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Diversity: A Design Goal for Heterogeneous Processors
Erik Tomusk, Christophe Dubach, Michael O’Boyle

University of Edinburgh, United Kingdom

Abstract—A growing number of processors have CPU cores that implement the same instruction set architecture (ISA) using different
microarchitectures. The underlying motivation for single-ISA heterogeneity is that a diverse set of cores can enable runtime flexibility.
Modern processors are subject to strict power budgets, and heterogeneity provides the runtime scheduler with more latitude to decide
the level of performance a program should have based on the amount of power that can be spent. We argue that selecting a diverse
set of heterogeneous cores to enable flexible operation at runtime is a non-trivial problem due to diversity in program behavior. We
further show that common evaluation methods lead to false conclusions about diversity. Finally, we suggest the KS statistical test as an
evaluation metric. The KS test is the first step toward a heterogeneous design methodology that optimizes for runtime flexibility.

Index Terms—diversity, flexibility, heterogeneity, core selection, Kolmogorov-Smirnov test, metrics
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1 INTRODUCTION

HETEROGENEOUS processors with two types of CPU
cores have been available in mobile devices for some

years [10], and a processor with three core types has recently
been announced [8]. The benefits of these processors are ob-
vious: Normal operation takes place on low-power cores to
control temperature and prolong battery life. Demanding and
time-critical programs can be run on higher-performance cores.
If programs are scheduled correctly, the user will experience
both good thermal behavior and good performance. All cores
on these processors implement the same ISA (instruction set
architecture), so no extra work is required from software devel-
opers to support heterogeneity.

Mobile devices must meet high user expectations for per-
formance while operating under strict thermal limits and run-
ning off of small batteries. If a processor is flexible, then the
operating system scheduler can run a given program at an
appropriate power-performance point, taking into account the
program’s priority, thermal considerations, the charge left in the
battery, etc. Traditionally, the flexibility to choose between high-
performance and low-power operation has come from DVFS
(dynamic voltage and frequency scaling; see, e.g., [3]). A hetero-
geneous processor with a diverse set of cores has the potential
for greater flexibility and better energy efficiency [6]. Hetero-
geneity can be further augmented with DVFS. For simplicity,
the power-performance points in our discussion come from
heterogeneous cores without DVFS. However, the discussion
remains valid if the points are derived from a combination of
heterogeneous cores and DVFS levels.

Selecting CPU cores to enable flexibility is far from a simple
problem, because each program interacts differently with each
core’s microarchitecture. We illustrate the intuition with figure 1
using two hypothetical benchmarks. For the examples in this
paper, we assume that a processor designer has a benchmark
suite that is representative of the programs that will be run
on the processor. Each benchmark can be an entire program, a
program phase, or a thread from a multi-threaded program.
The examples use a trade-off between power and execution
time. Power is a hard, physical limit, and time is important
to the user. Figure 1 (top) shows eight cores, A-H, that the
designer can select from. In this example, the designer has
selected a diverse set of cores: A, B, D, and H. These cores
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Fig. 1. (Top) Four selected cores, A, B, D, and H provide a range of
power-performance points to benchmark 1, ranging from low power (LP)
to high performance (HP). (Bottom) The same four cores are not as
diverse for benchmark 2. H is not even Pareto-optimal. E is Pareto-
optimal, but is not selected.

are Pareto-optimal for benchmark 1—each core is at an optimal
power-performance point, ranging from low power to high
performance. The selection is flexible for benchmark 1, because
the scheduler can run it at a wide range of performance levels.

Figure 1 (bottom) shows the same cores for benchmark 2.
For this benchmark, core H is no longer Pareto-optimal, since
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core D is both faster and consumes less power. Core E is
Pareto-optimal, but has not been selected for the processor.
Cores A and B have almost identical behavior. It can be
seen that the same set of cores provides much less flexibility
to the scheduler when running benchmark 2—benchmark 2
can be run at effectively two power-performance points (A
or B, and D). In summary, a set of cores that is diverse for
one benchmark is not necessarily diverse for another, because
flexibility is dependent on the interaction between a core’s
microarchitecture and a program’s behavior. To the best of our
knowledge, we are the first to identify the variation in program
behavior as a major roadblock to enabling runtime flexibility in
heterogeneous processors.

