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Abstract—Disaggregated memory leverages recent technology advances in high-density, byte-addressable non-volatile memory and
high-performance interconnects to provide a large memory pool shared across multiple compute nodes. Due to higher memory density,
memory errors may become more frequent. Unfortunately, tolerating memory errors through existing memory-error protection
techniques becomes impractical due to increasing storage cost. This work proposes replication-aware memory-error protection to
improve storage efficiency of protection in data-centric applications that already rely on memory replication for performance and
availability. It lets such applications lower protection storage cost by weakening the protection of each individual replica, but still realize
a strong protection target by relying on the collective protection conferred by multiple replicas.

Index Terms—Disaggregated memory, non-volatile memory, low-latency interconnects, memory error protection, chipkill-correct.

✦

1 INTRODUCTION

R ECENT technology advances in high-density, byte-
addressable non-volatile memory (NVM) and low-latency

interconnects have enabled building rack-scale systems with a
large disaggregated memory pool shared across decentralized
compute nodes [4], [6]. Unlike conventional rack-scale systems
that are built with monolithic servers, each of which contains
memory that is directly attached to the processor (Figure 1(a)),
disaggregated architectures decouple the processor from mem-
ory into separate compute and memory nodes (Figure 1(b)).
This improves (i) memory utilization as memory is shared
across multiple compute nodes, and (ii) failure isolation as
compute and memory nodes can fail independently.

A key challenge with building a large disaggregated mem-
ory pool based on NVM is efficiently tolerating memory errors
at scale. Nanoscale NVM technologies can be denser but also
less reliable than DRAM due to their higher random raw bit
error rate (RBER) [7]. Thus, while adopting NVM technologies
is desirable as it enables disaggregated memory to scale to
petabyte-order capacities, it also makes memory errors more
frequent [1]. Hence, efficient techniques for mitigating memory
errors will be key to building cost efficient disaggregated mem-
ory systems. Unfortunately, traditional mitigation techniques,
such as parity and chipkill-correct, which can detect or correct
memory errors, incur expensive storage costs. Recent work has
explored optimizations for chipkill-correct for NVM [7], but
storage cost remains expensive (∼ 27%).

In this paper, we make the case for Replication-Aware Memory
Protection (RAMP). RAMP seeks to further improve storage
cost of memory error protection by leveraging the insight
that many data-centric applications targeted by disaggregated
memory [4], such as key-value stores and data analytics,
replicate data to improve performance and availability. Such
applications will likely continue to replicate their data across
multiple memory nodes in disaggregated memory to avoid a
memory node from becoming a performance bottleneck or a
single point of failure. For example, a recent disaggregated key-
value store [6] and a disaggregated operating system (OS) [5]
replicate memory contents to improve availability.

RAMP lets applications employing replication to control the
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Fig. 1. Rack-scale non-volatile memory (NVM) architectures

hardware-level memory error protection of individual replicas
at each memory node to reduce storage overhead. Instead of
trying hard to prevent uncorrectable memory errors within a
single memory node, an application can accept the possibility of
uncorrectable errors, and employ weaker but lower-overhead
resilience within individual memory nodes while relying on
the collective protection conferred by the presence of available
replicas in other memory nodes to tolerate a memory error.

To help applications determine the right protection strength
of individual replicas, a key contribution of this paper is an an-
alytical model that models the impact of individual protection
strength on the collective protection strength. We demonstrate
the utility of our model by applying it to a recent chipkill-
correct design [7]. By weakening the chipkill protection of each
individual replica, we reduce storage cost from 27% down to
17.7% while we attain the same protection level as the original
design through the collective protection of multiple replicas.

2 DISAGGREGATED MEMORY

2.1 Enabling technologies and architecture

Disaggregated memory builds on recent technology advances
on two fronts. First, non-volatile memory (NVM) technologies,
such as phase-change memory (PCM), resistive random access
memory (ReRAM), and commercially available Intel Optane
DC Persistent Memory (DCPMM), provide byte-addressable
persistent storage accessible via load/store instructions, rather
than I/O requests. In addition to non-volatility, these technolo-
gies provide the potential for increased memory density and
increased energy efficiency relative to DRAM. DCPMM has 2x
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higher read latency and 8x lower write bandwidth than DRAM,
but it is up to 10x faster than Flash. Second, high-performance
interconnects provide sub-microsecond access latency to re-
mote memory [2], [4], while future interconnects based on
silicon photonics are expected to further reduce latency [2].

