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Abstract—Neuromorphic hardware with non-volatile memory (NVM) can implement machine learning workload in an energy-efficient
manner. Unfortunately, certain NVMs such as phase change memory (PCM) require high voltages for correct operation. These
voltages are supplied from an on-chip charge pump. If the charge pump is activated too frequently, its internal CMOS devices do not
recover from stress, accelerating their aging and leading to negative bias temperature instability (NBTI) generated defects. Forcefully
discharging the stressed charge pump can lower the aging rate of its CMOS devices, but makes the neuromorphic hardware
unavailable to perform computations while its charge pump is being discharged. This negatively impacts performance such as latency
and accuracy of the machine learning workload being executed. In this paper, we propose a novel framework to exploit
workload-specific performance and lifetime trade-offs in neuromorphic computing. Our framework first extracts the precise times at
which a charge pump in the hardware is activated to support neural computations within a workload. This timing information is then
used with a characterized NBTI reliability model to estimate the charge pump’s aging during the workload execution. We use our
framework to evaluate workload-specific performance and reliability impacts of using 1) different SNN mapping strategies and 2)
different charge pump discharge strategies. We show that our framework can be used by system designers to explore performance and
reliability trade-offs early in the design of neuromorphic hardware such that appropriate reliability-oriented design margins can be set.

Index Terms—Neuromorphic computing, Non-voltaile Memory (NVM), Phase-Change Memory (PCM), wear-out, Negative Bias
Temperature Instability (NBTI), Spiking Neural Networks (SNNs), and Inter-Spike Interval (ISI).
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1 INTRODUCTION

A neuromorphic hardware consists of artificial neurons
and synapses to implement spiking neural networks

(SNNs) [1]. Emerging non-volatile memory (NVM) cells
organized into crossbars are used to store synaptic strengths.
Certain NVMs such as phase-change memory (PCM) re-
quire high voltages (∼ 3V −5V ) to read and program synaptic
strengths. These high voltages not only create reliability
issues for NVM cells in a crossbar, but also for the internal
CMOS devices of the on-chip charge pump [2], which gen-
erates these voltages. In this paper, we study one specific
high voltage related reliability issue of a charge pump in
the context of neuromorphic computing – that of threshold
voltage (Vth) stress. If the charge pump is activated too
frequently, its CMOS devices do not recover from stress,
accelerating their aging and eventually leading to failures.

Typically, a charge pump is several orders of magnitude
larger than the size of a crossbar [2]. To mitigate this
large size, system designers connect many crossbars to each
charge pump. Therefore, charge pump failures are a critical
bottleneck to the prolonged operation of a neuromorphic
hardware. Redundant charge pumps can improve reliability
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but increases hardware area. To improve reliability, stressed
charge pumps can also be forcefully discharged, where a
discharge operation involves applying a low voltage to all
CMOS devices in the charge pump. Once discharged, the
charge pump requires several cycles to boost its voltage
back, before it can safely be used to access NVM cells in
a crossbar. During this interval, crossbars are unable to
process spikes, introducing a spike propagation delay. This
delay negatively impacts performance (such as latency and
accuracy) of the SNN workload being executed [3].

Aging of a charge pump depends on how frequently
NVM cells in the hardware are activated, which is due to
spikes generated by the SNN workload being executed.

We propose a novel framework that allows system de-
signers to explore workload-specific trade-offs involving
reliability, performance, and design cost, early in the design
process such that appropriate reliability-oriented design
margins can be set. Our framework incorporates the CARL-
sim simulator [4] to first extract the precise times of spikes
in a SNN workload. We then use a characterized reliability
model to estimate aging of charge pumps based on their
activation times, which are influenced by the mapping of
synapses to crossbars and the connectivity of crossbars to
charge pumps in the hardware. We show that this frame-
work can be integrated inside 1) design-time techniques,
where neurons and synapses can be efficiently allocated to
different crossbars, balancing aging of all charge-pumps, 2)
run-time techniques, where stressed charge pumps can be
forcefully discharged at appropriate intervals, minimizing
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Fig. 1: An illustration of a typical neuromorphic architecture
and how SNNs are mapped to a crossbar in this architecture.

their aging without significantly hurting performance, and
3) architectural techniques, where the number of charge
pumps can be budgeted to achieve a target lifetime.

