

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

On the evaluation of SEU effects in GPGPUs

B. Du*, Josie E. Rodriguez Condia†, M. Sonza Reorda‡, L. Sterpone§
Politecnico di Torino, Torino, Italy

{*boyang.du, †josie.rodriguez, ‡matteo.sonzareorda, §luca.sterpone}@polito.it

Abstract1—General Purpose Graphic Processing Units (GPGPUs)
are effective solutions for high-demand data applications which
involve multi-signal, image and video processing thanks to their
powerful parallel architecture. In the last years, GPGPUs have been
considered also for safety-critical applications, such as autonomous
and semi-autonomous car driving systems. New GPGPU devices
include an increasing number of parallel cores in order to increase
throughput and performance. This increment in the number of
cores and the requirements in terms of power consumption force
designers to use aggressive semiconductor technologies.
Nevertheless, those new devices can be seriously affected by
radiation effects, modeled as Single Event Upsets (SEUs). SEUs
could generate unexpected operation effects in the applications
which could be unacceptable for the safety-critical ones. This work
analyzes the SEU effects resorting to an open-source model of a
GPGPU based on the Nvidia’s G80 architecture and aims at
complementing previous analysis based on radiation experiments.

Keywords—SEU, General Purpose Graphics Processing Units
GPGPUs, Graphics Processors, Fault Simulation

I. INTRODUCTION
General Purpose Graphic Processing Units (GPGPUs)

represent an effective solution in applications requiring high
performance data-intensive operations, such as multi-signal
analysis, image and video processing, thanks to their highly
parallel architecture. Nowadays, these devices are also
considered for embedded real-time safety-critical applications,
such autonomous machines and autonomous car driving systems.

Examples in the automotive domain include sensor fusion
systems and Advanced Driver-Assistance Systems (ADAS)[1],
which form specialized systems devoted to different applications,
including Automatic Parking, Automatic Cruise Control,
Pedestrian and Pattern Recognition and Forward Collision
Warning. The use of ADAS systems is also considered as an
intermediate step towards the development of semi-autonomous
and fully-autonomous cars. These systems are based on a large
number of sensors (stereo, 360 degree and long distance
cameras, radars and Lidars) producing large amount of data
which requires to be processed and decisions to be made under
real time constraints.

The new GPGPU devices include more parallel cores, called
streaming multiprocessors (SM) in Nvidia’s terminology, in
order to increase the throughput and operation performance.
These increments, in the number of cores, and in requirements,
in terms of performance and power consumption, force designers
to use aggressive technology scaling approaches. However, it is
known that latest semiconductor technologies can be particularly
affected by radiation effects [2]. Radiation particles can affect

1 This work has been partially supported by the European Commission

through the Horizon 2020 RESCUE-ETN project under grant 72232.

the system through transient faults, such as Single Event Upsets
(SEUs) in sequential logic or memory cells by corrupting the
content of the stored logic value. SEUs may generate unexpected
misbehaviors and consequences that could be unacceptable in
safety-critical applications. Hence, effective solutions are
required to detect and mitigate those faults affecting GPGPU
devices [3]. Possible solutions also include acting on the
software coding style and on the adopted algorithm [4].

In order to choose the most suitable countermeasures, a
detailed analysis is first needed in order to identify the module
criticality and the incidence of faults on the application failure
rate. This analysis may also provide guidelines for effectively
writing the application code, trading off performance and
reliability. One solution to support the analysis is based on fault
injection on models at various abstract levels. Nevertheless,
some challenges exist in the GPGPU field. In fact, very few
GPGPU models exist, and most of them are described at a high
level of abstraction [5-8], thus preventing a detailed analysis of
SEU effects on critical and complex units such as control-path
modules. On the other hand, there are a few RTL behavioral
GPGPU models which can be used to analyze the SEU effects in
those special-purpose modules.

In [9] the authors describe a SEU fault injection methodology
using a behavioral/RTL GPGPU model. Moreover, this and other
works [10] introduced an initial overview of the SEU effects on
data-path units of a GPGPU, such as the register file and the
pipeline registers. The results show that the error rate in these
modules is quite variable according to the adopted benchmark
and parallelization strategy (e.g., in terms of thread distribution).
However, control-path units were not analyzed.