In section 2, we will further clarify flexibility. Section 3
describes the difficulties of selecting a diverse set of cores.
Section 4 demonstrates that quantifying diversity is a non-
trivial problem. Section 5 suggests the KS statistical test as
one method for evaluating diversity. The ability to evaluate
diversity is the first step toward developing core selection
methodologies that maximize runtime flexibility.

2 THE FLEXIBILITY GOAL

In the case of a homogeneous processor, the designer considers
a number of different CPU core designs with different power-
performance trade-offs, and chooses to implement one of them.
In this case, the scheduler has access to only limited flexibility
through DVFS. In contrast, in the case of a heterogeneous pro-
cessor, the designer selects more than one power-performance
point (more than one type of core) to implement. The designer
leaves it to the scheduler to make the final choice about which
CPU core is best, because the scheduler has more information
about what is required of the CPU at a given time. This is the
underlying goal of heterogeneity—to give the scheduler more
choice (flexibility) at runtime using a diverse set of cores.

A crucial observation is that not all selections of Pareto-
optimal cores are diverse. For example, assume a designer has
access to six types of cores that are all power-performance
Pareto-optimal, as shown in figure 2. Runtime flexibility is max-
imized if the designer implements all six, but this may not be
possible. If the three “diverse” cores are implemented, then the
selection is still flexible, as there are diverse power-performance
points. If, instead, the “clustered” cores are implemented, then
the selection is not flexible. The scheduler will only be able to
choose a high-performance core; there is no low-power option.

This example shows that heterogeneity by itself does not
guarantee flexibility; the selection of heterogeneous cores must
be diverse. Section 3 will discuss why selecting a diverse set
of cores is difficult, and section 4 will describe why a designer
may be tempted to select a clustered set of cores.

3 THE SELECTION PROBLEM

The flexibility of a heterogeneous processor is maximized
when it implements the most diverse set of cores possible—
all Pareto-optimal cores. Since there can be hundreds of such
core types, enabling flexibility requires the designer to select a
small number of cores that preserve the diversity of the Pareto-
optimal set. Intuitively, diversity means that the representative
subset should have good spread, the cores should be uniformly
spaced, and the selection should take diversity in program
behavior into account. However, these three considerations
are difficult to define objectively, and each poses non-trivial
problems. We note that methods for sampling a Pareto frontier
while preserving spread and uniformity exist for elitist genetic
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Fig. 2. Cores selected for flexibility (circles) implement diverse power-
performance points. If cores have similar power-performance points
(squares), then there is little flexibility available at runtime.

algorithms [11], but these methods use a larger number of
points, can only select for one benchmark, and are therefore
inappropriate for selecting cores.

3.1 Spread

By spread, we simply mean how far the lowest-power and
highest-performance cores are from each other (see the power-
performance point scales in figures 1 and 2). To maximize
diversity, the immediate intuition may be to maximize spread.
However, this will not guarantee a good selection of cores. At
the edges of the set of Pareto-optimal cores, tiny gains in one
metric are made at the expense of large losses in the other. For
example, re-architecting the fastest core to slow it down by 1%
may lead to a 10% reduction in power, and re-architecting the
lowest-power core to consume 1% more power may lead to
a 10% increase in performance. This would reduce the spread
of cores, but can make the cores more representative of the
complete Pareto-optimal set. While having a broad spread
of cores is necessary for diversity, a designer cannot rely on
maximizing spread to maximize diversity.

3.2 Uniformity

A set of cores enables flexibility if the cores are uniformly dis-
tributed in the design space. Cores that have similar behavior,
like the clustered set in figure 2, limit flexibility at runtime since
the scheduler can only choose from a small range of power and
performance levels. Similarly to spread, uniformity alone does
not guarantee a diverse selection of cores. If spread is poor, then
diversity will be poor regardless of uniformity. Even if spread is
good, uniformity is affected by diversity in program behavior.

3.3 Program Diversity

The overarching difficulty of selecting heterogeneous cores is
diversity in program behavior. Core selection is not simply
about finding a representative sample for one Pareto frontier.
Since each benchmark behaves differently, and since the set of
Pareto-optimal cores is different for each benchmark, selecting
cores requires sampling a Pareto frontier for every benchmark.
The sampling must be done in such a way that a small number
of cores capture the diversity seen across all Pareto frontiers.
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Spread. Program diversity affects spread. For example,
consider the problem of selecting a fast core for a heteroge-
neous processor using two benchmarks. One benchmark has
a large working set, and the other has high ILP (instruction
level parallelism). A large data cache will speed up the first
benchmark, but will waste power for the second. A large
instruction window will speed up the second benchmark, but
will waste power for the first. It is not immediately obvious
whether the designer should select a large data cache, a large
instruction window, both, or if two different cores should be
used. A core with a large data cache will not improve spread for
the ILP benchmark, and a core with a large instruction window
will not improve spread for the data-heavy benchmark. A core
with both will waste power when running either benchmark,
and will not be Pareto-optimal for either. Implementing two
different fast cores may not be possible.

