IC
represents the current program state, i.e., the values of the program variables in memory and the
contents of the CPU registers before the corresponding instruction is executed. Its output represents
the next program state, i.e., the situation after the instruction was executed.
The CFG used as the starting point for model generation can be incomplete (e.g., branch targets

may be unknown because of indirect addressing), as is often the case when a CFG is generated from
a real software program. This incompleteness is acceptable because the missing information is
generated during the model generation process. This is done by interleaving the unrolling process
with a SAT-based analysis to fill in the missing information. The interleaved analysis also supports
a compaction of the model [12].
ADD(const Rm, const Rn, in PS, out PS’)
{

PS’ = PS;
PS’.RegisterFile[Rn] = PS.RegisterFile[Rn] + PS.RegisterFile[Rm];

}

Figure 1: Instruction Cell

An example of an instruction cell template is shown in Fig. 1 by using pseudo-code. (Information
about bit widths is abstracted in this and the following examples to make them more readable.)
It depicts the behavior of an ADD instruction of the SuperH2 instruction set architecture (ISA).
As can be seen, the instruction cell needs to know on which registers the operation should be
performed. This information is encoded in the specific assembler instruction of a program. The
identifiers Rm and Rn in the template will be replaced with the actual register addresses when
the instruction cell is instantiated during PN generation. The instantiated instruction cell has only
one input, the current program state, and one output, the next program state. The body of the
instruction cell basically contains a forwarding of the program state from the input to the output,
with the exception of the register that contains the result of the performed addition. This register is
changed according to the ISA specification.

3.2. Fault Description

When analyzing the behavior of software with respect to hardware faults a model of the system is
required which describes for each fault the time at which the fault occurs, how long it lasts and
how its logical behavior affects the execution of an instruction. The logical behavior of a hardware
fault can be modeled by describing its effects on the program state, i.e., how a faulty instruction
execution deviates from the correct one. This can be accomplished by changing the corresponding
instruction cell description in an appropriate way and is explained in the next section.
In order to model the temporal behavior of a fault, a cycle-abstract representation of time was

used in this work. This reflects the need for a time-abstract view on the program execution in
order to handle larger processors with unpredictable execution times. Abstraction was performed
in the way that time is represented by the order and position of the instructions in the program. The
proposed method, however, is easily adaptable for time-accurate instruction cells that can be created
for processors with predictable execution times. In [16] a time-accurate version of an instruction
cell called timed instruction cell was introduced for this purpose.

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

13



In the case a single hardware fault has an effect on multiple processor instructions, the effects
can be modeled by creating a corresponding fault description for every affected instruction cell.
Correct modeling of multiple faults and their effects on different instructions is more challenging.
As will be elaborated below, this can be achieved by adding additional constants, registers and ports
to the fault description of an instruction cell. (In our modeling of PNs, ports represent the memory
interface of I/O instructions [12].)
preliminary_ADD_inject_fault_1(const Rn, in PS, out PS’)
{

PS’.Fault_Cond += 1;
if(PS.Fault_Cond.bit(LSB) == 0)
{

PS’.RegisterFile[Rn].bit(MSB) = PS.Fault_Register.bit(MSB);
}

}

Figure 2: Modeling fault injection – preliminary

The example shown in Fig. 2 illustrates the most simple case of a fault description that can be
integrated into the description of an instruction cell. In this example, a stuck-at fault is modeled
which is activated only every second ADD instruction and which affects the most significant bit
(MSB) of the addition. (This may model, e.g., a situation where only one out of two adders in
a superscalar pipeline is affected by the stuck-at fault.) For this purpose the architectural state
was extended by two registers: Fault_Cond and Fault_Register. The former has an initialization
value of zero while the latter is left uninitialized. The Fault_Cond register is incremented every
time the ADD instruction is executed, and the fault becomes active whenever the least significant
bit (LSB) of the Fault_Cond register is zero, i.e., on every second incrementation of Fault_Cond.
Then, the MSB of the target register is assigned the value of the MSB of the unspecified register
Fault_register. In effect, the MSB of the target register is treated like an open input in our formal
analysis. This way, both faults, stuck-at-0 and stuck-at-1, can be considered at the same time.
Note that it is possible to describe more than one fault for a particular instruction. A fault