A different approach to the analysis of SEU effects relies on
radiation experiments. In [11, 12] the authors presented results
from radiation experiments on GPGPUs showing that SEU
effects, detected in application results, depend on the affected
module in the GPGPU. Moreover, these effects are correlated
with the module usage by the benchmarks. Nevertheless, in these
approaches it is hard to provide convincing explanations about
the observed behaviors of critical units, such as control-path
modules, since details about the internal structure and behavior
of the device are not available.

One solution to clarify the issue is based on resorting to fault
simulation of SEU effects on target modules using some GPGPU
model. In this work, we started from an open-source GPGPU
model (FlexGrip)[13], and improved it to remove some
limitations and bugs. The new version of the model allows us to
study in a much more detailed manner the effects of SEUs in
different target modules. At the same time, representative
applications were designed and selected as benchmarks for SEU
fault injection campaigns. These program kernels are
representative of those employed in real signal and image
processing applications.

This work presents the results of a detailed analysis about the
SEU effects on data-path and control-path modules for different
applications using different parallelism levels and under various
GPGPU configuration modes. To the best of our knowledge, this
is the first work that presents results of SEUs injection
campaigns on control-path modules of an architectural RTL
GPGPU model. It is also the first time that relatively complex
applications comparable to real-world ones are considered.

The paper is organized as follows. In Section II the key
characteristics of the FlexGrip GPGPU model are introduced.
Section III presents the proposed method and the setup employed
in the SEU fault injection campaigns, the targeted modules and
the selected benchmarks. Section IV reports the experimental
results, and Section V finally draws some conclusions.

II. FLEXGRIP
FlexGrip is a RTL VHDL behavioral model of a GPGPU

module developed by the University of Massachusetts and
originally targeting a Xilinx FPGA [13]. The module is based on
the Nvidia G80 Tesla architecture and is compatible with
Nvidia’s CUDA Compilation Toolkit under SM_1.0
compatibility level. The module uses a compiled CUDA-binary
code (.SASS file) as kernel program. 27 instructions of either 32
or 64 bits are supported by FlexGrip.

In FlexGrip, the kernel parameters, such as Grid dimension,
Block dimension and Blocks per core, should be manually
configured before simulation. Additionally, memory values in
constant memory and other GPGPU configuration parameters,
such as the number of registers per thread and the number of
blocks per SM core, must be configured for each application.

The GPGPU architecture is based on the SIMT (Single
Instruction Multiple Thread) paradigm and exploits a custom SM
core with a five stages pipeline (Fetch, Decode, Read,
Execution/Control-flow and Write-back), as shown in Fig. 1.
Moreover, the SM employs a controller and a warp scheduler
unit for instruction thread management. In the SIMT
architecture, one instruction is fetched, decoded and distributed
to be executed on an independent processing unit, or Scalar
Processor (SP), in the SM. The Read and Write-back stages load
and store data operands from and to Register Files (RFs), shared,
global or constant memories. Only integer operations are
supported by FlexGrip. For the purpose of this work, the GPGPU
model has been improved giving support to 28 instructions in up
to 74 instruction formats. Additionally, the technology
dependence on Xilinx FPGA has been removed to target on the
OpenCell library[14]. Moreover, some bugs and unsupported
features related with module interconnections, instructions
implementation and nesting thread divergence management have
been fixed. Those additional changes allow the model to execute
more complex applications.

Fig. 1. FlexGrip architecture: the SM.

The GPGPU Thread-level parallelism (TLP) in Flexgrip is
customizable and depends on the total number of SPs in the
execution stage. The model supports the configuration of 32, 16
and 8 SPs.

The SP configuration number has direct impact on the warp
scheduler distribution. In a 32-SPs configuration, the maximum
TLP is achieved with 32 threads executed in parallel, one thread
per SP. For a 16-SPs configuration, the warp threads are
organized in two lanes per SP and every SP should execute 2
threads per warp in sequence. Finally, in the 8-SP core
configuration, a 32-threads warp requires four lines and every SP
should execute 4 threads per warp.

FlexGrip employs an additional module to support thread-
level branching at hardware level (branch unit). This module
manages control-flow operations in order to generate or retake
the flow from conditional branches with multiple paths.

