
1

Systolic Tensor Array: An Efficient Structured-Sparse
GEMM Accelerator for Mobile CNN Inference

Zhi-Gang Liu, Paul N. Whatmough, Matthew Mattina
Arm ML Research Lab, Boston, MA, USA

Convolutional neural network (CNN) inference on mobile devices demands efficient hardware acceleration of low-precision (INT8)
general matrix multiplication (GEMM). The systolic array (SA) is a pipelined 2D array of processing elements (PEs), with very
efficient local data movement, well suited to accelerating GEMM, and widely deployed in industry. In this work, we describe two
significant improvements to the traditional SA architecture, to specifically optimize for CNN inference. Firstly, we generalize the
traditional scalar PE, into a Tensor-PE, which gives rise to a family of new Systolic Tensor Array (STA) microarchitectures. The
STA family increases intra-PE operand reuse and datapath efficiency, resulting in circuit area and power dissipation reduction of as
much as 2.08× and 1.36× respectively, compared to the conventional SA at iso-throughput with INT8 operands. Secondly, we extend
this design to support a novel block-sparse data format called density-bound block (DBB). This variant (STA-DBB) achieves a 3.14×
and 1.97× improvement over the SA baseline at iso-throughput in area and power respectively, when processing specially-trained
DBB-sparse models, while remaining fully backwards compatible with dense models.

Index Terms—Systolic Array, Convolutional Neural Networks, Inference, Matrix Multiplication, Hardware Accelerators, GEMM.

I. INTRODUCTION

There is currently huge interest in accelerating Convolutional
Neural Network (CNN) inference on mobile devices, for tasks
such as image classification, detection and segmentation. CNN
layers are typically implemented by lowering 2D convolution to
general matrix multiply (GEMM) kernels, which are typically
the runtime bottleneck when executed on CPUs, motivating
hardware acceleration. The systolic array (SA) is a special-
purpose processor for efficiently accelerating GEMM. The
SA consists of an array of MAC processing elements (PEs),
which communicate operands and results using local register-
to-register communication only, which makes the array very
efficient and easily scalable without timing degradation. These
advantages have led to their deployment in commercial
products, e.g. the Google Tensor Processing Unit (TPU) [1].

In this paper, we describe new SA microarchitectures
specifically targeting mobile CNN inference with narrow INT8
operands, summarized below:

• The classical SA is generalized into a family of Systolic
Tensor Array (STA) by replacing the traditional scalar PE
with Tensor-PEs. STAs have twice the area efficiency of
the baseline SA at iso-throughput.

• We introduce a novel Density-Bound Block (DBB)
structured-sparse matrix, which vastly improves load
balancing, with negligible accuracy loss on five CNNs.

• The STA is extended into STA-DBB, which supports DBB-
sparse models. Results demonstrate 3× area efficiency
and ∼ 2× power efficiency of the iso-throughput SA
baseline. STA-DBB also outperforms SMT-SA [2] for
INT8 operands, while remaining backward compatible
with conventional (dense) CNNs.

II. BACKGROUND AND RELATED WORK

Systolic Arrays for CNN Inference. Although the GEMM
kernel is obviously relevant to a wide range of workloads,

Fig. 1: Sparse matrices: (a) random sparse; (b) block sparse
(4×2 block); (c) density-bound block (DBB) (8 × 1 block).
Filled elements denote non-zero.

we focus here specifically on INT8 data type variants for
CNN inference [1]. INT8 microarchitectures are especially
challenging to optimize, as the datapath cost is relatively
low compared to data movement, in contrast to floating-point
data types which have a much higher relative datapath cost.
Our starting point is a TPU-like baseline [1], modified with:
(1) clock gating on zero operands, and (2) output-stationary
dataflow, which keeps the larger INT32 accumulators in place
and instead shifts the smaller INT8 operands.