description with more than one fault can serve two purposes. It can be used to model multiple
faults and to examine their combined effect on the program. The second purpose is to model several
faults (single or multiple) in the same program netlist, thus avoiding the effort of re-generating the
program netlist for every fault to be examined.
In order to support such complex fault descriptions for fault lists with a large number of faults and

to separate the activation and deactivation of faults from the computation of the internal processor
state, the occurrence of a fault given in the fault list is encoded into the data of an auxiliary memory
at a specific location addressed through auxiliary ports. These auxiliary ports do not correspond
to variables of the original software but are only used in our computational model to gain better
control on the activation conditions.
During fault analysis the values of these ports are set appropriately so that specific faults and

combinations of faults can be activated or deactivated. In fact, using this construction, it is sufficient
to generate a single PN to analyze the effects of several single faults and/or several multiple faults
together with the original fault-free behavior.

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

14



ADD_inject_fault_1(const Rn, in PS, out PS’, Fault_Port Port)
{

Port.Address = 0xABCD;
PS’.Fault_Cond += 1;
if((PS.Fault_Cond.bit(LSB) == 1) && (Port.Data == 1))
{

PS’.RegisterFile[Rn].bit(MSB) = PS.Fault_Register.bit(MSB);
}

}

Figure 3: Modeling fault injection – allowing for several faults in a single model

In Fig. 3 the code of Fig. 2 was modified such that a memory access was added to the fault
description. Now the fault is active only when also the read data is equal to 1.

3.3. Fault Injection

Faults are injected into instruction cells by inserting their description at the end of the corresponding
cell. The injected fault changes the behavior of the original instruction cell by either performing
additional changes of the program state or by overwriting changes of the fault-free part.
ADD(const Rm, const Rn, in PS, out PS’, Fault_Port Port)
{

PS’ = PS;
PS’.RegisterFile[Rn] = PS.RegisterFile[Rn] + PS.RegisterFile[Rm];

ADD_inject_fault_1(Rn, PS, PS’, Port);
ADD_inject_fault_2(Rm, Rn, PS, PS’, Port);
ADD_inject_fault_3(Rm, Rn, PS, PS’);
...

}

Figure 4: Instruction cell with fault injection

The example in Fig. 4 shows an instruction cell with several fault injections. Adding both the
temporal activation conditions and the descriptions of the logical fault behaviors to the instruction
cells has the advantage that during the model generation process no complex fault injection is
required. As described in [12], the PN model generation steps are interleaved with a SAT-based
analysis to prune the control space of the program. This analysis is now extended to the instruction
cells with their fault descriptions so that all possible fault scenarios are also included into the
generated model. Based on the obtained PN the faults are injected simply by making value
assignments to the addresses of the auxiliary memory.
Note that since the PN represents all fault behaviors of the fault list, it is also possible to perform

a global reasoning over all faults or sets of faults. For example, the set of all faults could be
determined that lead the program into a specific program state.
Obviously, a PN modeling a large number of possible faults may turn out to be more complex

than the corresponding PN for the fault-free case or the PN for only a small subset of these faults.
Depending on the complexity of the model it may therefore be advisable to partition the fault list
and to analyze each partition in a separate PN.