In the SIMT architecture, a conditional control-flow
instruction causes divergence paths and a set of threads, whose
size is lower than warp size, selects different execution paths
(Taken and Not-Taken). On the other hand, a synchronization
instruction creates a synchronization point defining an
instruction location for the previous paths to converge. Once path
divergence occurs, all the threads will continue the instruction
execution until all of them reach the synchronization point. The
organization of the branch unit includes a warp divergence stack
memory able to store thread information such as thread mask,
program counter and flow ID.

III. PROPOSED APPROACH FOR FAULT INJECTION
A custom fault injector was developed to identify and

analyze the SEU effects on specific internal modules of the SM.
Sub-section B introduces the targeted modules for fault injection.
Finally, a description of the designed benchmarks is presented in
sub-section C.

A. Custom Fault Injector
 The instrument was designed to perform a set of SEU fault

campaigns on the FlexGrip model and follows the fault injection
methodology introduced in [9]. Moreover, it includes a multi-
thread approach [15, 16] and the utilization of a de-rating factor
(UDR) [17] of the targeted modules. The UDR factor considers
only the registers and memory locations employed by an
application during the simulation, thus reducing the total amount
of faults to be injected and the corresponding simulation time of
a fault campaign.

The custom fault injector was designed in a high-level
language (Python) and it is able to link a set of configuration
files with the execution of the behavioral/RTL simulator (in our
case ModelSim by Mentor) of the GPGPU model. This tool is
composed of a set of modules: a control manager, a fault
decoder-generator, a fault injector and a checker and classifier
module. The functions, in the fault simulator, can handle the
execution of multiple fault campaigns of the model.

The injector can introduce two types of faults: permanent
faults, based on the Stuck-at fault model, and transient faults,
based on the SEU model.

It is worth noting that it is complex to represent and inject
SEU faults in a behavioral/RTL model without timing
information details. The fault simulator injects Single Bit Upsets
(SBUs) in memory cells or register signals in order to generate
the equivalent SEU effects. For the purpose of this work, we use
the SEU injector capabilities in the fault campaigns.

A fault simulation campaign starts loading and compiling the
GPGPU model in the ModelSim simulator. In this process, the

control manager loads the GPGPU configuration, the application
instructions and the initial data memory values. The kernel
instructions and the model configuration are provided by the user
before the fault campaign starts.

A golden simulation is performed in order to obtain the
reference memory results and the performance parameters, which
are later used in the classification stage. The fault control
manager loads the fault list for the campaign. This fault list is
composed of the signal locations where to inject each fault in the
model. Depending on the fault model, additional parameters are
required, such as the injection time and the injection period. The
fault decoder-generator reads from the SEU fault list one fault at
a time and generates an equivalent behavioral injection command
for the ModelSim environment, using the force–deposit syntax.

Then, the control manager starts the fault injection campaign.
The execution time limit is defined as twice the golden execution
time of the program kernel. This value is employed in order to
check performance degradation by the fault effect. Once the
simulation finishes, the memory results and performance
parameters are stored. Finally, the checker and classifier verify
the generation of memory results. This classifier catalogues the
fault effects in four categories: Silent Data Corruption (SDC),
Time-Out (Performance Degradation), Hang (Detected
Unrecoverable Error (DUE)) and Masked (Silent).

A SEU effect is classified as SDC if there is a memory
mismatch between the golden and faulty results. A Time-Out
happens when the fault simulation time is greater than the golden
simulation time. The fault behavior is classified as DUE when
the fault simulation is not correctly finished or the GPGPU
model cannot correctly terminate its execution, additionally
without results in the global memory. Lastly, a masked
classification is used if there are not mismatches in memory
results or execution time. It is worth noting that one fault
simulation is performed for each considered fault.

Once the fault campaign finished two report files are stored.
Those files include the memory results, if generated, the final-
dictionary file (which is composed of the fault type, the signal
location and the final fault classification), and the fault-results
file, including a summary of the total number of faults classified
grouped by type.

The multi-threaded fault injection methodology was
employed in the fault injector, mainly to handle the large number
of faults to inject during the campaigns. The total number of
SEU faults was divided in three to ten equal-size fault chunks
composing a partial fault list. Each partial fault list is assigned to
an independent fault simulator with a Flexgrip model to be
processed as an independent simulation. Finally, the final
injection results are grouped and analyzed.