Sparse Matrices for CNNs. CNN layers typically have
sparsity in both the weight data (known at compile time) and
activation data (known only at runtime). These zero operands
can be exploited by skipping operations with at least one
zero. This is a very compelling optimization because GEMM
kernels are typically compute bound (O(N3)). Therefore, any
computation on sparse data can potentially achieve an increase
in throughput and/or power consumption. Naturally occurring
sparsity is often referred to as random sparsity because there
is no constraint on the locations of the zeros (Fig. 1(a)).
Random sparsity can be very challenging to exploit, as (1)
it requires indexes to be computed and communicated for
each data item, and (2) load balancing challenges can lead
to low utilization. In contrast, structured block-sparsity [3],

ar
X

iv
:2

00
5.

08
09

8v
1 

 [
cs

.D
C

] 
 1

6 
M

ay
 2

02
0



2

(a) Conventional Systolic Array (SA) (b) Systolic Tensor Array (STA) (c) Systolic Tensor Array for DBB (STA-DBB)

Fig. 2: Systolic array (SA) microarchitectures, generalized by extending each scalar PE to a tensor PE which performs a matrix
multiplication on each clock cycle. Notation: A×B×C M×N denotes a M×N 2-D array of A×B×C tensor PE (dashed box).
Pipeline registers connect adjacent PEs, with only local data movement, which allows M×N to scale without timing degradation.

[4] (Fig. 1(b)) groups zero weights into coarse-grained blocks.
Block sparse approaches are compelling, but impose a strict
structure which results in poor accuracy on convolutional layers
when the block size is sufficiently large to achieve an advantage
in the hardware. Building on previous work, this paper proposes
the density-bound block (DBB) matrix format of Fig. 1(c).

Sparse Matrix Multiplication Accelerators. An effective
approach to exploit zero operands in a scalar PE is to clock-
gate the input operand registers to reduce datapath toggling
and therefore dynamic power (e.g. Eyeriss [5]). An alternative
is traditional sparse linear algebra, which involves storing
and computing on explicit indexes that accompany the non-
zero data. For example, EIE [6] implements a sparse matrix-
vector accelerator for fully-connected layers, and SCNN [7]
implements indexed sparse CNN layers. However, index-based
approaches have significant overhead for storing and computing
on the indexes themselves (e.g. a 10-bit index for each 16-bit
element in EIE). The overhead is especially severe for the
common case for CNNs: “medium” sparsity INT8 weights. In
contrast, fixed CNN feature extractors (FixyNN [8]) can very
efficiently exploit random sparse weights.

Relating more specifically to systolic arrays, Kung et
al. [9] demonstrated column combining of sparse matrices,
before processing on an SA architecture. While Shomrom et
al. [2] describe a method to process multiple sparse matrices
simultaneously in direct analogy to simultaneous multithreading
(SMT) on CPUs. In common with these papers, we build on
the basic SA architecture, but instead of random sparsity, we
exploit a novel structured-sparse approach with a Tensor-PE.

III. DENSE GEMM ACCELERATORS

A. Conventional Systolic Array (SA)

Fig. 2a shows the classic SA, widely deployed in products.
We develop our architecture on top of the SA, and use it
to baseline our results. We target mobile vision applications,
with INT8 operand registers (REG), and INT32 accumulator
registers (ACC). M and N describe the height and width of the
PE array, respectively. The top-to-bottom paths required to read
out the spatially-distributed accumulators are not illustrated.

SAs are highly efficient due to very high operand reuse
through local register-to-register communication. This is in

contrast to repeated SRAM reads for a dot-product machine [6],
or global configurable communication for a generalized spatial
array [5]. However, there is significant room for improvement
in the SA architecture by relaxing the ratio of operand registers
(REG) to MACs. Each MAC operation traditionally requires
two INT8 operand registers and one INT32 accumulator.

B. Systolic Tensor Array (STA)

We generalize the conventional SA (Fig. 2a) into the Systolic
Tensor Array (STA, Fig. 2b), by fusing a block of scalar PEs
into a single tensor PE . Each STA architecture contains M×N
tensor PEs, with each tensor PE consisting of a sub-array of
A × C MACs that each perform a dot-product operation on
B operand pairs. This is denoted uniquely as A×B×C M×N.
Fig. 2b shows a 2× 2 array of tensor PEs, each with a 2× 2
datapath of 4 operand pair dot-product units (DP4). Note
that the classic SA (Fig. 2a) is a special case of STA, with
A = B = C = 1 (denoted 1×1×1 M×N).