2 BACKGROUND AND MOTIVATION

SNNs are networks of spiking neurons interconnected via
synapses. A neuron fires a spike when its membrane volt-
age exceeds a threshold and subsequently the membrane
voltage is reset. The moment of threshold crossing defines
the firing time. SNNs can be used to implement many
machine learning techniques. One example is the supervised
approach, where a SNN is first trained with examples from
the field and then used for inference with in-field data.
Performance of supervised machine learning is measured
in terms of accuracy, which is assessed from inter-spike
intervals (ISIs) [5]. To define ISI, we let {t1, t2, · · · , tK} be a
neuron’s firing times in the time interval [0, T ]. The average
ISI of this spike train is given by [5]:

I =

K∑
i=2

(ti − ti−1)/(K − 1). (1)

A neuromorphic hardware, shown in Figure 1(a), consists of
6 crossbars, three of which are connected to charge pump 1
and the remaining three to charge pump 2. All crossbars are
interconnected using a time-shared interconnect. Figure 1(b)
illustrates the mapping of an SNN to a crossbar. Synaptic
weight w13 is programmed on the NVM cell P1 and w23

on P2. Output spike voltages x1 from N1 and x2 from N2
inject currents into the crossbar, which are obtained by mul-
tiplying a pre-synaptic neuron’s output spike voltage with
the NVM cell’s conductance at the cross-point of the pre-
and post-synaptic neurons (following Ohm’s law). Current
summations along columns are performed in parallel using
Kirchhoffs current law, and implement the sums

∑
j wijxi,

needed for forward propagation of neuron excitation xi.
Figure 2(a) shows the spike train generated by N1 of

Figure 1(b). Each spike injects current to read the conduc-
tance of the NVM cell P1. Figure 2(b) illustrates the charge
pump’s operating voltage to process this spike train. The
charge pump is operated at 1.8V for the entire 60ms interval,
boosting its voltage to 3V only to process spikes. Aging
of the charge pump is 8.3 units (see Section 3 for aging
computation) and the average ISI is 5.9ms (Equation 1).

Figure 2(c) illustrates the charge pump’s operating volt-
age when it is discharged to 1.2V after processing every
spike and boosted again to 1.8V before processing the
next. Once discharged, the crossbar becomes unavailable
to process spikes, introducing latency in processing the
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(a) Example spike train from N1 of Figure 1(b).
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(b) Charge pump voltage to process the spike train.

0 10 20 30 40 50 60 70
Time (ms)

1

2

3

Ch
ar

ge
 p

um
p 

vo
lta

ge
 (V

) ISI = 7.4ms and aging = 7.1 unit

(c) Charge pump reset to 1.2V after processing every spike.

Fig. 2: Illustrating the trade-off between charge pump aging
and SNN performance, considering PCM crossbars.

spike train. The average ISI increases to 7.4ms, compared
to 5.9ms in Figure 2(b). ISI deviation leads to accuracy loss [3].
Frequently discharging the charge pump, however, reduces
its aging to 7.1 units, compared to 8.3 units in Figure 2(b).
This reduction in aging leads to an improvement of mean-
time-to-failure (MTTF) of the charge pump by an average
8.7%. Thus, aging reduction improves a charge pump’s lifetime.

3 PROPOSED WORKLOAD-AWARE FRAMEWORK

We first review NBTI, which is a dominant reliability issue
in scaled technology nodes, and then present our proposed
framework for PCM-based crossbars. We use characterized
NBTI model [6]. Our framework can also be extended with
minimal efforts to consider 1) any NBTI model, 2) other
NVMs such as FeRAM and Flash, and 3) other reliability is-
sues such as time dependent dielectric breakdown (TDDB),
which is still the dominant one in older technology nodes.

NBTI aging manifests as 1) decrease in drain current
and transconductance, and 2) increase in off current and
threshold voltage. NBTI aging is accelerated at high tem-
perature and high oxide electric field. Recent works such
as [6] suggest that NBTI is the collective response of two
independent defects – the as-grown hole traps (AHTs) and
generated defects (GDs). AHTs and a small proportion of GDs
can be recovered by annealing at high temperatures if the
NBTI stress voltage is removed. We focus on GDs, which
contribute to permanent degradation of charge pumps. In
fact, once introduced, GDs cannot be eliminated. Their effect
can, however, be delayed by applying lower voltages (i.e.,
forcefully discharging stressed charge pumps).