In order to evaluate the SEU effects on the FlexGrip model,
four target modules were selected, commonly used by most of
the kernel programs. It is worth noting that each module presents
a different level of use and criticality in kernel execution.

B. Target Modules
Two control-path (SM scheduler and Divergence stack) and

one data-path (Register Files) module of the FlexGrip were
selected for SEU fault injection campaigns. The general
description of each module is presented as following:

SM Scheduler: This module manages and controls thread
execution in the available SPs inside the SM. This unit also
tracks the actual status and thread operation. Furthermore, this is
a critical unit during the GPGPU operation and a fault can
generate misbehaviors generating hang or SDC effects. This
module is selected by its criticality in thread execution and the

sensitivity to permanent faults observed in other works [18]. For
the purpose of this work, we target the warp pool memory in the
scheduler injecting SEU faults in it and classifying its sensitivity
to them. This memory stores crucial information for the warp
execution.

Divergence Stack: This module stores the branching
information related to convergence points (addressing points),
generated by control-flow instructions during the execution of a
program kernel. Each one of the 32 entry lines in the memory is
composed of a program counter field (convergence point), a
mask of active threads and the active Warp ID. Misbehaviors in
this module may corrupt the thread execution flow, generating
performance, hang and SDC effects. In a program kernel, a
synchronism convergence points, (SSY) instruction, generate the
pull to store the instruction pointer and the threads index. Once
the convergence point is reached by the program, the information
is pushed and the entry line is released.

Register Files: This data-path module is highly used by most
kernel programs, since most instructions include operations with
one or more registers. In Flexgrip, this unit is composed of 512
32-bits registers in a 32 SP-core configuration. For 16-SP cores
there are 1,024 registers per register file. Finally, 2,048 registers
are available in the 8-SP core configuration. On the other hand,
the total number of registers employed by an application directly
depends on the kernel instructions. In a register file, the registers
per thread are assigned through dividing the total number of
registers by the number of threads per block to be executed.

C. Benchmarks Description
Three representative benchmarks were selected to evaluate

the incidence of SEU effects in the model. Every benchmark
generates different stimuli over each targeted module. One
kernel (Vector_Add) presents high data-intensive operations,
mainly employing data-path modules and with a low incidence
on control-path modules. Additionally, we considered two
applications (FFT, Edge-Detection-Sobel) based on different
combinations of control-flow strategies, divergence generation,
and data operations. Each kernel program was developed,
compiled in CUDA-C with SM_1.0 and adapted to the supported
FlexGrip instruction set. Table 1 introduces the major
operational features of the selected applications. A general
description of each benchmark is presented as following:

FFT: The kernel description of the one-dimension FFT
algorithm is based on the Cooley-Turkey algorithm [19] using
the butterfly propagation algorithm. It was necessary to adapt the
kernel description to the instructions supported in FlexGrip. The
division instruction (not supported in hardware) was replaced by
logarithmic division method based on shift and logical
displacements. It is worth noting that the initial data set is
ordered by the host to feed the FFT kernel. The same procedure
is followed by the host to reorder the results.

Edge Detection: This algorithm is based on the convolution
of an input image matrix and a 3x3-size stencil element,
representing a 2D filter. Initially, the data matrix is divided
according to the total number of thread configurations in the
kernel and then the convolution is processed sequentially. The
kernel description is adapted to the supported instructions of
FlexGrip. The division instruction is replaced by a logarithmic
method mentioned above. This application includes multiple
loop, thread dependency execution, and dense arithmetical
operations, which require an intensive use of register resources
and introduces thread divergence in the kernel.

Vector_Add: This is a typical parallel and high data-intensive
application based on the execution of concurrent additions over
independent data sets from two input vectors. The result vector is
stored in a free memory location. This application commonly
uses data-path units and execution modules of the GPGPU. This
benchmark is selected because most elaborated program kernels
include parallel sections during their execution. Moreover, the
lack of control-flow instructions can give clear information of
the SEU effects on data-path units.
TABLE 1 MAIN BENCHMARK FEATURES UNDER A THREAD DISTRIBUTION OF 32
THREADS PER BLOCK AND 2 BLOCKS CONFIGURATION.

