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CIDR: A Cache Inspired Area-Efficient
DRAM Resilience Architecture against
Permanent Faults
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Abstract—Faulty cells have become major problems in cost-sensitive main-mem-
ory DRAM devices. Conventional solutions to reduce device failure rates due to
cells with permanent faults, such as populating spare rows and relying on error-
correcting codes, have had limited success due to high area overheads. In this
paper, we propose CIDR, a novel cache-inspired DRAM resilience architecture,
which substantially reduces the area overhead of handling bit errors from these
faulty cells. A DRAM device adopting CIDR has a small cache next to its 1/0 pads
to replace accesses to the addresses that include the faulty cells with ones that
correspond to the cache data array. We minimize the energy overhead of access-
ing the cache tags for every read or write by adding a Bloom filter in front of the
cache. The augmented cache is programmed once during the testing phase and is
out of the critical path on normal accesses because both cache and DRAM arrays
are accessed in parallel, making CIDR transparent to existing processor-memory
interfaces. Compared to the conventional architecture relying on spare rows,
CIDR lowers the area overhead of achieving equal failure rates over a wide range
of single-bit error rates, such as 23.6x lower area overhead for a bit-error rate of
107" and a device failure rate of 1073,

Index Terms—DRAM, error resilience, permanent faults, row and column sparing,
Bloom filter, DRAM-side caching
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1 INTRODUCTION

DRAM has been the de-facto standard for main-memory for deca-
des and has enjoyed steady improvement in bandwidth and capac-
ity thanks to advances in process technology. At the same time,
smaller DRAM cells and peripheral circuitry have become more
vulnerable to defects, such as manufacturing imperfections and
process variations. This causes not only severe fluctuations in the
DRAM retention time [8], [9], but also the malfunctioning of vari-
ous components, leading to DRAM device failures [13]. However,
there have been few architectural proposals to improve the resil-
ience of main-memory DRAM devices under various faults [10]
except for the ones dealing with the DRAM retention time issue.

DRAM makers have provided spare rows and columns within
the 2D arrays of cells (each storing a bit) to cope with various types
of permanent faults [5] during the fabricating/testing procedures,
but this scheme suffers from the following limitations. First, single-
bit failures, known to be uniform-randomly distributed [11],
occupy the majority of DRAM failures [7], [13] especially when a
fabrication process becomes mature. Because the size of a DRAM
row or column surpasses several thousand bits, dedicating a row
or column per single-bit error is a huge waste in resources. Second,
it is in the critical path of normal DRAM operations to identify a
row or column with faulty cells and to replace it with a spare. This
induces a trade-off between the strength of the replacement logic
and the energy/latency of DRAM operations.

We propose a DRAM architecture capable of tolerating perma-
nent single-bit failures with significantly improved area efficiency
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with no modification to conventional processor-memory interfaces.
We add a small cache per DRAM device to replace the access to
one of the addresses that include the faulty cells with one that cor-
responds to the cache data array. Even if the cache consists of bulky
SRAM cells, dedicating a few dozen SRAM cells for tagging and
supplying a substitute is still much more efficient in the area than
wasting thousands of DRAM cells for a single-bit fault. To mini-
mize the energy overhead of accessing the cache for each DRAM
read or write, we filter the cache accesses using a Bloom filter [3].
This DRAM-side cache is completely out of the critical path on nor-
mal accesses because both the cache and DRAM arrays can be
accessed concurrently. In addition, the cache and Bloom filter oper-
ate much faster than normal DRAM structures due to their small
capacity. We exploit this advantage in latency by sequentializing
the filter and cache accesses [4] to further improve the energy and
area efficiency of the proposed architecture.

We show that this novel cache-inspired DRAM resilience archi-
tecture, CIDR, has an order of magnitude smaller area overhead
than that of the conventional resilience structure over a wide range
of single-bit error rates (SBER) [10] when targeting the same device
failure rates due to single-bit faults. The relative energy of the CIDR
over the conventional architecture depends on the target failure
rates, the bit-error rates, and the device access patterns, but CIDR is
at least as efficient as the conventional architecture for most typical
usage scenarios. For a bit-error rate of 1075 and a target device fail-
ure rate of 1073, the area and energy overhead of the CIDR is 1.38
and 0.36 percent, respectively, which is 23.6 and 3.2 times lower
than those of the conventional architecture assuming a DRAM row-
buffer conflict rate of 27 percent, the average of the SPEC CPU2006
applications on a typical chip-multiprocessor system [6].