To formulate NBTI aging, we divide the SNN execution
time [0, T ] into m equal intervals 0 = t0 < t1 · · · < tm = T ,
with [ti, ti+1) as the (i + 1)th interval and Vi is the charge
pump’s voltage in this interval. Reliability at the end of

SNN execution can be expressed as R(T ) = e
−
(∑m−1

i=0 G(Vi)
)β

,
where G(Vi) is the generated defect at voltage Vi, expressed
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Fig. 3: Framework to evaluate aging of charge pumps.

as power law, G(Vi) = g0 · (Vi−Vth)
m · (ti+1− ti)n and β, g0,m, n

are material-dependent constants [6]. We define NBTI aging
in a stressed charge pump as

A =

m−1∑
i=0

g0 · (Vi − Vth)
m · (ti+1 − ti)

n
, such that R(T ) = e

−Aβ
. (2)

Here (2) assumes all synapses are mapped to the same
crossbar, which is connected to a single charge pump. In
practice, however, 1) synapses are distributed across differ-
ent crossbars because a crossbar can accommodate only a
limited number of synapses and 2) a neuromorphic hard-
ware typically has more than one charge pump to limit the
power supply load. We now describe how to extend (2) to
incorporate these practical constraints.

We consider the SNN G, with N neurons and S synapses,
excited with an input over the time interval [0, T ]. We ar-
range the spikes in this interval by synapses they excite as

S = {τ11 , τ12 , · · · , τ1k1
}, {τ21 , τ22 , · · · , τ2k2

}, · · · , {τS1 , τS2 , · · · , τSkS}, (3)

where τsj is the jth spike on sth synapse of the SNN. We
introduce the following notation.

As: aging to process spike train {τs1 , · · · , τsks} on sth synapse

C: number of crossbars
L: number of charge pumps

M∈ RS×C :synapse-to-crossbar mapping, such that

mij ∈M =

{
1 if synapse i is mapped to crossbar j
0 otherwise

(4)

P ∈ RC×L:crossbar-to-charge pump mapping, such that

pjk ∈ P =

{
1 if crossbar j is powered by charge pump k
0 otherwise

(5)

Combining these two equations, we generate the synapse-
to-charge pump mapping as

mij · pjk =

{
1 if synapse i is powered by charge pump k
0 otherwise

(6)

The total aging of charge pump k is therefore

agingk =

S∑
i=1

C∑
j=1

mij · pjk · Ai (7)

Proposed Framework – Figure 3 illustrates our framework
to evaluate aging of charge pumps in a neuromorphic
hardware. We use CARLsim [4] to train SNN models.
The output of CARLsim are the trained weights and the
precise times of spikes on all synapses of the SNN S. A
SNN mapping approach such as [3] uses CARLsim output

to generate a synapse-to-crossbar mapping M, optimizing
some objective function. In [3], the objective function is
to minimize the number of spikes communicated between
crossbars, which leads to lower energy and latency on the
shared interconnect. Once the SNN is mapped to crossbars
of the hardware, its performance is obtained in terms of
the inter-spike interval I using (1). Using this synapse-to-
crossbar and crossbar-to-charge pump mapping, our novel
formulation in (7) evaluates the aging of all charge pumps
in the hardware when executing an SNN workload. This
design flow is shown using solid arrows.

Figure 3 also illustrates three future directions based on
this framework using dashed arrows. First, Aging Evalua-
tion, as developed in (7), can be combined with the SNN
Mapping step to generate an optimum mapping of the SNN
to the hardware that balances aging of all charge pumps.
This is shown by the dashed arrow labeled aging-aware
mapping. Second, crossbar-to-charge pump mapping can be
optimized to achieve a desired lifetime of charge pumps
for executing the SNN. This is shown using the dashed ar-
row labeled application-specific charge pump placement. Third,
strategies can be developed to discharge charge pumps at
run-time, improving their lifetime. This is shown in the
Discharge Management step.

4 EVALUATION RESULTS

This section presents evaluation results using our frame-
work. We use the neuromorphic hardware of Figure 1(a)
to evaluate the following SNNs [3], [7], [8], [9].