Benchmark Code size
(Words)

.SASS
Instructions

Execution
time (cycles)

Configuration
(SP cores)

FFT 334 174
584,265 32
777,555 16

1,153,845 8

Edge 712 373
688,305 32
905,525 16

1,374,265 8

VectorAdd 18 12
28,565 32
33,385 16
42,785 8

IV. EXPERIMENTAL RESULTS

The fault campaigns setup is described. Sub-sections B and C
D introduce results and discussions of SEU effects on each
targeted module.

A. Experiment setup
In the SEU fault injection campaigns, two main elements are

considered: the SEU location and the SEU injection time. The
SEU location defines the fault universe and it is composed of the
registers and memory elements employed by a benchmark during
its execution on each targeted module. The faults were carefully
checked and selected during the golden execution.

The SEU injection time considers the time intervals in the
kernel execution on FlexGrip. Those time intervals are:
configuration, execution, global-memory storage and kernel
termination. The SEU injection range, by definition, does not
consider kernel configuration times and memory storage times
and must correspond to the execution interval only. One SEU
injection time (i.e., one clock cycle) is selected randomly from
the SEU injection range for each SEU location.

Fault campaigns were performed on the targeted modules
considering different TLP configurations (8, 16 and 32 SP-cores)
and different thread distributions (A and B). These thread
distributions are defined depending on the number of threads per
block. A configuration distributes every benchmark with 32
threads and two blocks per grid. In contrast, B configuration uses
64 threads per block and one block per grid.

The Architectural Vulnerability Factor (AVF) [20] is
computed for each targeted module under all TLP and threads
distributions and for the selected benchmarks. This metrics is
calculated as the ratio between the total number of failures,
affecting the simulation output, by the total number of SEU
faults injected. The following sections present the results of the
fault injection campaigns for every target module. The AVF
results are presented in Table 2 for each targeted module.
TABLE 2 AVF RESULTS FOR THE TARGETED MODULES UNDER VARIOUS TLP AND
THREAD CONFIGURATIONS.

Benchmark FFT EDGE VectorAdd SP-Cores
Thread Config A B A B A B

Register file
AVF (%)

37.03 29.49 35.80 26.61 17.0 25.0 32
36.92 33.44 36.72 36.40 25.18 28.91 16
36.89 18.87 36.87 19.81 27.19 29.98 8

Warp scheduler memory
AVF(%)

0.10 0.27 0.15 0.15 0.12 0.20 32
0.07 5.44 0.698 4.81 0.56 7.67 16
0.10 16.21 2.51 19.21 2.27 15.63 8

Divergence stack
AVF(%)

1.24 1.41 0.91 0.90 - - 32
1.5 1.66 1.21 1.22 - - 16

2.25 2.48 1.82 1.81 - - 8

B. Register File Results
For this module 27 fault injection campaigns were

performed, injecting SEUs in the register files under all
configurations described below. The total number of faults
injected is determined by establishing the total number of
registers used by each application under each TLP configuration.
Then, the total number of bit fields is multiplied by a constant in
order to define the faults per location. 34,816 faults were injected
for the FFT and Edge Detection applications under all SP
configurations. In VectorAdd, 10,240 faults were injected for 32-
SP cores and 8,192 faults for the 16 and 8-SP cores
configurations.

The employed multi-thread simulation approach reduced a
fault campaign of more than 150 hour to less than 16 hours.
Besides, it also reduced the total amount of faults to inject in the
campaign by up to 95%.

An initial analysis of the results shows that the FFT and Edge
benchmarks present a similar behavior: by changing the TLP and
increasing the number of threads per block (B configuration)
reduces the total error rate (AVF). A different behavior is shown
by the Vector_Add application. In this case, raising the number
of threads per block (i.e., increasing the parallelism) generates a
direct increase in the failure rate provoked by SEUs. Fig. 2
presents in more details of the results given in Table 1.

Fig. 2. Register File (a, c and e) and warp schedule memory (b, d and f) results
for FFT (a, b), VectorAdd (c, d) and Edge (e, f) benchmarks.