Uniformity. Achieving a uniform selection is similarly
difficult, since cores that are evenly spaced for one benchmark
may be clustered together for another. For example, if there are
several cores with varying sizes of instruction windows, then
for a benchmark with high ILP, the cores implement different
power-performance points. In contrast, for a benchmark with
low ILP, the cores have similar performance, but some will
consume more power and will not be Pareto-optimal.

In summary, selecting a diverse set of cores is difficult,
because the spread and uniformity of a the set vary from
benchmark to benchmark. The problem is further compounded
by the lack of methods for quantifying diversity, as the next
section will show.

4 THE LIMITATIONS OF SUMMARY METRICS

If microarchitectural diversity were easy to measure, then
methods for improving diversity could be developed. In this
section, we will discuss an evaluation methodology that uses
a summary metric, and show why this seemingly obvious
approach to achieving diversity cannot work in practice.

A recurring theme in microarchitecture research is that a
CPU core should be energy efficient—regardless of its speed,
the core should maximize the amount of useful work per-
formed with the energy that is consumed (see, e.g., energy-
efficient architectures [12]). Martin, et al. argue forcefully for
the use of the ED2 efficiency metric, as it captures the cubic
relationship between power and speed in CMOS circuits [7].
ED2, or energy-delay-squared product, takes into account the
execution time and energy consumed by a program. For a
compute-bound workload running on a core with DVFS, ED2

will be constant across all DVFS levels. This can lead the
designer of a heterogeneous processor to assume that ED2

should also be constant for a diverse set of heterogeneous
cores. One core might consume very little energy, but would
be slow. Another core might be fast, but would consume large
amounts of energy. Together, the cores would span a diverse set
of power-performance points.

We argue that an ED2 optimization approach is unreliable
for a heterogeneous processor, as it is unlikely that different
microarchitectures with different power-performance charac-
teristics can actually be implemented with equally good ED2.
This has been shown quantitatively [1]; we offer an intuitive
explanation with figure 3. Each black line in figure 3 is a
constant ED2 value. ED2 is better toward the bottom and left
of the graph. A, B, and C are cores. B corresponds to an in-
order or simple out-of-order core. The high efficiency (work
per unit of energy) of B makes it a good fit for battery-operated
devices and throughput-oriented data centers. C corresponds to
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Fig. 3. The black lines show constant energy efficiency (ED2) from low
power to high performance. Ideally, low-power and high-performance
cores would have equal efficiency, but this is difficult to do in practice.

a wide, out-of-order core with aggressive prefetching and spec-
ulation. Cores like C are used for applications where latency is
more important than efficiency (e.g., gaming). Finally, A is an
extremely low-power core. Cores like A might be used when
strict thermal limits are in place, and low-power operation is
more important than speed or efficiency.

If cores A, B, and C in figure 3 could be designed to have
equal efficiency, then ED2-optimization could be used to make
at least a preliminary selection of diverse cores. However, the
energy spent on aggressive speculation in C makes it inevitable
that energy per instruction will be higher and ED2 will be worse
than for B. Similarly, the long execution time of A gives it a
lower efficiency than B. As illustrated by figure 2, a processor
with cores like A, B, and C is clearly more diverse than a
processor with only cores like B. The average efficiency of a
processor with only type B cores will, however, be better than
that of a processor with A-, B-, and C-type cores. We can
conclude that efficiency cannot be used as a proxy for diversity—
if cores are selected only for efficiency, then all cores will be
similar to B, and runtime flexibility will be minimal.

To summarize, cores selected for efficiency are not guaran-
teed to be diverse, and a diverse selection of cores will not
necessarily have a good average efficiency. For this discussion,
we have used the ubiquitous ED2 metric, but the argument
remains valid for all EiDj-type metrics. Adjusting the weights
of the E and D terms simply shifts the point in the design space
where the metric is minimized.