These two technology advances provide the building blocks
for constructing disaggregated memory architectures, where
decentralized compute and memory nodes are interconnected
by a high-performance system interconnect. Compute nodes
mainly provide processing capability, but they also include a
small amount of DRAM memory used as a local cache. Memory
nodes provide memory capacity in the form of NVM by attach-
ing standard NVM subsystems to the network. Although the
microarchitecture design of NVM subsystems is more complex
than conventional DRAM subsystems, at a high level, NVM
subsystems follow similar chip structure and system organiza-
tion as DRAM subsystems: a memory controller is connected
to memory modules through one or more channels, and each
module provides an interface for accessing data stored across
multiple chips, with chips comprising arrays of NVM bit cells.

2.2 Memory failures
Disaggregation provides separate fault domains between pro-
cessing and memory, meaning that the failure of a compute
node does not render disaggregated memory unavailable, and
vice versa, that is when a memory node fails, compute and
other memory nodes continue to function. In this work, we
focus on memory node failures caused by memory errors.

Memory errors may occur due to a variety of reasons. First,
memory errors may occur due to NVM bit cell errors. Bit errors
are random in nature and can be caused by permanent faults
due to limited and variable endurance, and transient faults due
to resistance drift and read disturb. Raw bit error rate (RBER)
in PCM and ReRAM is significantly higher than in DRAM and
ranges from 10−3 to 10−5 [7], depending on the technology and
time since last write or refresh. Second, memory errors may also
occur when other components of the memory subsystem fail.
Since NVM subsystems follow similar organization as DRAM
subsystems, NVM subsystems will likely suffer from similar
failures, including memory controller and memory channel
failures due to faults in logic and transmission circuitry.

To protect against memory errors, NVM subsystems main-
tain error correcting codes (ECC) computed over data. These
codes can detect and correct a small number of errors. For
example, single error correction double error detection (SEC-
DEC) uses parity to detect up to two-bit errors or correct a
single-bit error. Chipkill uses wider ECC to protect against
multi-bit errors and chip failures. Detectable but uncorrectable
memory errors (DUE), which are detected but cannot be
corrected by ECC, can cause memory node failures. Non-
detectable memory errors (NDE), which are non-detected and
potentially miscorrected by ECC, do not cause memory node
failures but may cause silent data corruption (SDC), which
is also higly undesirable. For dense NVM with high RBER,
simply extending existing memory protection mechanisms with
stronger codes to achieve a low uncorrectable bit error rate
(UBER) and low SDC rate incurs prohibitive storage over-
heads [7]. These overheads remain significant (∼ 27%) despite
recent efforts on improving storage efficiency [7].

3 REPLICATION-AWARE MEMORY-ERROR PROTECTION

We propose a flexible software-defined protection architecture
called Replication-Aware Memory-error Protection (RAMP) to ef-
ficiently tolerate memory errors due to random bit cell errors
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Fig. 2. RAMP architecture.

in disaggregated memory. We focus on random bit cell errors,
as we expect these to represent the majority of memory errors
because of the high RBER of high-density NVM.

RAMP enables co-designing application-level replication
together with hardware-level memory protection to improve
storage efficiency. Applications that maintain multiple replicas
across memory nodes can employ weaker but lower-storage-
overhead ECC within individual replicas. While weaker ECC
increases failure rate of individual replicas, applications can
rely on the multiple choices offered by available replicas in
other memory nodes to correct a memory error. For example,
Figure 2 shows three applications A, B, and C with different
degrees of replication and levels of protection. Application A
maintains three replicas per data item so it uses weak ECC,
relying on the collective protection of multiple replicas to
tolerate the increased per-replica error rate. Application C uses
no replication so it deploys strong ECC as it relies exclusively
on ECC to tolerate memory errors.

3.1 Architecture
Figure 2 shows RAMP’s system architecture. Compute nodes
communicate with memory nodes through a control plane and
a data plane. Each memory node exposes its local NVM by
attaching its memory controller (MC) to the control and data
plane via a network interface card (not shown). An application
running on a compute node uses the control plane to dynami-
cally configure hardware-level memory error protection at the
memory nodes to provide a target UBER and SDC rate. The
application configures memory protection method (e.g., SEC-
DEC, chipkill) and code strength at the granularity of indi-
vidual pages. RAMP supports page-granularity protection by
augmenting the virtual memory page table and TLB to include
protection information for each page. After configuration,
the application uses the data plane to access data stored in
the memory nodes using fast one-sided remote DMA (RDMA)
reads and writes. The memory controller processing the RDMA
request uses the page protection information to identify which
protection technique to use for any given memory access.

Memory nodes report DUEs to compute nodes for further
handling. After reporting, a memory node remains opera-
tional and continues to serve memory accesses to non-failed
memory regions, thus improving availability. Memory nodes
leverage existing hardware error reporting mechanisms, such
as Intel Machine Check Architecture (MCA), to report DUEs.