The FFT results show a slight increment in the SDC error-
rate when increasing the number of threads per block in the
benchmarks. This behavior has a direct relation with the kernel
execution time for each configuration. In principle, the data
stored in an active register for a long time are more exposed to
SEU effects (case B) than registers with multiple write and read
activity (case A). In the experiments, the A configuration models
required a longer execution time. Nevertheless, the effective
block execution time is lower than for B configuration.

a) b)

c) d)

e) f)

Moreover, FFT in the A configuration uses half of the registers
of the B configuration and employs them to process threads, in
different interval times, belonging to different blocks.

In this scenario, an increment in the number of threads per
block should increase the SDC error rate, as it happens for the
results with 32 and 16-SP cores. However, a detailed analysis of
FFT instructions shows that these include control-flow
instructions, which also depend on predicate conditions (flags).
These predicate conditions are generated evaluating register
results; it means that, some registers are involved in control-flow
operations. Those registers can be considered as control-flow
critical registers (CFRs).

If a SEU fault affects one of these CFRs, the effect on the
application is DUE. According to results, a high number of CFRs
is generated by decreasing the thread distribution or parallelism
(A Configuration). This behavior can be explained considering
the number of registers employed in A Configuration and the
CFRs mapped among threads in the same register locations,
which means that, during kernel execution, one register location
will store, in different time intervals, data belonging to two
CFRs, increasing the probability of DUE.

A different behavior is observed for the Vector_Add
benchmark. In fact, an increment in the number of threads per
block corresponds to an increase in the SDC error rate. This
trend is consistent on each TLP configuration and can be
explained by the increased SEU sensitivity by the additional time
required by the warp scheduler to dispatch other warps from the
same block. Moreover, the execution time to process an
instruction under a long thread distribution (B Configuration) is
the double of a block with fewer warps (A Configuration).

Additionally, the SEU effects slightly increase by reducing
the TLP. In this case, the main factor is the additional time
required by the scheduler to process an instruction of each thread
with the limited number of SP cores. On the other hand, the
number of faults producing DUE and Time-Out behaviors is zero
because this kernel has no control-flow instructions.

In Edge Detection application, for each TLP configuration,
the total number of SDC errors decreases when the number of
threads per block increases. This behavior partially contradicts
the results of VectorAdd and FFT benchmarks. Nevertheless, an
explanation to this behavior can be found in the fact that Edge
Detection kernel includes more control-flow, divergence
generation and arithmetic-intense instructions than FFT. In fact,
it is a longer and more elaborated application. Regarding the
DUE error rate, results show an inverse relation between threads
per block, in the kernel, and the number of DUE errors. The
explanation is the same as for the FFT benchmark for DUE
errors, which decrease due to CFRs. Moreover, these results
(Edge Detection and FFT) are consistent with those introduced
in [9] for applications with control-flow instructions.

C. Warp Scheduler memory results
Fig. 2 presents the error rate results for the warp scheduler

memory. An initial results overview could contradict the
criticality of this module in GPGPU operation. However, an
analysis of its architectural organization and the role employed,
during kernel execution, helps to clarify the behavior.

Comparing results and simulation execution, the low error
rate is mainly caused by a closed loop between the scheduler and
the pipelines stages, which contributes to mask and reduce the
SEU effects in the memory. This is written each time a warp
finished the execution of an instruction. Moreover, this memory
allows the writing and reading process in a few clock cycles after
the instruction finishes, thus reducing the error propagation.

Regarding threads distribution and parallelism, results show
that increasing threads per block generates a direct rise in SDC
and DUE errors. The kernel (in B Configuration) uses more lines
in the warp memory and requires the execution of multiple warps
to process one instruction. Moreover, warp line exchange is
required to process all threads. This exchange generates a
temporary short in the closed loop and if a SEU effect is present,
affecting a loaded entry line, can be propagated into the system.

A reduction in TLP produces a direct increment in the error
rate. This increment is due to the additional effort required by the
scheduler to process the threads. In this case, the scheduler
employs twice to four times writing and reading sequences on
the warp memory to finish a warp instruction contributing to
increase the error rate.

D. Divergence Stack Results
The fault injection campaigns on this module did not

considered the Vector_Add application because this kernel does
not employ the module. The FFT and Edge Detection
benchmarks were evaluated employing 50,688 faults in each
fault campaign. The results are presented in Fig. 3.

