IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 1, JANUARY-JUNE 2022 17

Lightweight Hardware Implementation of
Binary Ring-LWE PQC Accelerator

Benjamin J. Lucas, Ali Alwan, Marion Murzello,
Yazheng Tu, Pengzhou He ", Andrew J. Schwartz",
David Guevara, Ujjwal Guin“, Member, IEEE,

Kyle Juretus™, Member, IEEE, and
Jiafeng Xie™”, Senior Member, IEEE

Abstract—Significant innovation has been made in the development of public-key
cryptography that is able to withstand quantum attacks, known as post-quantum
cryptography (PQC). This paper focuses on the development of an efficient

PQC hardware implementation. Specifically, an implementation of the binary
Ring-learning-with-errors (BRLWE)-based encryption scheme, a promising lightweight
PQC suitable for resource-constrained applications, is proposed. The paper first
develops the mathematical formulation to present the proposed algorithmic process. The
corresponding hardware accelerators are then described in detail. Finally, comparisons
with previous implementations are provided to demonstrate the superior performance of
the proposed design. For instance, the proposed low-complexity accelerator has 34.7%
less area-delay product (ADP) than the state-of-the-art design for n = 256 in the
field-programmable gate array (FPGA) platform. Apart from the efficiency of the
hardware architectures, the proposed design also has a complete input/output
processing setup, and thus is feasible for emerging lightweight applications.

Index Terms—Binary Ring-LWE, complete processing setup, hardware design,
lightweight post-quantum cryptography

<+

1 INTRODUCTION

A majority of the current public-key cryptosystems, such as Rivest

Shamir Adleman (RSA) and Elliptic Curve Cryptography (ECC),
have been proven to be insecure against quantum attacks [1], [2].
With the view that large-scale quantum computers will be avail-
able in the next 12-15 years, the National Institute of Science and
Technology (NIST) has started the standardization process of post-
quantum cryptography (PQC) to neutralize quantum attacks [3].
Among all the proposed schemes, lattice-based PQC is one of the
most promising categories due to its small implementation com-
plexity and strong security proof [3], [4], [5].

Many lattice-based schemes are based on the learning-with-errors
(LWE) problem (standard LWE) or its variants such as Ring-LWE (ideal
LWE) [4]. The Ring-LWE based scheme uses the arithmetic operation
over ring Z,/(x" + 1) (smaller computational complexity than the stan-
dard LWE) and hence is widely studied in [5], [6], [7], [8], [9], [10]. A
lightweight variant of Ring-LWE, known as binary Ring-LWE
(BRLWE), was introduced in [11] to target resource-constrained applica-
tions. The BRLWE-based scheme deploys binary errors to achieve

e Benjamin]. Lucas, Ali Alwan, Marion Murzello, Yazheng Tu, Pengzhou He, Kyle
Juretus, and Jiafeng Xie are with the Department of Electrical and Computer Engi-
neering, Villanova University, Villanova, PA 19085 USA. E-mail: {blucas6, aalwan,
mmurzell, ytul, phe, kyle.juretus, jiafeng.xiej@villanova.edu.

o Andrew J. Schwartz and David Guevara are with the Department of Computer Sci-
ence, Villanova University, Villanova, PA 19085 USA.

E-mail: {aschwar7, dguevaraj@villanova.edu.

o Ujjwal Guin is with the Department of Electrical and Computer Engineering,

Auburn University, Auburn, AL 36849 USA. E-mail: ujjwal.guin@auburn.edu.

Manuscript received 3 Feb. 2022; accepted 16 Feb. 2022. Date of publication 18 Mar.
2022; date of current version 31 Mar. 2022.

The work of Jiafeng Xie was supported by NSF under Grants SaTC-2020625 and
in part by NIST-60NANB20D203. This work received funding from Villanova
University’s Falvey Memorial Library Scholarship Open Access Reserve (SOAR)
Fund.

(Corresponding author: Jiafeng Xie.)

Digital Object Identifier no. 10.1109/LCA.2022.3160394

smaller complexity than the standard Ring-LWE based scheme, but is
able to retain sufficient security for lightweight applications.