2 CONVENTIONAL DRAM REDUNDANCY STRUCTURES

Contemporary DRAM devices are structured to accommodate bil-
lions of cells in an area-efficient manner and exploit the spatial
locality abundant in main-memory accesses. A device is organized
as several two-dimensional arrays of cells called banks (Fig. 1). A
command called activate is first applied to the device and a row in
a bank specified by an address accompanying the command is acti-
vated to a row buffer, and then, the data in the buffer are accessed
by one of more read or write commands to the active row. A bank
has a row decoder to specify an active row and a column decoder
to select the locations in the row buffer for access. The number of
bits transferred per read or write command is the product of the
number of data pins (data I/O width) per device (xN) and its burst
length (e.g., 8 for DDR3/4 [1]). tCCD, the minimal timing interval
between any read or write command, determines the peak data
transfer rate of a device.

Each DRAM bank has spare rows and columns to improve the
yield or reduce failure rates that originate from various faulty
components [5]. In order to replace a row or column with faults
with a spare, an address remapping unit is placed in front of a
decoder. The unit compares an input address with the known
faulty row or column indices and if both match, it supersedes the
address with a fault-free spare. The faulty rows and columns are
identified during the testing phase of DRAM manufacturing and
their addresses are recorded in laser or electric fuses. These bulky
fuses can be gathered at one place or replaced with non-volatile
memories within or outside of the device. The remapping unit is
functionally similar to a cache where its tag array stores faulty
addresses, the data array holds spares, and the way is the number
of addresses to be compared.

This conventional resilience scheme with spare rows and col-
umns is ideal when entire rows or columns malfunction, but it is
extremely area-inefficient for single-bit faults prevalent in modern
DRAM devices [7] because there are thousands of cells per row or
column. As the capacity of a bank approaches a billion bits, the
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Fig. 1. A conventional DRAM redundancy structure with spare (redundant) rows
and columns.

size of a row which is fixed by a DRAM specification is around sev-
eral thousand bits (e.g., 8K bits on x8 8 Gb DDR4 devices [1]) to
limit row activate energy, and multiple columns are accessed per
read/write command because DRAM accesses are bursty. These
all cause far fewer DRAM cells to be affected by a row decoder
than a column decoder, which make it more efficient to utilize a
spare row instead of a spare column to fix single-bit faults. Even if
we use spare rows to deal with single-bit faults, dedicating thou-
sands of cells per faulty bit is still a huge waste of resources.

Another limitation of the conventional scheme is that the
address remapping unit is in the critical path of the activate, read,
and write DRAM operations. It is desirable that a row with faulty
bits or a faulty row can be mapped to any spare row in a bank by
the remapping unit like a fully associative cache because fewer sets
typically lead to lower miss rates, which in turn reduce device fail-
ure rates for a given single-bit error rate. However, having fewer
sets or more ways per cache increases not only the energy but also
the latency of an access. Therefore, it is critical for DRAM manufac-
turers to find the right balance between the strength of the remap-
ping unit and its impact on the activate time (tRCD) and energy.

It is reasonable to use spare rows to fix single-bit errors when
SBER is low, but as the rate increases the overheads grow rapidly.
We consider various SBERs because the component fault rates are
top secrets to DRAM manufacturers [10]. Fig. 2 shows the device
failure rates and the area overheads of using spare rows for various
ways and sets of the remapping unit. The latency and energy
change as well, but they fluctuate far smaller than the area and
hence omitted due to limited space. We assume a 28 nm 8 Gb x8
DDR4-2400 die, which has four bank groups and four banks per
group. We modified CACTI-D [14] to model the remapping units
and spare rows/columns. For each SBER, the baseline is the device
with 640 spare rows and 80 spare columns per bank, which is
derived from the overhead of the row/column redundancy
reported in [7]. We only present the cases of SBERs higher than or
equal to 10~7 when single-bit errors cause noticeable overheads.
For a given SBER, having more sets and ways reduces the failure
rate, while it is more sensitive to the ways. However, populating
more ways to the remapping unit increases the row activate
energy, latency, and device area. As SBER increases, these over-
heads grow rapidly and for a SBER of 10~° and a target failure rate
of 1073, the area overhead becomes 32.5 percent, which is too high
and necessitates a solution dedicated to bit errors.