Fig. 3 shows the data flow of a 4 × 4 by 4 × 4 matrix
multiplication on a 2×2×2 2×2 STA. A significant efficiency
improvement is achieved here by reducing the number of
operand buffers per MAC by 2×, and the number of accumu-
lator buffers per MAC by 4×. To our knowledge, tensor PEs
have not been previously described in the SA context.

IV. SPARSE GEMM ACCELERATORS FOR CNNS

As described in Section II, both random and block sparse
approaches introduce significant trade-offs – random sparsity
is hard to exploit in hardware, and block sparsity significantly
impacts accuracy in CNNs. In this section, we propose an
alternative to the conventional block sparse matrix format.

A. Density-Bound Block (DBB)

Fig. 1(c) shows the proposed density-bound block (DBB)
matrix, which simply places an upper limit on the number
of non-zero (NNZ) elements in each block. For example,
Fig. 1(c) consists of 8 blocks of 8×1, each with up to 3 non-
zero values (NNZ ≤ 3). This is in contrast to conventional
sparse block (Fig. 1(b)), where each block is either entirely
unconstrained or all zero. DBB is a middle-ground between
random (Fig. 1(a)) and block (Fig. 1(b)) sparse formats, and



3

Fig. 3: Example 2×2×2 2×2 STA data flow. The tensor PE
(red dashed box) computes a 4×4 by 4×4 matrix multiplication.
Each input operand matrix is split into a 2×2 sub-matrix, with
columns (rows) of data in blue (green) fed into the array from
the left (top) edges over each clock cycle.

results in higher CNN accuracy with the same NNZ, because
the distribution of non-zero elements is significantly less
constrained. At the same time, the compute required from the
hardware is known a-priori for each block and high utilization
is guaranteed. A simple bitmask compression is used to encode
each block of 8 elements (one byte overhead per block), along
with the four bytes of non-zero data. This yields a 37.5%
reduction in weight memory footprint.

B. Systolic Tensor Array for DBB (STA-DBB)

Next, we add support to the STA architecture for DBB-
sparse weight matrices. Weight sparsity is easier to exploit than
activations, as the values are known ahead of time. The DBB
weight matrix upper bounds the number of non-zero operands.
Therefore, the number of physical MAC units required is no
greater than the DBB sparsity bound. For instance, if the DBB
block size is 8 with NNZ ≤ 4, each 8-input Dot Product
unit (DP8) only requires 4 MAC units instead of 8, which
represents a 50% reduction in MAC hardware at the same
throughput. This approach requires a multiplexer in font of
MAC to select the corresponding input feature map (activation)
based on the index of the non-zero weight.

Fig. 2c illustrates a 2×4×2 2×2 Sparse STA for DBB (STA-
DBB) with 4-input Sparse Dot Product (SDP4) unit, which
has 4-value vector activation inputs [A0, A1, A2, A3] from left
and a 50% DBB compressed weight inputs [W0,W1] and
associate 2-bit non-zero indices from top and accumulates the
dot product into accumulator (ACC). In each SDP4, we trade
two 8-bit multipliers for two 8-bit 4:1 multiplexers (MUX),
where a MUX costs significantly less than an 8-bit multiplier.
The array performs 16 effective MACs per clock cycle with
only 8 physical multipliers. The final results in the stationary
accumulators are read out from bottom of the array through
shift chains in four clock cycles, after the computation is

TABLE I: CNNs trained with 8-bit DBB-sparse weights.