Prior Work. The ability of BRLWE-based scheme to achieve a
lightweight implementation has led to a variety of previous imple-
mentations. The first software implementation of the BRLWE-
based PQC was carried out in [11]. An efficient hardware structure
for the BRLWE-based scheme decryption phase was proposed in
[12]. A pair of high-speed and low-speed structures were then
developed in [13]. A new high-speed BRLWE-based hardware
structure was presented in [6]. Recently, a new compact hardware
structure was proposed in [14]. Additionally, one high-speed
BRLWE-based PQC hardware structure was presented in [15].
Another BRLWE-based PQC arithmetic circuit was proposed in
[16]. A low-speed architecture was reported in [17]. A fault-resis-
tant software implementation [18] and the design to detect faults
[19] (based on [13]) have also been proposed. However, the specific
focus of these implementations prevents them from being included
in the comparison with the standard implementations.

While significant effort has been placed into BRLWE-based PQC
implementations, the existing designs still require significant improve-
ments to enhance usability. The existing structures, such as [13], [14],
[15], (i) the proposed structure still involves a complicated hardware
setup, or (i) do not include the necessary input processing compo-
nent for practical processing. An instance of issue (i) is observed in
[13] when two sign inversion cells are used to execute sign related
operations and an example of issue (i) includes [14] assuming one
input (2,048 bits when n = 256) is directly fed to an 8-bit n-to-1 MUX.

Contributions. This paper proposes a new lightweight BRLWE-
based PQC hardware implementation with (i) an efficient hard-
ware structure, and (ii) a complete processing setup, to address the
limitations of prior work. We have made three stages of coherent
interdependent efforts (main contributions):

e We have rigorously formulated the major arithmetic opera-
tion of the BRLWE-based scheme into the desired form to
derive the proposed algorithmic operation.

e We have obtained the novel hardware accelerators from
the proposed algorithmic operation based on efficient algo-
rithm-architecture co-optimization techniques.

e We have implemented the design and compared the
results with the competing solutions to demonstrate the
superior performance of the proposed structures.

The rest of the paper is organized as follows. Section 2 provides
the preliminary information. Formulation of the proposed algorithmic
strategy is presented in Section 3. Proposed hardware accelerators/
structures are described in Section 4. Complexity and comparison are
presented in Section 5. Conclusions are provided in Section 6.

2 PRELIMINARIES
The BRLWE-based PQC has three main phases [11], see Fig. 1.

e Key generation. Alice calculates p = r; — a -, and Bob gets
p (nlogyq) as the public key, where a is a global parameter
shared by Alice and Bob and r; and 75 (the secret key) are
randomly selected binary polynomials.

e Encryption. Bob uses errors (binary polynomials) e;, e, and
e3 to produce ciphertext ¢; and c,. m is obtained by multi-
plying each coefficient of the input m with ¢/2. ¢; and ¢,
both nlog,g-bit, are then sent to Alice.

e Decryption. Alice uses r» to recover the original message m
through the decoding process (cirs + ¢2), where a thresh-
old decoder returns ‘1" if the coefficient is in the range of
(g/4,3q/4), or “0’otherwise.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3461-4548
https://orcid.org/0000-0003-3461-4548
https://orcid.org/0000-0003-3461-4548
https://orcid.org/0000-0003-3461-4548
https://orcid.org/0000-0003-3461-4548
https://orcid.org/0000-0001-5946-4844
https://orcid.org/0000-0001-5946-4844
https://orcid.org/0000-0001-5946-4844
https://orcid.org/0000-0001-5946-4844
https://orcid.org/0000-0001-5946-4844
https://orcid.org/0000-0002-4819-8728
https://orcid.org/0000-0002-4819-8728
https://orcid.org/0000-0002-4819-8728
https://orcid.org/0000-0002-4819-8728
https://orcid.org/0000-0002-4819-8728
https://orcid.org/0000-0001-6588-4167
https://orcid.org/0000-0001-6588-4167
https://orcid.org/0000-0001-6588-4167
https://orcid.org/0000-0001-6588-4167
https://orcid.org/0000-0001-6588-4167
https://orcid.org/0000-0002-4814-1318
https://orcid.org/0000-0002-4814-1318
https://orcid.org/0000-0002-4814-1318
https://orcid.org/0000-0002-4814-1318
https://orcid.org/0000-0002-4814-1318
mailto:blucas6@villanova.edu
mailto:aalwan@villanova.edu
mailto:mmurzell@villanova.edu
mailto:ytu1@villanova.edu
mailto:phe@villanova.edu
mailto:kyle.juretus@villanova.edu
mailto:jiafeng.xie@villanova.edu
mailto:aschwar7@villanova.edu
mailto:dguevara@villanova.edu
mailto:ujjwal.guin@auburn.edu

18 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 1, JANUARY-JUNE 2022

a public parameter N

- R - =~
* (shared between two pames), Bob

ry: secret key

key generation:
ry,rz: polynomial (binary);

p=ri-ary; p: public key

encryption:
e1,62,e3: binary errors;
m=encode(m);
Cr=ae+ey; Cr=pe +testin;

C1,Co:
ciphertext

decrypnon
m= deCOde(C1fz+Cz)

Fig. 1. The BRLWE-based encryption scheme, based on [11].