3.2 Tolerating memory errors through replication
RAMP targets applications that already employ replication
for performance and availability, enabling them to leverage
replication to correct DUE errors efficiently. RAMP leaves the
implementation of the replication method to the application for
flexibility, dictating only some minimal requirements.
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TABLE 1
Analytical model symbol notation

Symbol(s) Description
c, b Cache-line size and physical-block size
pc,due, pc,nde Cache-line failure probability due to DUE and NDE
pb,due, pb,nde Physical-block failure probability due to DUE and NDE
plb,due Logical-block failure probability due to DUE

For each replicated data item, an application maintains
multiple replicas across memory nodes. Applications map each
replica to a memory node and memory region, and configure
the hardware protection strength of each replica to meet a target
UBER and SDC rate. Applications may track and blacklist failed
memory regions to avoid mapping replicas to regions with
known errors. When an application trying to access a data item
faces a DUE, it attempts to correct the memory error using
another replica.

Applications can implement any block-level static homo-
geneous replication method, including primary-backup repli-
cation, chain replication, quorum-based replication, and MDS
erasure coding. Static requires a fixed number of replicas whose
protection strength does not change dynamically, thus relieving
RAMP from having to support frequent protection changes.
Homogeneous requires all replicas to have the same protection
strength, thus simplifying replica strength reasoning.

3.3 Choosing replica protection strength
A key challenge in applying RAMP is choosing the right
hardware protection strength of individual replicas. Weakening
hardware-level protection of individual replicas lowers storage
cost but makes DUEs and NDEs more frequent, increasing
UBER and SDC rates respectively. We can recoup the lost UBER
by correcting a DUE using available replicas, at the expense
of a performance overhead to access and process additional
replicas. However, we cannot always rely on replicas to recoup
the lost SDC rate. This is because a NDE that silently corrupts
data may not trigger replication-based correction, unless the
application can detect the error through other means, such as
checksumming [8]. Hence, SDC rate may limit how much we
can weaken individual replica strength.

To help application and system designers choose protection
strength, we develop an analytical model that estimates the
expected reliability and expected performance overhead when
using available replicas to correct a DUE. For the reliability,
we estimate the combined DUE resulting from using replicas
to correct a memory error. Because NDE does not benefit from
replication, we do not compute a combined NDE. However,
we do estimate the NDE of each individual replica as a lower
reliability bound. For the performance overhead, we compute
the average number of additional replicas that are read to
correct a memory error. We assume that reading and processing
each replica contributes fixed network bandwidth and CPU
overhead per replica.

Our analytical model targets block-level replication, which
is a common replication approach. The model differentiates
between logical and physical blocks. The logical block is the
unit of recovery, that is the smallest unit of data that can be
recovered by the replication protocol. To enable recovery, a
replication protocol maps a logical block to multiple physical
block replicas stored across multiple memory nodes. Reading a
logical block may involve reading one or more physical blocks.

The model uses the symbol notation shown in Table 1.
Cache-line failure probability is the probability to fail when
reading a cache-line worth of data from the memory system.
This probability depends on the memory protection scheme

and the RBER of the NVM technology. Although the RBER
in NVM increases with the amount of time since last write
or refresh, to simplify our model, we use a single worst-case
value that is based on the RBER at the end of the refresh
period. Physical-block failure probability is the probability to
fail when reading a physical-block worth of data from the
memory system. Successfully reading a physical block entails
successfully reading all the cache lines that comprise the block.
We can derive the physical-block failure probability as follows:

pb,due = 1− (1− pc,due)
b/c and pb,nde = 1− (1− pc,nde)

b/c

We next study two common application-level redundancy
schemes: primary-backup replication and erasure coding.
Primary-backup replication: For each logical block, the repli-
cation protocol maintains a primary physical block and a se-
quence of N-1 backup physical replica blocks. When a compute
node needs to read a logical block, it first reads the primary
physical block. If the read fails because of a DUE, then it tries
the next backup physical block in the sequence, continuing this
process until it successfully reads a block. When the compute
node exhausts trying all available physical blocks without
successfully reading one, the logical-block read fails with an
uncorrectable memory error.

The probability to have a DUE when reading a logical block
is the joint probability of all physical-block reads to fail:

plb,due = pb,due
N

The average number of additional physical blocks that are
read after failing to read the first physical block is:

ar = −1 +

N−1∑
i=0

pb,due
i(1− pb,due)(i+ 1)

Erasure coding: Erasure coding provides redundancy without
the overhead of complete replication. Erasure coding divides a
logical block into K physical blocks and recodes them into N
physical replica blocks, where N > K. When a compute node
needs to read a logical block, it can perform the read using any
K physical blocks of the N physical blocks. If the compute node
fails to read any of the physical blocks (due to an uncorrectable
memory error), then it tries another physical block. When the
compute node exhausts trying all available physical blocks
without successfully reading K blocks, the logical-block read
fails with an uncorrectable memory error.