Model Dataset Baseline Pruned Model Result
Acc.(%) Acc.(%) NNZ (%)1

LeNet-5 (DBB) MNIST 99.1 98.7 1.05K (25)
ConvNet (DBB) CIFAR10 86.0 85.3 26.8K (25)
MobileNetV1 (DBB) ImageNet 70.9 69.8 1.6M (50)
ResNet-50V1 (DBB) ImageNet 75.2 74.2 8.79M (37.5)
VGG-16 (DBB) ImageNet 71.5 71.4 5.39M (37.5)

AlexNet [10] ImageNet 57.4 57.5 2.81M (75)
VGG-192 [9] ImageNet –3 71.8 4.1M (12.6)

1Convolution layers. 2Modified VGG-19, ∼31M conv param. 3Not reported.

TABLE II: Throughput-normalized area and power efficiency
with 50% sparse activation at 1GHz. Normalized to SA 1x1x1
(baseline).

Design Model Sparsity Array Area Eff.1 Power Eff.1

SA-NCG2 [1] Dense 1×1×1 0.95 0.65
SA3 Dense 1×1×1 1.00 1.00
STA Dense 4×8×4 2.08 1.36
SMT-SA [2] Random (62.5%) T2Q4 1.21 0.80
STA-DBB DBB (50%) 4×8×4 3.14 1.97

1 Throughput normalized. 2 SA no clock gating. 3 Baseline clock-gated SA.

finished. The data flow is similar to Fig.3, except that the
matrix input from the top is 50% DBB-sparse. Notably, this
architecture still supports conventional dense GEMM at half
throughput, which will probably remain important to support
the widest range of workloads.

V. EVALUATION RESULTS

A. DBB-Sparse CNN Training Results

To demonstrate the feasibility of DBB models, we trained
five CNNs, applying conventional INT8 quantization and
amplitude-based pruning for VGG-16, MobileNetV1, ResNet-
50V1, 5-layer ConvNet and LeNet-5 on ImageNet, CIFAR10
and MNIST datasets. The validation results are given in Table I.
The accuracy loss is in the range of 0.1% to 1.1% across all
five DBB models, which include both relatively big examples
(ResNet-50V1) and parameter-efficient models (MobileNetV1).

B. Hardware Accelerator Results

In this section, we evaluate four architectures: (1) conven-
tional TPU-like SA baseline (1×1×1) with a dense model;
(2) optimized STA with dense model; (3) STA-DBB with a
50% DBB-sparse model, and (4) SMT-SA with 62.5%-sparse
model [2]. Each design was implemented in Verilog using a
parameterized RTL generator, and synthesized in a TSMC 16nm
FinFET process using Synopsys Design Compiler with a 1GHz
clock. For power simulation we use Synopsys PrimeTimePX
with estimated clock tree and fully-annotated switching activity.

Fig. 5 shows area and power results for the baseline dense
SA (with and without clock gating for zero operands), and
improved STA designs, across the design space of tensor-PE
dimensions that meet a 1GHz clock frequency. Results confirm
that the traditional SA (1×1×1) has 36% area and 54.3%
power attributed to registers alone. The optimized STA designs



4

Fig. 4: Normalized area and power efficiency (iso-throughput, higher is better) for typical layers of ResNet50 V1 model, trained
at 8-bits, 62.5% sparse weight, 1×8 DBB (conv1 remains dense). Area and power efficiency normalized to SA 1x1x1 with 50%
average activation sparsity, closest to the blk1/unit3/conv3 layer in this ResNet50 example.

Fig. 5: Area and power at iso-throughput (lower is better) for
STA and STA-DBB (50% sparse), with cell breakdown.

show improvements of as much as 47% area and 73% power at
the design space sweet spot (4×8×4). The flip-flop reduction
shown by the blue portions in Fig. 5, comes from reduced
operand pipeline buffers and accumulator flip-flops sharing. The
reduction in combinational logic (yellow), is due to efficiencies
of the adder tree in the tensor MAC (dot-product).

STA-DBB further enhances efficiency by taking advantage of
DBB-sparse models. Fig. 5 shows the STA-DBB designs with
DBB-sparse weight compression reduce the area and power
per MAC by up to 30%, over and above corresponding FM-
SA configuration. The reduction in combinational logic (blue),
comes from the 50% reduction in physical multipliers, while
the reduction in registers (yellow) and clock load (orange), is
from pipeline buffers saving.