Remark. The authors in [13] proposed to use an inverted
BRLWE-based scheme, where the integer coefficients are repre-
sented in the inverted range (—|4], |4] — 1), for the ease of using 2’s
complement. This paper also uses the same strategy.

Security of the BRLWE-Based Scheme. The BRLWE-based scheme
is based on the average-case hardness of the BRLWE problem [11].
It is also shown that the BRLWE-based PQC achieves 73-bits and
140-bits quantum security for the parameters of n = 256, ¢ = 256
and n = 512, ¢ = 256, respectively [20], which appropriately fits
lightweight applications [11], [12].

3 PROPOSED ALGORITHMIC OPERATION

One can conclude that a typical arithmetic operation involved
within the BRLWE-based PQC (Fig. 1) is a polynomial multiplica-
tion followed by two polynomial additions, represented as

W =GB+ D+ T mod f(z), @
where f(z)=2"+1, W= Z" Olwl‘ G=3 olgiivirD:Z:l Oldx,
T =31y tiw!, B=3Y""y b’ (t;,b; €{0,1}, and w;, g;, and d; are

log,¢-bit integers over ring Z,/(z" + 1)). While polynomial multi-
plication can be

GBmod f(z) = (Gby + - + Gb,_ 12" ') mod f(z), (2)

which can be further derived as (substituting 2" = —1)

GB mod f(z) = Gby
+ (797#1 + gox +--+ 911721"71)171 + -
+ (=91 — gom — -+ + gox")by, (3)

which is then transferred into (define U = GB mod f(z))

n—1

U :Zu,-xi = (gobo - gn—lbl - glbn—l)
=0
+ (9100 + gob1 — -+ — goby_1)x 4 - -
+ (gn-1b0 + Gn2b1 + -+ + Gobu_1)z" ", (4)

where u; is a log,¢-bit integer over ring. Then, we have

={by,b1,..., bo-1},
0 ={go, 7911717"'7791}’
G<1> ={g1,00r- =2 e e
G ={gn-1,9n-2,- -, 90}, (5)
where B = by, B(=by, ..., BQI = b,—;. Similarly, we have
G(u) 0, - qu)1 =—q,..., G::i) = go. Meanwhile, we can note

that one can Circularly shift the coefficients in GV (with the shifted
far-right coefficient’s sign inverted) to obtain GU*Y (0 < j <n — 1).

1981681 -1ys

|
i
output (Dec.)) |
i
i
A

register(7) T Iregister(8)
!

register 78
i
|
|

Fig. 2. Proposed hardware accelerator for BRLWE-based PQC. BHD: bit-level
half-adder. Dec.: decryption. SC: sign control.

Then, we have
S Werl ®

Then, we can have the proposed algorithmic operation as

Algorithm 1. Proposed Algorithmic Operation for BRLWE-Based
Encryption Scheme

Input: G, B, T, and D (G and D are log,g-bit integer
polynomials; B and T are binary polynomials;
Output: W =GB+ D+ T mod f(z) (f(z) = 2"+ 1);
Initialization step
1 Obtain v, =d +t, (0 < k<n—1);//V =317 vah
(vy, is log,¢-bit integer over ring)
2 Load (serially) G, B, and V into shift-registers;
372=0;
Main step
4 forj=n—1to0do
5 forzf()ton— 1d0
6 Z=7+ G
7 end
8
9
10

wj:7+vj;

Get GU=Y from GVYW; // until GO is obtained
end
Final step

11 Deliver the output w; serially; // serially delivered 1V

Note that the decryption phase needs a decoder function.

Primary Novelty of Algorithm 1. The primary novelty of the pro-
posed algorithmic operation, when compared with existing
work [13], [14], [15], lies in two aspects: (i) the algorithm contains
all the necessary operations for a complete BRLWE-based PQC
accelerator design (while existing work assumes certain/partial
operations, e.g., Line 2 and Line 9, are provided by outward
resources); (i) the algorithmic sequence has not been proposed
before. Besides, this algorithm can be mapped with low-speed/
high-speed structures (structural flexibility).