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

15



4. Fault Analysis

The resulting model can be used to analyze the effects of HW errors on the SW behavior including
program states, I/O sequences and the control flow.
Note that all registers modeled in the PN are program-visible registers of the design and create

a direct link to the gate level. All faults that are modeled in the PN registers are also modeled in
the corresponding gate-level registers. This means that insights on the effects of faults modeled in
the PN registers also hold for the corresponding faults at the gate level. These insights can also
be transferred to HW faults in the gate-level combinational logic by a testability analysis based
on these registers. For example, a redundant stuck-at fault at a register bit will cause also other
faults in its fanin logic to be untestable. A general analysis by SAT or combinational ATPG that
computes the consequences of testability conditions at the program-visible registers for faults in
the combinational logic is, however, beyond the scope of this paper.
This work takes HW faults as modeled in the PN as starting points and explores their effects in the

SW. Two approaches for fault analysis are possible. The first one is to compare the behaviormodeled
by the PN against an abstract specification using a HW property checker. The second approach is
to compare the PN containing faults with its fault-free counterpart. The latter approach is preferred
here since it can benefit from sophisticated optimizations used in standard hardware equivalence
checking. A method to check the equivalence of two different PNs was already proposed in [17].
We define two programs to be equivalent iff they produce the same output sequence for any

applicable input sequence. Programs with activated faults represent mutations, i.e., new programs
different from the original. Equivalence checks can be performed on the same PN but with a
different set of faults activated in each check. The PN with all faults deactivated can be used as the
fault-free reference.
There are two possible outcomes of the equivalence check. The first possibility is that the PNs

are equivalent, i.e., the corresponding programs produce the same I/O sequences. In this case, the
considered fault has no effect on the program behavior regardless of what values the inputs have.
We denote such faults as application-redundant. In the other case, if the PNs are not equivalent,
this means that they differ in either data or address of one or more I/O accesses, in the number of
I/O accesses, their order or any combination of these. In such cases, a subsequent analysis may be
used to categorize the error. For example, a simple structural analysis of the two PNs can yield the
information on whether the considered fault affects only data or modifies the control flow of the
program.

4.1. Dependency Analysis

In some applications, resilience measures are desirable which do not protect the entire program
but only specific functions or instruction sequences inside a function. For example, a loop counter
may be considered more critical than some variable within the loop. In order to ensure the
correct execution of these critical instructions, however, resilience measures only protecting these
particular instructionsmight not be sufficient. Due to the nature of the program’s computation a fault
activated during the execution of instructions with low criticality might actually propagate to critical
instructions. Therefore, we propose to perform an analysis to determine the data dependencies of
critical instructions. This calculation can be done by analyzing the PN and provides a precise
description of all dependencies. Note that pure machine code would not be sufficient for this

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

16



analysis since it yields only incomplete CFGs and therefore would lead to an over-approximation
of possible dependencies.

Addr. 1346

R: T

W: R1

Addr. 1344

R: R1, R2

W: T

Addr. 1342

R: @0x13B6

W: R1

Addr. 1340

R: @R1

(0x2D54)

W: R2

Addr. 133C

R: T

W: PC

Addr. 1338

R: R1, R2

W: T

Addr. 132A

R: @R1

(0x2D24)

W: R1

Addr. 1328

R: @R1

(0x13B8)

W: R1

Addr. 13F4

R: R3

W: @0x2D24

Addr. 1432

R: R0

W: PC

Type 0

Type 0

Type 0

Type 2

Type 0

Type 0

Type 1

Type 2

Figure 5: Dependency
Analysis

As an example, Fig. 5 shows an excerpt of the results from a depen-
dency analysis. The analysis was performed on the PN of the Traffic
Alert and Collision Avoidance System (TCAS) developed by Siemens
which is part of the Software-artifact Infrastructure Repository [2].
For demonstration of our analysis, an instruction was selected that
delivers the value for a variable which is important for the result
calculation of the overall algorithm. The instruction is shown as the
bottom node (with address 1432) in Fig. 5.
The figure shows a part of the dependencies existing for the con-