3 CACHE-INSPIRED DRAM RESILIENCE STRUCTURE

In order to address the area inefficiency problem of the conven-
tional resilience scheme against prevalent and sporadic single-bit
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Fig. 2. (a) The area overhead and the device failure rate of the conventional resil-
ience architecture when single-bit error rate is (b) 10~7, (c) 106, and (d) 10~°.

errors, we propose a novel cache-inspired DRAM resilience archi-
tecture called CIDR. Fig. 3 shows the block diagram of CIDR,
which consists of a cache to deal with faulty bits and a Bloom fil-
ter to reduce the frequency of vainly approaching the cache for
accesses to non-faulty addresses. The DRAM-side cache, or the
CIDR cache, is placed close to the I/Os within a device. It receives
commands and addresses from the external memory controllers
along the banks, stores and combines the row and column
addresses on DRAM reads or writes, and supersedes accesses to
DRAM structures in case the combined address targets a burst
that includes faulty bits. The tag array of the cache stores the
DRAM addresses including faulty bits, which is similar to the
remapping unit in Section 2. The data array of the cache, in con-
trast, stores data for addresses at which certain cells malfunction.
A device may have one cache; a data pin of a device may have
one cache, or a few pins in a device can share a cache depending
on the device layout constraints. In this paper, we assume that
each data pin has a cache and leave the design space exploration
of different cache configurations, such as multi-bank structures,
for future work.

CIDR has substantially lower area overhead than the conven-
tional scheme because the former dedicates an address and data
bits, at most a few dozen each, to replace a faulty DRAM cell
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Fig. 3. CIDR consists of a cache and a Bloom filter. It takes the command and
address information concurrently with a DRAM access and replaces it if the
address turns out to include faulty cells. The Bloom filter reduces access frequency
to the cache.
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while the latter consumes thousands of DRAM cells per faulty
cell. Even though a DRAM cell is smaller than an SRAM cell
used to store the cache tag and data arrays, the ratio of SRAM
over DRAM in cell size is much smaller than the ratio of the
number of DRAM cells over cache SRAM cells needed for a
faulty bit. Because the cache and the other DRAM banks can be
accessed in parallel, populating more cache ways does not
increase the latency of DRAM operations. For a given cache
capacity, having more ways leads to a lower chance of the cache
being full, which is equal to the device failure rate. Even if pop-
ulating more ways makes the cache slower, it is much smaller
than a DRAM bank and still has a lower access latency. How-
ever, the energy to read the tags and to compare them with the
incoming address to check the cache hit is not negligible, espe-
cially for the caches with many ways.

CIDR utilizes a Bloom filter [3] to alleviate this cache access
energy overhead. A Bloom filter identifies if a certain number
belongs to a set of known numbers (faulty addresses for CIDR). It
utilizes Ny hash functions that translate the input numbers to other
numbers within a finite range (R). The filter also has a storage that
consists of R bits, each being cleared (set to 0) in the beginning.
During the training phase (the testing procedure for CIDR), it runs
the hash functions for the known numbers and sets the locations
corresponding to the hash outputs of the storage to 1. During the
normal phase, it checks the locations corresponding to the outputs
of the hash functions for a given input (address for CIDR). If there
is any location with the value 0, the number does not belong to the
known ones. Otherwise, the input number might belong to the set.
Bloom filters have been applied to various computer systems [2],
[12]. The Bloom filter is ideal for CIDR because 1) the inherent false
positive cases are handled by the CIDR cache, 2) the target bit-error
rates are low so that the false positive rates by the filter can be kept
low with few hash functions, and 3) the faulty addresses are identi-
fied during the testing phase and do not change during normal
DRAM accesses.

We exploit the huge advantage in latency of the CIDR cache
with the Bloom filter over normal DRAM banks to make CIDR
more energy efficient. First, when the Bloom filter has multiple
hash functions and each function can be evaluated within half
of tCCD, the functions can be divided into multiple groups.
Then, a hash function needs to be evaluated only if the results
of all the functions in the earlier groups indicate that the address
to compare might still belong to faulty addresses. Second, we
can configure the CIDR cache to be pseudo associative [4] such
that a cache set is divided into multiple subsets, where each is
evaluated sequentially until the cache hits, or all the subsets are
tested. This effectively increases the cache associativity, influenc-
ing the device failure rate significantly as discussed in Section 2.
Even if the cache cycle time is increased, but as far as the cycle
time does not surpass tCCD, it does not slow down DRAM
operations. These optimizations are possible because the DRAM
bank access time for a read, tAA, is typically higher than twice
the tCCD, and the DRAM banks and the CIDR with the Bloom
filter are accessed concurrently.