4 PROPOSED HARDWARE ACCELERATORS

Following Algorithm 1, we can have the proposed accelerator for
the BRLWE-based PQC as shown in Fig. 2. The major components
of the proposed accelerator are: the input loading SRs (red dotted
box), the major computation unit (green dotted box), and the con-
trol unit (purple dotted box). These components are described as
below, where the bit-width of the coefficient (integer polynomial)
is logyq = log,256 = 8.

Input loading SRs. Unlike prior designs (e.g., [14]) that assume
certain input operands are directly fed to the structure, the pro-
posed accelerator uses three SRs and one n-to-1 MUX to execute
complete input processing related operations. Based on Lines 1-2 of

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 1, JANUARY-JUNE 2022 19

“ ‘ shift- register

Wit

() Wo
o1 + % register

Q.
g s
T =
- e wy
I3 + 3
o @
o} <
«Q
&
@

“(register

w

TABLE 1
Comparison of Area-Time Complexities for the Proposed
and Existing BRLWE-Based PQC Architectures

design SR! MUX? SC AC latency? CIOPS*?
[13]° 1* 2 2 1 n’+n N
[14]° 3* 1 1 1 n? N
Fig. 2% 3 1 1 1 n® +2n Y
[13]6 1* 0 1 n n+1 N
Fig. 3° 4 0 0 n n+1 Y

wi(7), | wi(6)
1

JaysiBal -yiys

3

control
ctrl_mux unit

Fig. 3. The extended high-speed architecture version.

Algorithm 1, the coefficients of D and T" are added together (through
a bit-level half-adder (BHD)) to form a new polynomial to be serially
loaded into the SR. While the coefficients of B are serially loaded
into a circular shift-register (CSR) since the coefficients of B need to
be delivered to the major computation unit one by one (repeats n
times, Lines 4-6 of Algorithm 1). Lastly, a serial-in parallel-out SR is
used to feed all the coefficients of G to an n-to-1 MUX to produce the
correct output to the following computation unit (Line 6), as deter-
mined by the control signal “ctrl_mux_1". Note that the loadings of
the SRs/CSR are all controlled by the control unit.

Major Computation Unit. The entry of the major computation
unit is one AND cell (multiplication operation) followed by a 2-to-
1 MUX (the control signal “ctr] 2" determines if the output of the
AND cell or the coefficient of V' will be delivered to the following
sign control (SC) cell). The control signal to the MUX in the SC cell
(“ctrl_17) is also connected to the carry_in of the adder in the accu-
mulation cell (AC) according to the 2’s complement number
requirement when a negative sign is involved (see (5)). While AC
executes the accumulation operation of Line 6 of Algorithm 1 in
every n cycle and then adds one value from the SR (for V, Line 8)
to produce one output value w;. Note that a decoder (an XOR gate)
connecting with the two most significant bits of the register is used
to produce the output of the decryption phase.

Control Unit. A finite state machine (FSM) is used to constitute
the control unit. In total five states are used in the FSM, including
“reset”, “load”, “multiplication”, “addition”, and “done”. In total
n(n + 2) cycles are needed for the overall computation (the extra
one cycle is for the output delivery).

Extended High-Speed Architecture. The hardware accelerator of
Fig. 2 can be extended to obtain a high-speed version, as shown in
Fig. 3. This proposed high-speed architecture is the parallel proc-
essing version of the accelerator shown in Fig. 2, i.e., Lines 5-7 of
Algorithm 1 are executed in parallel. In this case, a CSR, with the
help of an inverter (Inv cell in Fig. 3, according to the 2’s comple-
ment requirement), is enough to obtain GU~Y from G based on
Line 9 of Algorithm 1 (the n-to-1 MUX is no longer needed). After
n cycles of accumulation, the coefficients of V' are added with the
accumulated results, respectively, to produce the desired output
W. An output SR is then used to transfer W into a serial format.
The control unit has a similar setup as that in Fig. 2 yet with
updated cycles (the computation time is now (n + 1) cycles).