sidered instruction. These dependencies are extracted from all reach-
able program paths leading to this instruction and are represented
by a graph as shown. Each node represents an instruction, its ad-
dress and information on what registers or memory location the
instruction reads from (R) or writes to (W). The annotation “R:
@R1 (0x0000)”, for example, indicates that the particular instruc-
tion reads from the memory address 0x0000 stored in register R1.
Similarly, “W: R1” means that the particular instruction writes to R1.
As mentioned before, only an excerpt of the dependency analysis

is shown. Parts which were removed are indicated by a dashed
line. Solid lines indicate dependencies and are labeled with a type
according to Tab. 1. “Type 0” indicates a direct data dependency
where one instruction writes to a register which is used by another.
“Type 1” also indicates a data dependency but in this case one that
exists through a memory value rather than register content. The last
type, “Type 2”, indicates that the particular instruction depends on a
correctly executed jump or branch instruction.
It is worthwhile noting that the uppermost node (with address 1432)

represents a jump instruction which needs the value of a register to
calculate the jump target address. Due to the characteristics of the
usedmodel all possible target addresses are known so that it is possible
to trace in the PN both in forward and backward direction to extract
the relevant dependencies.
As can be noted, the paths in the dependency graph of Fig. 5

are not numbered with consecutive instruction addresses. In fact,
in our experiments it could be observed that the topology of the
computed dependency graph is not identical and not even in a simple
relationship with the topology of the program’s execution graph.
This demonstrates that indeed additional information is obtained from
the proposed analysis which may be valuable when designing cost-
efficient resilience solutions. Their effectiveness can be certified by
proving equivalent behavior of the protected code segment for a given
fault list.

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

17



Dependency Type Explanation

Type 0 Data Dependency (Register)
Type 1 Data Dependency (Memory)
Type 2 Control Flow Dependency

Table 1: Explanation

5. Experimental Results

Experimental results have been conducted on a HW platform containing a 32-bit processor (Aquar-
ius, SuperH2 instruction set) running two different programs. One is a software-implemented
industrial driver for a master node of the automotive protocol LIN. The other is the Traffic Alert
and Collision Avoidance System (TCAS) [2] mentioned earlier.
An evaluation on how the fault injection affects the model generation runtime and complexity

was conducted. For each considered test program two PNs were generated. The first PN, referred
to as fault-free, was generated without injecting any faults, while in the second run different faults
were injected into the PN. Different types of faults such as stuck-at faults and bit flips have been
selected manually from a general fault list and have been injected into the HW.
In the case of TCAS, the safety-critical variable mentioned in Section 4.1 was identified in the

source code and the proposed dependency analysis was used to create a list of instructions affecting
the variable. The dependency analysis took less than 2 seconds (measured by using the profiling
tool gprof) to recursively determine control and data dependencies. For a first assessment of our
approach, based on this analysis, four instructions were selected from the generated list. Transient
as well as permanent faults were injected.
In the case of LIN, permanent faults were injected in all used shift instructions. Such a fault

scenario can be used to model a faulty shifting unit.
It is worthwhile noting that the performed fault injection process was exhaustive. For all bits

used in arithmetic and logic operations as well as in read/write processes from/to the register file or
from/to the ports all possible faults of types stuck-at-1, stuck-at-0 and bit flip have been injected. In
this way, 353 bits were identified in the case of TCAS and 258 in the case of LIN that can be affected
by any of these faults. All faults of the different fault types can be analyzed either independently as
single faults or in arbitrary combinations as multiple faults. All faults were injected into registers
of the PN model and have a direct correspondence to registers at the gate level. In this preliminary
experiment, we ignored multiple fault scenarios and restricted our analysis to finding out which of
the injected single faults can possibly have an effect on the program behavior. The analysis was
done by performing equivalence checks using the commercial tool [1].