We also evaluated Simultaneous Multi-Threading Systolic
Arrays (SMT-SA) [2], which process random-sparse weights,
and use a FIFO to overcome the load imbalance challenge.
We implemented the T2Q2 configuration, which denotes 2
threads with a 2-deep FIFO queue, as well as the T2Q4, T4Q2
and T4Q4, all with INT8 operands and INT32 accumulation.
Note that for INT8, SMT-SA which exploits random sparsity
is actually less efficient than STA, which doesn’t even exploit
sparsity. This is due to the overhead that the FIFOs introduce,
relative to the size of the INT8 datapath logic.

Fig. 4 shows the efficiency of some typical layers from the
ResNet50 v1 model. SMT-SA area and power efficiencies are
0.8×-1.21× the SA baseline and around 2× lower than the
corresponding STA and STA-DBB architectures with 62.5%
sparse weights and 39-75% sparse input feature maps. The

high hardware cost of the FIFO in SMT-SA designs cancels
out the benefit of sparsity for INT8 operands.

Table II summarizes the area and power efficiency results
of the best configurations of the four architectures studied.

VI. CONCLUSION

The systolic array (SA) is an efficient, highly parallel
architecture widely used to compute matrix multiply. In
this paper, we improved on the classic SA architecture by
specifically optimizing for efficient CNN inference. Firstly,
we generalize the traditional SA by introducing a tensor PE
with multiple parallel operations. This systolic tensor array
(STA) architecture significantly reduces circuit area and power
dissipation by as much as 2.08× and 1.36× respectively
compared a conventional clock gated SA, due an increase
in intra-PE operand reuse and datapath efficiency, reducing
operand register count and clock tree load. Secondly, we further
extend the STA architecture to efficiently accelerate models
trained with density-bound block (DBB). This new sparse
architecture (STA-DBB) shows 3.14× and 1.97× improvement
in area and power respectively when processing specially
trained DBB-sparse models, while remaining fully backward
compatible with traditional dense models.

REFERENCES

[1] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Int. Symp. on Computer Architecture (ISCA), 2017.

[2] G. Shomron, T. Horowitz, and U. Weiser, “SMT-SA: Simultaneous
multithreading in systolic arrays,” IEEE Comput. Archit. Letters, 2019.

[3] R. Sredojevic et al., “Structured Deep Neural Network Pruning via Matrix
Pivoting,” arXiv e-prints, p. arXiv:1712.01084, Nov 2017.

[4] S. Narang, E. Undersander, and G. Diamos, “Block-Sparse Recurrent
Neural Networks,” arXiv e-prints, p. arXiv:1711.02782, Nov 2017.

[5] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” in
Int. Solid-State Cir. Conf. (ISSCC), 2016.

[6] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in Int. Symp. on Computer Architecture (ISCA), 2016.

[7] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural nets,” in Int. Symp. on Comp. Arch. (ISCA), 2017.

[8] P. N. Whatmough et al., “FixyNN: Efficient Hardware for Mobile
Computer Vision via Transfer Learning,” in 2nd Conference on Machine
Learning and Systems (SysML), 2019.

[9] H. Kung, B. McDanel, and S. Q. Zhang, “Packing sparse convolutional
neural networks for efficient systolic array implementations: Column
combining under joint optimization,” in Int. Conf. on Arch. Support for
Programming Languages and Operating Systems (ASPLOS), 2019.

[10] W. Wen et al., “Learning Structured Sparsity in Deep Neural Networks,”
in Adv. in Neural Information Processing Systems (NIPS 2006), 2016.


	I Introduction
	II Background and Related Work
	III Dense GEMM Accelerators
	III-A Conventional Systolic Array (SA)
	III-B Systolic Tensor Array (STA)

	IV Sparse GEMM Accelerators for CNNs
	IV-A Density-Bound Block (DBB)
	IV-B Systolic Tensor Array for DBB (STA-DBB)

	V Evaluation Results
	V-A DBB-Sparse CNN Training Results
	V-B Hardware Accelerator Results

	VI Conclusion
	References