5 A MEASURE OF DIVERSITY: THE KS TEST

We have argued that a more diverse set of cores increases the
flexibility that a scheduler has to control power and perfor-
mance, and that flexibility is maximized when the scheduler
can choose from all power-performance Pareto-optimal cores.
Even if a perfect scheduler could be designed, implementing a
processor with hundreds of different cores is currently infeasi-
ble. Maximizing flexibility is therefore a problem of finding a
small subset of cores that capture the diversity of the complete
Pareto-optimal set. We have argued that the major difficulty in
selecting cores is ensuring that all relevant benchmarks have ac-
cess to a broad spread of approximately uniformly distributed
cores. One could develop search algorithms to maximize di-
versity, but this necessitates a quantitative metric of diversity.
We have also argued that quantities like ED2 do not provide
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TABLE 1
T1 and ED2 Values for Selections of Cores in Figure 4 (smaller is better)

Selection Normalized Mean ED2 T1

des djpeg mp2e des djpeg mp2e
All Cores 1.0 1.0 1.0 0.0 0.0 0.0
“Diverse” 1.9 1.6 1.6 0.24 0.21 0.33

“Clustered” 0.3 0.8 0.2 0.71 0.63 0.83

such a metric. Instead, we now propose measuring diversity
with T1, the two-sided, two-sample Kolmogorov-Smirnov test
(KS test) [4, p.456]. T1 is used to determine how likely it is that
two sets of sampled data points come from different (unknown)
distributions. If T1 is close to 0.0, then it is very likely that the
two sets of samples come from the same distribution.

We perform the KS test on a per-benchmark basis using
power values. The first sample contains those cores from
the complete set that are Pareto-optimal for the benchmark.
The second sample contains the Pareto-optimal cores from
the subset. Since the test is only applied to Pareto-optimal
points, results are identical when using speed instead of power.
We already know that the two samples come from the same
underlying distribution—a distribution determined by the mi-
croarchitectural design space of cores. Calculating T1 allows
us to evaluate how much the subset “looks like” the complete
set—how representative the selection is. A representative se-
lection captures most of the diversity of the Pareto-optimal
set, while a selection that is not representative is not diverse.
The same methodology can be applied to points derived from
a combination of heterogeneity and DVFS, and metrics other
than power and speed can be used. An advantage of the KS
test is that it favors subsets that cover the entire range of cores
even if the complete set contains clusters of cores that skew the
distribution. This application of the KS test assumes that cores
that are so slow or so high-powered that they should never be
considered have been pruned from the complete set.

We demonstrate T1 with an example. The example shows
how diversity can be evaluated; it is not intended to provide
new insights into CPU design or workload characterization.
We simulate eight out-of-order CPU cores with gem5 [2] and
McPAT [5], varying the sizes of the caches and the amount
of ILP that can be extracted through instruction reordering
and register renaming. We run the des (encryption), djpeg (im-
age decode), and mp2e (video encode) benchmarks from the
EEMBC DENBench (digital entertainment) suite [9] on each
core. We then hand-select three cores for high flexibility, and
another three for low flexibility, as shown in figure 4. These
are better and worse selections, but not necessarily the best

and worst selections. Table 1 shows T1 for each selection, and
normalized average ED2 for comparison. While ED2 suggests
that the diverse selection is worst and the clustered selection
is best, T1 correctly shows that diversity is worst on the
clustered selection, improves with the diverse selection, and
is maximized when all cores are included. This supports the
argument in section 4 that optimizing for efficiency does not
lead to diversity.

This example shows how T1 can be used to choose the
better of two selections of cores. We expect that in reality, a
processor designer will have access to tens of benchmarks and
hundreds of different cores. Since T1 is a quantitative measure,
the designer can implement a search algorithm that maximizes
diversity for the given benchmarks with a small number of
cores, while also taking into account benchmark priorities and
any other design requirements. Such a design methodology
that targets runtime flexibility is impossible without a way of
evaluating the diversity of the selected cores.

6 CONCLUSION

We have argued that a heterogeneous processor must contain a
diverse set of cores to provide flexibility at runtime. Achieving
diversity—a uniform spread of cores—is difficult because of
differences in how programs interact with cores’ microarchi-
tectures. By quantifying diversity, the KS test enables future
work in selecting core types for flexibility. Future work also
includes methods for determining how many of each type of
core is required, given multiprogrammed and multithreaded
workloads.
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