Program Bit Flips Stuck-at 0 Stuck-at 1

TCAS 353 353 353
LIN 258 258 258

Table 2: Injected Faults

Tab. 2 shows the number and types of faults injected for each test program. The number of

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

18



injected faults also represents the number of analyzed single bit faults for the particular fault model.
This makes a total of 1059 single bit faults for the TCAS example and 774 single bit faults for the
LIN example. We used GCC to compile the test programs. All experiments were performed on an
Intel i7-4790 CPU at 3.6GHz with 16GB RAM. The timing measurements were performed using
the profiling tool gprof.

Program CPU time (s.)
Fault-Free Faults Injected

TCAS 10.13 22.72
LIN 76.07 120.99

Table 3: CPU times for model generation

Tab. 3 shows the time needed to generate the PNs. It can be observed that fault injection has a
significant effect on the runtime of the PN generation process. However, when taking into account
that a huge number of different single bit and multiple bit faults are modeled in the PN the increase
in runtime seems acceptable.

Program # of Instructions
Fault-Free Faults Injected

TCAS 655 660
LIN 1862 2182

Table 4: Number of instructions of models

Tab 4 shows how many instructions each generated PN contains. It can be observed that the
fault-injected PN generated for the TCAS program is only 5 instructions or less than 1% larger
than the fault-free PN. Obviously, the faults that have been injected, in most cases, do not have an
effect on the control flow of the program, although one of the four selected instructions directly
affects a branch instruction. We believe that the reason for this is that the program behavior is
mostly data-driven such that most branches of the program are already included in the fault-free
PN. For the LIN program the fault-injected PN is by 320 instructions (17%) larger than the original
version. As a result of injecting the faults the program was able to take program paths which were
previously unreachable, adding several new instructions to the PN.
Analyzing the results of the proposed fault analysis can provide important insights into the effects

of the considered faults at the software level. For example, in the case of TCAS only 394 injected
single bit faults proved to actually have an effect on the value of the selected variable.
Taking into account the entire I/O behavior of the system allowed to check application redundancy

for all injected faults. CPU times for conducting the required equivalence checks between the fault-
free and the faulty PNs were nearly the same for all faults in both designs. The commercial tool [1]
reported CPU time requirements of 0.76 seconds on average in case of TCAS and 3.26 seconds
on average in case of LIN, per fault. We were able to prove application redundancy for 561 faults
in the case of TCAS and 552 faults in the case of LIN. These fairly large numbers demonstrate
the value of the proposed analysis and suggest that the effect of HW faults at the SW level varies

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

19



widely. Beyond application redundancy also other fault scenarios of interest to the user can be
explored. For example, for certain faults of the LIN bus we could observe that the LIN node was
virtually disconnected from the bus.

6. Conclusion and Future Work

The paper has demonstrated the feasibility of analyzing the effects of HW faults at the SW level
by using formal methods. Formal methods provide the advantage that they can actually certify the
absence of errors for a given application or the effectiveness of fault resilience measures. This
can form the basis for developing test strategies, for example by exploiting the knowledge about
application-redundant faults, as well as for designing cost-efficient and effective fault resilience
mechanisms both at the HW and the SW level. Such applications of the proposed techniques are
subject to our future work.
The scope of the proposed techniques is to analyze safety-critical software components with the

size of tens of thousands of lines of C code. Larger software has to be decomposed and each part
has to be analyzed individually. This also will be addressed in future work.

References

[1] OneSpin 360 DV. http://www.onespin-solutions.com/.

[2] Software-artifact infrastructure repository. http://sir.unl.edu. Accessed: 2015-09-01.

[3] Arlat, J., M. Aguera, L. Amat, Y. Crouzet, J. C. Fabre, J. C. Laprie, E. Martins, and D. Powell:
Fault injection for dependability validation: a methodology and some applications. IEEE
Transactions on Software Engineering, 16(2):166 – 182, Feb 1990, ISSN 0098-5589.

[4] Bernardeschi, Cinzia, Alessandro Fantechi, and Stefania Gnesi: Formal validation of the
guards inter-consistency mechanism. In Computer Safety, Reliability and Security, volume
1698 of Lecture Notes in Computer Science, pages 420–430. Springer Berlin Heidelberg,
1999, ISBN 978-3-540-66488-8.