SNN Synapses Topology Spikes
ImgSmooth 136,314 FeedForward (4096, 1024) 17,600

EdgeDet 272,628 FeedForward (4096, 1024, 1024, 1024) 22,780
MLP-MNIST 79,400 FeedForward (784, 100, 10) 2,395,300
HeartEstm 636,578 Recurrent 3,002,223
HeartClass 2,396,521 CNN1 1,036,485

CNN-MNIST 159,553 CNN2 97,585
LeNet-MNIST 1,029,286 CNN3 165,997
LeNet-CIFAR 2,136,560 CNN4 589,953

1. (82x82) - [Conv, Pool]*16 - [Conv, Pool]*16 - FC*256 - FC*6
2. (24x24) - [Conv, Pool]*16 - FC*150 - FC*10
3. (32x32) - [Conv, Pool]*6 - [Conv, Pool]*16 - Conv*120 - FC*84
4. (32x32x3) - [Conv, Pool]*6 - [Conv, Pool]*6 - FC*84 - FC*10

4.1 Evaluating reliability of SNN mapping strategies
We use our framework to evaluate two state-of-the-art SNN
mapping strategies – SCO [10] and SpiNeMap [3], in terms
of performance (measured as change in ISI) and reliability
(measured as aging). Figure 4 illustrates the result of SCO,
normalized to SpiNeMap. SCO, which balances crossbar
utilization, has on average 16.4% lower aging (better life-
time) than SpiNeMap for these workloads. This is because
SpiNeMap explicitly minimizes spike latency on the shared
interconnect. To do so, some crossbars get more utilized than
others. Heavily utilized crossbars activate charge pumps
more frequently, causing their higher aging. Conversely,
SpiNeMap has lower ISI change (higher performance). SCO
has on average 21% higher change in ISI than SpiNeMap.
From a performance perspective, SpiNeMap is better than SCO,
while from a reliability perspective, SCO is better than SpiNeMap.

4.2 Discharging stressed charge pumps
Figure 5 illustrates aging and ISI with discharge intervals of
10ms, 50ms, and 100ms for the evaluated SNN workloads,
normalized to when charge pumps are stressed for the
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Fig. 4: Aging and ISI of SCO [10] vs. SpiNeMap [3].
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(a) Aging for different discharge intervals normalized to the aging when
charge pumps are not discharged.
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Fig. 5: Aging and ISI with different discharge intervals.

entire execution duration. We make the following three
key observations. First, aging is the lowest for discharge
interval of 10ms, while ISI variation is the highest. This is
because, with smaller discharge intervals, a charge pump’s
internal CMOS devices recover partially from stress and
therefore, the rate of aging reduces improving lifetime. The
performance is lower because of the delay introduced in fre-
quent charge pump discharge. Second, when the discharge
interval changes from 10ms to 100ms, aging increases, re-
ducing charge pump’s lifetime, and ISI variation reduces,
improving application performance. Third, aging of charge
pumps varies across different SNN workloads. For MLP-
MNIST, aging increases by 10% when the discharge interval
increases from 10ms to 100ms, while for LeNet-CIFAR,
aging increases by a factor of 2 for the same range. This
is because for MLP-MNIST, spikes are generated less fre-
quently due to sparsity of synaptic weights. There is there-
fore, no significant variation in aging when charge pumps
are discharged differently. The ISI variations are, however,
due to delay of spike propagation when charge pumps are
being discharged. We see no significant variations across
different workloads. Our framework enables exploration of
SNN workload-specific lifetime and performance trade-offs.

5 DISCUSSION AND FUTURE OUTLOOK

Aging-related defects in charge pumps constitute a critical
bottleneck to the prolonged operating lifetime of neuro-
morphic hardware. These defects are different from an
NVM cell’s endurance failures, which are due to repeated
programming of the cell. In recent prototypes, e.g. [11], PCM
endurance is in the order of 107 cycles (≈ 4-5 years lifetime).

A charge pump’s lifetime is ≈ 2-3 years operating at 3V sup-
ply. Impact-wise, aging issues in a neuromorphic hardware
arise during inference (reading of synaptic weights) and
training (update of synaptic weights) in supervised machine
learning, while endurance issues arise only during training.

To this end, we proposed a novel framework to evaluate
SNN workload-specific lifetime and performance trade-offs
in neuromorphic architectures. The framework incorporates
the CARLsim simulator to extract the precise time of spike
generation on all synapses of an SNN workload. Using this
timing information, together with 1) synapse-to-crossbar
mapping, and 2) crossbar-to-charge pump mapping, this
framework evaluates aging of different charge pumps when
executing an SNN workload. We use this framework to eval-
uate two state-of-the-art SNN mapping strategies in terms of
performance and reliability. We also demonstrated lifetime
and performance trade-offs by changing the charge pump’s
discharge interval. Our framework can also incorporate: 1)
other SNN simulators such as Brian [12], and 2) other
reliability issues such as electromigration [13].
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