Novelty of the Proposed Accelerators. When comparing with existing
designs of similar throughput, the proposed design has the following
advantages. (i) Efficient structural layout, e.g., 7" and D are processed
by one SR, and thus the proposed structure involves one less SR than
[14]; additionally, the proposed accelerator has one less SC than [13].
(i) Full control coverage, i.e., the control unit generates all necessary
signals for operation of the accelerator while existing designs [13],
[14], [15] do not provide related control signals for certain input oper-
ands (such as G or D). (iii) Complete input/output processing setup,

ncluding different-size SRs and CSRs.

2 logyq-bit n-to-1 MUX.

3Not including inputfoutput processing.

{Complete inputfoutput processing setup.

5 Low-complexity design.

SHigh-speed design.

*[13] only provides the decryption structure, where the low-speed one assumes
two polynomials (2n x log,q bits) are directly attached to two n-to-1 MUXes
(two SRs are missing) and the high-speed one has three SRs missing. While [14]
assumes one polynomial (n x log,q bits) is directly attached to the n-to-1 MUX:
one SR is missing.

i.e., the proposed accelerators operate appropriately once all the
inputs have been loaded into respective SRs, while [13], [14], [15]
assume certain operands (like () are fed to the structure directly
without considering the related SR usage (8-bit, size n).

5 COMPLEXITY ANALYSIS AND COMPARISON

Complexity Analysis. The parameter setting of the BRLWE-based
scheme is specified here: (i) n is the security level of the PQC
scheme; (ii) the integer and binary polynomials have n number of
log, ¢-bit/1-bit coefficients, respectively.

The proposed BRLWE-based PQC accelerator (Fig. 2) has three
SRs (one 1-bit CSR and two log,g-bit SRs), one log,g-bit n-to-1
MUX, one SC, and one AC. The latency time (not including the
input/output processing time) is (n? + 2n) cycles. The proposed
high-speed one (Fig. 3) has four SRs (one extra for output delivery)
and n ACs (latency is now (n + 1) cycles).

We have also listed the area-time complexities of the proposed
and those recently released designs (with similar throughput) in
Table 1. It is shown that the proposed structure (Fig. 2) involves less
complexities than the existing ones. The low-speed design of [13]
involves two missing SRs. The design of [14] has one missing SR,
and thus, it actually has one more SR than the proposed Fig. 2. While
the existing high-speed architecture of [13] has three SR missing:
two for input and one for output. Considering that the design of [13]
only provides decryption structures, the proposed high-speed one
is more efficient than [13] (both encryption and decryption opera-
tions are involved). Note that [15] has used a different structure, i.e.,
a lookup table (LUT)-like design, we thus do not include it here
(will compare it based on the FPGA implementation results).

FPGA-Based Implementation & Comparison. The experimental
setup for implementation & comparison is described below.

(i) We have coded the proposed structures (Figs. 2 and 3) in
VHDL and used ModelSim to verify functionality (source
code is available at'). We have also obtained implementa-
tion results on an Intel Stratix-V 5SGXMABN1F45C2
device (following [14], [15]) with Intel Quartus Prime 17.0.

(ii) The parameter settings of n =256 and n = 512 with ¢ =

256 were used for the proposed structures (follow [11],

[12], [13], [14], [15], [16], [17]).

The obtained implementation results, namely the number

of adaptive logic modules (ALMs), maximum frequency

in MHz (Fmax), latency cycles (not including loading/

(iii)

1. https:/ /www.ece.villanova.edu/ jxie02/lab/

20 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 1, JANUARY-JUNE 2022

TABLE 2
Comparison of FPGA Implementation Results for Various
BRLWE-Based PQC Structures

[design [#ALMs [Fmax [latency’ [delay [ADP |
[low-complexity BRLWE-based PQC structures (n = 256) |
[13]? 3,472 201.25 65,792 327 1,135,344
[14]* 1,864 316.96 65,536 207 385,848
Fig. 2 846 (488%) 221.29 66,048 298 252,108
[low-complexity BRLWE-based PQC structures (n = 512) |
[13]2 6,901 171.32 | 262,656 | 1,533 | 10,579,233
[14]* 3,551 296.65 | 262,144 884 3,139,084
Fig. 2 1,596 (876%) 203.87 | 263,168 1,291 2,060,436
[high-speed BRLWE-based PQC structures (n = 256) |
133 5,734 369.14 | 257 696 | 3,990,834
[15] 4,495 321.03 258 0.804 | 3,613.980
Fig. 3 4,446 (3,999*) | 379.22 257 0.678 | 3,014.388
[high-speed BRLWE-based PQC structures (n = 512) |
[13]3 11,470 336.36 513 1.525 | 17,491.750
[15] 9,038 317.06 514 1.621 | 14,650.598
Fig. 3 8,864 (8,002*) | 327.98 513 1.564 | 13,863.296

Latency cycle is based on the decryption phase of the PQC scheme.
2Re-implemented results from [14].