[5] Bernardeschi, Cinzia, Alessandro Fantechi, and Stefania Gnesi:Model checking fault tolerant
systems. Software Testing, Verification and Reliability, 12(4):251 – 275, 2002.

[6] Gracia-Moran, J., J.C. Baraza-Calvo, D. Gil-Tomas, L.J. Saiz-Adalid, and P.J. Gil-Vicente: Ef-
fects of intermittent faults on the reliability of a reduced instruction set computing (risc) micro-
processor. IEEE Transactions on Reliability, 63(1):144–153, March 2014, ISSN 0018-9529.

[7] Hsueh, Mei Chen, T.K. Tsai, and R.K. Iyer: Fault injection techniques and tools. Computer,
30(4):75 – 82, Apr 1997, ISSN 0018-9162.

[8] Larsson, Daniel and Reiner Haehnle: Symbolic fault injection. In Proc. 4th International
Verification Workshop (Verify) in connection with CADE-21, volume 259, pages 85 – 103,
2007.

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

20



[9] Li, Man Lap, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve, Vikram S.
Adve, and Yuanyuan Zhou: Understanding the propagation of hard errors to software and
implications for resilient system design. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOSXIII,
pages 265 – 276, 2008, ISBN 978-1-59593-958-6.

[10] Pattabiraman, K., N.M.Nakka, Z.T.Kalbarczyk, andR.K. Iyer: Symplfied: Symbolic program-
level fault injection and error detection framework. IEEE Transactions on Computers,
62(11):2292 – 2307, Nov 2013.

[11] Rashid, L., K. Pattabiraman, and S. Gopalakrishnan:Characterizing the impact of intermittent
hardware faults on programs. IEEE Transactions on Reliability, 64(1):297–310, March 2015,
ISSN 0018-9529.

[12] Schmidt, Bernard, Carlos Villarraga, Thomas Fehmel, Jörg Bormann, Markus Wedler, Minh
Nguyen, Dominik Stoffel, and Wolfgang Kunz: A new formal verification approach for
hardware-dependent embedded system software. IPSJ Transactions on System LSI Design
Methodology (Special Issue on ASPDAC-2013), 6:135–145, 2013.

[13] Schwarz, Michael, Moomen Chaari, Bogdan Andrei Tabacaru, and Wolfgang Ecker: A meta-
model-based approach for semantic fault modeling on multiple abstraction levels. In Design
and Verification Conference and Exhibition Europe, November 2015.

[14] Sharma, A., J. Sloan, L.F. Wanner, S.H. Elmalaki, M.B. Srivastava, and P. Gupta: Towards
analyzing and improving robustness of software applications to intermittent and permanent
faults in hardware. In International Conference on Computer Design, pages 435 – 438,
October 2013.

[15] Steiner, W., J. Rushby, M. Sorea, and H. Pfeifer: Model checking a fault-tolerant startup
algorithm: fromdesign exploration to exhaustive fault simulation. In InternationalConference
on Dependable Systems and Networks, pages 189–198, June 2004.

[16] Villarraga, Carlos, Bernard Schmidt, Binghao Bao, Rakesh Raman, Christian Bartsch,
Thomas Fehmel, Dominik Stoffel, and Wolfgang Kunz: Software in a hardware view: New
models for HW-dependent software in SoC verification and test (invited paper). In Proc.
International Test Conference (ITC’14), 2014.

[17] Villarraga, Carlos, Bernard Schmidt, Christian Bartsch, Joerg Bormann, Dominik Stoffel, and
Wolfgang Kunz: An equivalence checker for hardware-dependent software. In 11. ACM-IEEE
International Conference on FormalMethods andModels for Codesign, pages 119–128, 2013.

A HW-dependent Software Model for Cross-Layer Fault Analysis in Embedded Systems

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

21