CIDR is complementary to the schemes with Error Correcting
Codes (ECC), which mostly target transient faults, and ArchShield
[10], which exposes faulty DRAM cells to the architectural level.
For example, CIDR can make fewer faulty cells detected to the
ArchShield framework, which then tolerates more faults. CIDR can
replace not only malfunctioning but also leaky DRAM cells to
reduce the average memory access latency. This is similar to
SECRET [8], but CIDR is transparent to a processor-memory inter-
face or a memory controller while SECRET augments a memory
controller with a bit-level replacement structure. We leave the
study on mismatch between DRAM and SRAM in transient fault
rates for future work.
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Fig. 4. (a) The area overhead and the device failure rate of the CIDR architecture
with a CIDR cache and a Bloom filter when single-bit error rate is (b) 1077,
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4 EVALUATION

We quantified the area efficiency benefits of the CIDR over the con-
ventional resilience scheme and compared the energy overheads of
both schemes for various usage scenarios. We assumed that the
SRAM cell size of the CIDR cache and Bloom filter is 150F%, which
accounts for the layout overhead due to the limited number of
metal layers for the DRAM processes (three layers in this study).
The range (R) of the hash functions for the Bloom filter is narrower
than the address space of the DRAM device, and we implemented
a hash function by randomly merging multiple input address bits
with XOR gates and shuffling them. CACTI-D was used to model
the CIDR cache. Even if the number of data bits per CIDR cache
entry can be as small as 1, we assumed that it is equal to the burst
length of the device. We assumed that only the DRAM and SRAM
cells may malfunction. A spare DRAM row or the CIDR cache
entry with faulty cells is not used.

CIDR is similar to the conventional resilience architecture in
that its area overhead grows and its device failure rate (yield loss)
improves as more sets or ways are populated, but CIDR is more
area efficient. Fig. 4 shows the device failure rate and the area over-
head of the CIDR with the Bloom filter in which the number of
ways and sets of the CIDR cache are varied. Between the ways and
sets, the device failure rate is more sensitive to the former, which is
similar to the address remapping unit case of the conventional
scheme. We show the benefits of CIDR by setting the target device
failure rate to 0.1 percent and comparing the relative area and
energy of the conventional scheme and the CIDR without/with the
Bloom filter for SBERs of 107, 10~%, and 10~° in Fig. 5. We report
the read energy amortized by the activate energy, but because the
read and write energy is similar, observations made here are also
applied to the writes. The baseline is again the device with 640
spare rows and 80 spare columns per bank. The conventional
scheme has more than an order or magnitude higher area overhead
than the CIDR. For a SBER of 1077, the area overhead of the CIDR
with and without the Bloom filter is 1.2 and 1.4 percent, respec-
tively, while that of the conventional scheme is 32.5 percent.

This small area overhead by adding the Bloom filter to the
CIDR is compensated by the huge gain in energy efficiency.
Because the conventional spare-row-based scheme incurs an
energy overhead per activate command, its impact on the DRAM
access energy is amortized by the ratio of activates over the sum
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of the reads and writes, or the DRAM row-buffer conflict rate (8).
In contrast, CIDR incurs an energy overhead per read or write
access. Assuming that the CPU-side caches exploit the temporal
locality of the memory accesses, g is minimal when an entire row
is read or written after being activated, which is 0.01, and is the
most favorable case to the conventional scheme. In this case, the
energy overhead of the conventional scheme is 0.07 percent while
that of the CIDR without the Bloom filter is 4.0 percent for a SBER
of 1075, With the Bloom filter, the energy overhead of the CIDR
becomes 0.63 percent, 6.2 times lower than that of the CIDR with-
out it and comparable to the conventional scheme. For a g of 0.27,
the average row-buffer conflict rate for the SPEC CPU2006 bench-
marks reported in [6], the energy overhead of the CIDR with and
without the Bloom filter is 0.36 and 2.3 percent, respectively. Note
that we used four hash functions for the Bloom filter, which pro-
vides the right balance between the energy consumed by the filter
and the energy saved in the CIDR cache. Critical path analysis
showed that these four hash functions can be accessed sequen-
tially, where the Bloom filter storage was accessed only 1.8 times
on average due to the early pruning explained in Section 3. The
CIDR cache tag arrays are several times larger in capacity and
compares orders of magnitude more bits than the Bloom filter
storage, consuming more energy than the filter.

5 CONCLUSION

We have proposed CIDR, a novel DRAM resilience architecture
that targets permanent single-bit errors prevalent in modern
DRAM devices. CIDR has a cache that is accessed concurrently
with normal DRAM banks to detect and replace the accesses to
the bursts including faulty cells. In order to minimize the energy
consumption for checking each access, CIDR attaches a simple
Bloom filter in front of the cache, which is ideal because bit-error
rates are low and the faulty cells are identified only once during
the testing phase. CIDR is transparent to processor-memory
interfaces and an order of magnitude better in area efficiency
than the spare-row-based resilience scheme over a wide range
of bit-error rates and target device failure rates without sacrific-
ing energy efficiency. CIDR shows that the cost of achieving a
certain level of DRAM resilience can be significantly reduced by
adequately applying architectural techniques to conventional
DRAM structures.
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