3Results from [15].

4One polynomial (n x logyq bits) is directly attached to a n-to-1 MUX
(virtual pin based implementation).

“Area usage for the proposed structures excluding the input SR for G/D
(follow [13], [14] that this part of resource is not included).

delivery time), delay (us, delay=critical-pathxlatency,
where critical-path=1/Fmax), and area-delay product
(ADP=#ALM xdelay), are listed in Table 2. Note power
consumption is not reported as a large portion of the
FPGA power is static power.

(iv) Note that the design of [16] focuses more on the arithmetic
circuit (the input processing components are not that much
included). Meanwhile, the structure presented in [17] requires
more actual SRs than [14] for complete input processing. We
thus do not include these two designs for comparison.

(v) For a better understanding of the efficiency of the proposed
design, we have listed the area usage for the proposed struc-
tures excluding the input SR for G/ D (follow [13], [14]).

As shown in Table 2, the proposed structures involve signifi-
cantly less area-time complexities than the existing ones. For
instance, the proposed architectures (Figs. 2 and 3) have 34.7% and
16.6% less ADP than the recent designs of [14] and [15], respec-
tively, for n = 256 (similar situation for n = 512).

Discussion. The existing designs, somehow, do enjoy the benefits
of feeding/producing input/output directly to/from the structure,
such as less resource usage (SRs) and simpler control signals (load-
ing/delivery control is not required). However, this kind of design
setup cannot be directly implemented on an FPGA device (large I/
0), and the alternative virtual pin-based implementation cannot
achieve optimized place & route with desired mapping perfor-
mance. This issue, however, does not happen to the proposed archi-
tectures due to the complete input/output processing setup.
Additionally, the proposed structures have better complexities than
the competing designs, as analyzed in Table 1. These two factors
contribute to the superior performance of the proposed accelerators.

Since this paper focuses on BRLWE-based PQC structures, we
do not compare them with the existing regular Ring-LWE based
designs (different errors/schemes/structures). Nevertheless, Ring-
LWE based work, such as [10] and [21], represent important PQC
implementations in the field. The Ring-LWE of [10] deploys DSPs
and BRAMs for parallel-processing, and the AxRing-LWE based
design in [21] uses an approximate method for resource-limited
applications. Future work directions include side-channel attacks
[22] and algorithm innovations.

6 CONCLUSION

This paper aims to deliver a lightweight hardware accelerator
implementation for BRLWE-based PQC scheme. We have proposed
two efficient hardware structures with complete input/output proc-
essing setup through three interdependent efforts. Overall, the pro-
posed implementation demonstrates significantly better area-time
complexities over existing ones. The lower complexity makes the
proposed architecture well suited for deployment in emerging light-
weight applications.

ACKNOWLEDGMENTS

Fig. 2 is a senior design capstone project. Benjamin J. Lucas, Ali
Alwan, Marion Murzello, and Yazheng Tu are contributed equally.

REFERENCES

[11 D. Bernstein, “Introduction to post-quantum cryptography,” in Post-Quan-
tum Cryptography. Berlin, Germany: Springer, 2009.

[2] ~ W. Shor, “Algorithms for quantum computation: Discrete logarithms and
factoring,” in Proc. Annu. Symp. Found. Comput. Sci., 1994, pp. 124-134.

[3] PQC round 3 submissions, 2020. [Online]. Available: https:/ /csrc.nist.gov/
projects/post-quantum-cryptography /round-3-submissions

[4] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” . ACM, vol. 56, no. 6, 2009, Art. no. 34.

[5] V.Lyubashevsky et al., “On ideal lattices and learning with errors over rings,”
in Proc. Annu. Int. Conf. Theory Appl. Cryptographic Techn., 2010, pp. 1-23.

[6] J.Xie, K. Basu, K. Gaj, and U. Guin, “Special session: The recent advance of
hardware implementation of post-quantum cryptography,” in Proc. IEEE
38th VLSI Test Symp., 2020, pp. 1-10.