The divergence stack memory does not represent a major
contribution to the error rate by SEU effects. The main
explanation for this low error rate is the restrained usage during
kernel execution. Each entry-line is employed for the fraction of
a divergence generation, meaning a different SEU sensitivity per
line. This behavior is directly dependent on kernel description,
nesting divergence, total number of divergence path instructions,
and the number of convergence points. Results support the
previous explanation. Moreover, considering that usage of this
unit, for both kernels, is less than two thirds of the total
simulation time and each additional pushed line presents less
activities, the sensitivity to SEU effects reduces drastically.

Fig. 3. Divergence stack result for FFT (left) and Edge (right) benchmarks.

The difference in error rate between both benchmarks can be
found analyzing the kernel instructions, its description and the
divergence paths length. The total number of SSY instructions
plays an important role in the usage of each entry-line.

A detailed inspection to FFT instructions shows that it has
two SSY operations and long divergence paths. On the other
hand, the Edge Detection kernel employs seven SSY instructions
with shorter path length than FFT. Besides, some paths are
parameter dependent.

According to results, the behavior presented in Edge
Detection, with multiple independent consecutive
synchronization points, it seems to be less affected by SEU
effects than a low number of divergence paths, which means a
low number of writings in the stack line. In this case, the long
interval time between writing and reading seems to increase the
SEU sensitivity.

Regarding DUE and SDC error rate, it directly depends on
the affected location. A SEU in the program counter may
generate Timeout or DUE errors. Similarly, a SEU affecting the
thread mask field may generate SDC, by inactive threads, or

DUE effects, by threads missing the taken path. Finally, a SEU
in the warp ID field can generate Timeout effects. The difference
in DUE and SDC error rate, for both applications, is mainly
caused by the sensitivity of program counter and mask fields to
generate hang conditions. The applications are prone to skip or
lose the execution path by changes in these two fields instead of
generating a SDC error.

Regarding the number of threads per block, coherent results
were found across TLP configurations. Although, A
Configuration employs the same number of entry lines in the
divergence stack, these lines are employed in different time slots
and the execution time per block is lower than required in B
Configuration. The additional time presented in B Configuration
seems to be the responsible for increasing the SEU sensitivity. A
decrement in the number of threads per block could help to
reduce, in more than twice, the SDC error rate generated by SEU
effects. By comparison of the TLP configurations, it seems to
follow the same SEU sensitivity to execution time as presented
on the previous modules.

V. CONCLUSIONS
As a major contribution of this paper, we reported a detailed

analysis of the effects of SEUs in a GPGPU resorting to an
extended GPGPU model and to some realistic applications.

Two signal and image processing applications, FFT and Edge
Detection, were designed and employed as benchmarks to
evaluate the effects of SEU faults on several sub-modules of a
GPGPU. Additionally, an application (Vector_Add) was
designed to observe the SEU effects on data-intensive
applications, which are commonly used in the practice.

The detailed GPGPU model description was crucial to
explain the behavior observable in control unit modules under
the considered low error rate. Despite the fact that the FlexGrip
model does not exactly match the architecture of the most recent
GPGPU devices, we still claim that the performed analysis
remains valid for them as well considering that those modules
are also employed and implemented in new GPGPU
architectures.

In the Register File, a kernel divided in blocks reduces the
SEU effects and increases error masking, considering that the
same register set is used by independent threads belonging to
different blocks. This behavior can be observed if two
independent blocks are dispatched to the same SM, as it happens
in FlexGrip.

Results suggest that the threads-per-block distribution may
play a major role as a mitigation strategy for SEU effects for
applications with a high usage of data-path units, such as the
Registers Files. On the other side, this distribution seems not to
impact in a significant manner on the targeted control units.

Analyzing the results for all modules, an increment in the
number of threads per block seems to generate a higher SEU
sensitivity on all data-path modules. This can be explained by the
additional time to process all threads. Nevertheless, the final
effect depends on the kernel behavior and the instructions
employed in its implementation.

The SP-cores customization on FlexGrip is useful for energy
and area optimization. Nevertheless, from the reliability point of
view the SP reduction increases the SEU effects on each targeted
module and hence reduces the reliability of the system.