The probability to have a DUE when reading a logical block
is the probability to have at least N-K+1 physical blocks fail due
to a DUE:

plb,due =

N∑
i=N−K+1

(
N

i

)
pb,due

i(1− pb,due)
N−i

The average number of additional physical blocks that are
read after failing to read any of the first K physical blocks is:

ar = −K+

N−K∑
i=0

(
N

K + i

)(
K + i− 1

i

)
pb,due

i(1−pb,due)
K−1(K+i)

where each sum term is the number of ways in which we
can read physical blocks multiplied by the probability to have
physical blocks fail due to DUE multiplied by the number of
physical blocks read.

4 REPLICATION-AWARE CHIPKILL-CORRECT

We use our analytical model to study trade offs between relia-
bility and storage overhead for a recent chipkill design [7]. The
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Fig. 3. DUE, NDE, and storage overhead for different chipkill protection
schemes. The solid rectangle (in the top-left figure) marks the DUE and
storage overhead of the original chipkill design [7]. NDE is shown only
for baseline chipkill as it is independent of replication and identical for all
chipkill schemes.

design achieves storage efficiency through a two-tier protection
scheme: (i) a performance tier reuses the chip failure protection
bits to opportunistically correct bit errors at high performance,
and (ii) a storage-optimized tier uses long ECC codewords
to correct at low storage cost bit errors that are detected but
uncorrected by the performance tier. The storage-optimized
tier uses a BCH(2312,2048,22) code for each ECC codeword.
BCH(n,k,t) uses a codeword of length n = k + t(⌈log2(k)⌉+ 1)
to correct t bad bits when protecting k bits of data [7].

We show how we use our model to further optimize the
storage-optimized tier. First, we need to compute the base
cache-line failure probabilities of the storage-optimized tier. We
compute the cache-line failure probability due to DUE as the
the probability that the storage-optimized tier fails to correct
multiple bit errors in the BCH codeword (which happens when
there are at least t bit errors):

pc,due =

n∑
i=t+1

(
n

i

)
RBERi ·RBERn−i

We compute the cache-line failure probability due to NDE
following the analysis of Kim and Lee [3]. We assume an NVM
technology with RBER = 2× 10−4, as in [7].

We then use our model to estimate the combined DUE
rate resulting from using available replicas to correct DUEs.
We study three protection schemes: a baseline scheme that
relies solely on chipkill (without redundancy) to protect blocks
and two application-level redundancy schemes. For the two
redundancy schemes, we choose parameters so that they can
tolerate up to two replica failures (following standard practice),
that is N=3 for primary-backup replication and N=5 and K=3
for erasure coding. For all three schemes, we vary storage
overhead by varying the strength of the BCH code used by
the storage-optimized tier to protect individual replica blocks.
We vary strength by varying the number of t bit errors that
can be corrected by the BCH code. We assume uniform access
to all logical blocks and that all physical blocks are equally
vulnerable to memory errors. All replicas use the same ECC.

Figure 3 plots combined DUE rate and NDE rate of indi-
vidual physical blocks as a function of storage overhead. For
each replication scheme, the storage overhead is calculated over
a corresponding baseline that employs the same replication

scheme but without chipkill protection. For the top two figures,
we use a physical block size equal to the cache line size, that is
64 bytes. For the bottom-left figure, we vary the block size and
plot the storage overhead sustained to achieve the same level
of DUE as the original chipkill design. For the bottom-right
figure, we vary the number of replicas and plot the storage
overhead sustained to achieve the same level of DUE as the
original chipkill design.

We observe that both primary-backup replication and era-
sure coding can achieve the same level of DUE as the original
ckipkill design (∼ 10−33 DUE rate), albeit at about 9% less over-
head. For a target SDC rate of 10−22 [7], we need to provision
an extra 2.4% overhead, bringing the storage overhead savings
down to 6.6%. Although not shown, the relative performance
overhead is negligible, less than 10−11. Moreover, we observe
diminishing returns in storage-overhead-savings as we increase
the number of replicas, suggesting that RAMP could be more
beneficial with low replication factors. Overall, these results
confirm our main hypothesis: by weakening the protection of
each individual replica, we can lower the storage overhead
while we can rely on the combined protection conferred by
multiple replicas to meet a stronger protection target.

5 CONCLUSION

We presented RAMP, our early work on efficiently tolerating
memory errors in disaggregated memory systems based on
high-density NVM. RAMP gives applications (that employ
replication for availability and performance) the flexibility to
relax the protection strength of memory protection. Our pre-
liminary results show that such flexibility can bring notable
savings in storage cost without sacrificing overall protection.
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