[71 D.Liu, C. Zhang, H. Lin, Y. Chen, and M. Zhang, “A resource-efficient and side-
channel secure hardware implementation of ring-LWE cryptographic process-
or,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 4, pp. 1474-1483, Apr. 2019.

[8] S.Roy et al., “Compact Ring-LWE cryptoprocessor,” in Proc. Int. Workshop
Cryptogr. Hardware Embedded Syst., 2014, pp. 371-391.

[9] S.Bian, M. Hiromoto, and T. Sato, “Filianore: Better multiplier architectures
for LWE-based post-quantum key exchange,” in Proc. 56th ACM/IEEE Des.
Automat. Conf., 2019, pp. 1-6.

[10] Y. Zhang, C. Wang, D. E. S. Kundji, A. Khalid, M. O'Neill, and W. Liu, “An
efficient and parallel R-LWE cryptoprocessor,” IEEE Trans. Circuits Syst., II,
Exp. Briefs, vol. 67, no. 5, pp. 886-890, May 2020.

[11] J. Buchmann et al., “High-performance and lightweight lattice-based pub-
lic-key encryption,” in Proc. 2nd ACM Int. Workshop IoT Privacy Trust Secur.,
2016, pp. 1-8.

[12] A. Aysu, M. Orshansky, and M. Tiwari, “Binary Ring-LWE hardware with
power side-channel countermeasures,” in Proc. Des. Automat. Test Eur.
Conf. Exhib., 2018, pp. 1253-1258.

[13] S. Ebrahimi, S. Bayat-Sarmadi, and H. Mosanaei-Boorani, “Post-quantum
cryptoprocessors optimized for edge and resource-constrained devices in
ToT,” IEEE Internet Things J., vol. 6, no. 3, pp. 5500-5507, Jun. 2019.

[14] P. He, U. Guin, and J. Xie, “Novel low-complexity polynomial multiplica-
tion over hybrid fields for efficient implementation of binary Ring-LWE
post-quantum cryptography,” IEEE |. Emerg. Sel. Top. Circuits Syst., vol. 11,
no. 2, pp. 383-394, Jun. 2021.

[15] J. Xie, P. He, and W. Wen, “Efficient implementation of finite field arithme-
tic for binary Ring-LWE post-quantum cryptography through a novel
lookup-table-like method,” in Proc. 58th ACM/IEEE Des. Automat. Conf.,
2021, pp. 1279-1284.

[16] J.Xie, P. He, X. M. Wang, and J. L. Imana, “Efficient hardware implementa-
tion of finite field arithmetic AB 4 C for binary Ring-LWE based post-
quantum cryptography,” IEEE Trans. Emerg. Top. Comput., to be published,
doi: 10.1109/TETC.2021.3091982.

[17] K. Shahbazi and S.-B. Ko, “Area and power efficient post-quantum crypto-
system for IoT resource-constrained devices,” Microprocessors Microsyst.,
vol. 84,2021, Art. no. 104280.

[18] S. Ebrahimi and S. Bayat-Sarmadi, “Lightweight and fault-resilient imple-
mentations of binary Ring-LWE for IoT devices,” IEEE Internet Things].,
vol. 7, no. 8, pp. 69706978, Aug. 2020.

[19] A. Sarker, M. M. Kermani, and R. Azarderakhsh, “Fault detection architec-
tures for inverted binary Ring-LWE construction benchmarked on FPGA,”
IEEE Trans. Circuits Syst., II, Exp. Briefs, vol. 68, no. 4, pp. 1403-1407, Apr. 2021.

[20] F. Gopfert et al., “A hybrid lattice basis reduction and quantum search attack
on LWE,” in Proc. Int. Workshop Post-Quantum Cryptogr., 2017, pp. 184-202.

[21] D.Kundi, A. Khalid, S. Bian, C. Wang, M. O'Neill, and W. Liu, “AxRLWE:
A multi-level approximate Ring-LWE co-processor for lightweight IoT
applications,” IEEE Internet Things]., to be published, doi: 10.1109/
JIOT.2021.3122276.

[22] T. Schneider et al., “ParTI — Towards combined hardware countermeasures
against side-channel and fault-injection attacks,” in Proc. Annu. Int. Cryptol.
Conf., 2016, pp. 302-332.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
http://dx.doi.org/10.1109/TETC.2021.3091982
http://dx.doi.org/10.1109/JIOT.2021.3122276
http://dx.doi.org/10.1109/JIOT.2021.3122276

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