We are currently working to extend the analysis of the SEU
effects to other modules within the GPGPU architecture.

REFERENCES

[1] W. Shi, M. B. Alawieh, X. Li, and H. Yu, "Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A
survey," Integration, vol. 59, pp. 148-156, 2017/09/01/ 2017.

[2] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, "Impact of
Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a 22
nm Design Rule," IEEE Transactions on Electron Devices, vol. 57, pp.
1527-1538, 2010.

[3] L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang, S.
Gurumurthi, et al., "GPGPUs: How to combine high computational power
with high reliability," in 2014 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2014, pp. 1-9.

[4] L. L. Pilla, P. Rech, F. Silvestri, C. Frost, P. O. A. Navaux, M. Sonza
Reorda, et al., "Software-Based Hardening Strategies for Neutron
Sensitive FFT Algorithms on GPUs," IEEE Transactions on Nuclear
Science, vol. 61, pp. 1874-1880, 2014.

[5] S. Collange, M. Daumas, D. Defour, and D. Parello, "Barra: A Parallel
Functional Simulator for GPGPU," in 2010 IEEE International Symposium
on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2010, pp. 351-360.

[6] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, "gem5-gpu:
A Heterogeneous CPU-GPU Simulator," IEEE Computer Architecture
Letters, vol. 14, pp. 34-36, 2015.

[7] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
"Analyzing CUDA workloads using a detailed GPU simulator," in
Performance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on, 2009, pp. 163-174.

[8] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, "GPU-Qin: A
methodology for evaluating the error resilience of GPGPU applications,"
in 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2014, pp. 221-230.

[9] W. Nedel, F. L. Kastensmidt, and J. R. Azambuja, "Evaluating the effects
of single event upsets in soft-core GPGPUs," in Test Symposium (LATS),
2016 17th Latin-American, 2016, pp. 93-98.

[10] M. Gonçalves, M. Saquetti, F. Kastensmidt, and J. R. Azambuja, "A low-
level software-based fault tolerance approach to detect SEUs in GPUs'
register files," Microelectronics Reliability, vol. 76-77, pp. 665-669,
2017/09/01/ 2017.

[11] P. Rech, G. Nazar, C. Frost, and L. Carro, "GPUs reliability dependence
on degree of parallelism," IEEE Transactions on Nuclear Science, vol. 61,
pp. 1755-1762, 2014.

[12] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, "Impact of GPUs
parallelism management on safety-critical and HPC applications
reliability," in Dependable Systems and Networks (DSN), 2014 44th
Annual IEEE/IFIP International Conference on, 2014, pp. 455-466.

[13] K. Andryc, M. Merchant, and R. Tessier, "FlexGrip: A soft GPGPU for
FPGAs," in 2013 International Conference on Field-Programmable
Technology (FPT), 2013, pp. 230-237.

[14] J. Knudsen, "Nangate 45nm Open Cell Library," CDNLive, EMEA, 2008.
[15] J. Guthoff and V. Sieh, "Combining software-implemented and

simulation-based fault injection into a single fault injection method," in
Twenty-Fifth International Symposium on Fault-Tolerant Computing.
Digest of Papers, 1995, pp. 196-206.

[16] H. Ziade, R. A. Ayoubi, and R. Velazco, "A survey on fault injection
techniques," Int. Arab J. Inf. Technol., vol. 1, pp. 171-186, 2004.

[17] D. Alexandrescu, "Circuit and System Level Single-Event Effects
Modeling and Simulation," in Soft Errors in Modern Electronic Systems,
ed: Springer, 2011, pp. 103-140.

[18] B. Du, J. E. R. Condia, M. Sonza Reorda, and L. Sterpone, "About the
functional test of the GPGPU scheduler," In On-Line Testing Symposium
(IOLTS) 2018 IEEE 24th International, Platja d’Aro, Costa Brava, Spain,
2018.

[19] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, "The Fast Fourier
Transform and Its Applications," IEEE Transactions on Education, vol.
12, pp. 27-34, 1969.

[20] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, "A
systematic methodology to compute the architectural vulnerability factors
for a high-performance microprocessor," in 36th Annual IEEE/ACM
International Symposium on Microarchitecture, 2003. MICRO-36., 2003,
pp. 29-40.

